How the Structure of Per- and Polyfluoroalkyl Substances (PFAS) Influences Their Binding Potency to the Peroxisome Proliferator-Activated and Thyroid Hormone Receptors—An In Silico Screening Study
Abstract
:1. Introduction
2. Results and Discussion
2.1. Predicting PFAS Binding Probability to PPAR (α, β, and γ) and TR (α and β) with QSAR
2.1.1. PPAR α, β, and γ
2.1.2. TR α and β
2.2. Screening of the Binding Probability of 4464 PFAS
2.2.1. PPAR α, β, and γ
2.2.2. TR α and β
3. Discussion—The Biological Significance of the In Silico Predictions
3.1. Peroxisome Proliferator-Activated Receptors
3.2. Thyroid Hormone Receptors
4. Materials and Methods
4.1. Dataset
4.2. Docking Score Calculations
4.3. Molecular Descriptors
4.4. QSAR Model Calibration and Validation
4.5. Screening of the Binding Potential to NHRs for a Large Set of PFAS
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Kissa, E. Fluorinated Surfactants and Repellents; Surfactant Science Series; Marcel Dekker: New York, NY, USA, 2001; Volume 97. [Google Scholar]
- Glüge, J.; Scheringer, M.; Cousins, I.T.; DeWitt, J.C.; Goldenman, G.; Herzke, D.; Lohmann, R.; Ng, C.A.; Trier, X.; Wang, Z. An Overview of the Uses of Per- and Polyfluoroalkyl Substances (PFAS). Environ. Sci. Process Impacts 2020, 22, 2345–2373. [Google Scholar] [CrossRef]
- OECD. Per-and Polyfluoroalkyl Substances and Alternatives in Coatings, Paints and Varnishes (CPVs), Report on the Commercial Availability and Current Uses; OECD Series on Risk Management, No. 70, Environment, Health and Safety, Environment Directorate; OECD: Paris, France, 2022. [Google Scholar]
- Prevedouros, K.; Cousins, I.T.; Buck, R.C.; Korzeniowski, S.H. Sources, Fate and Transport of Perfluorocarboxylates. Environ. Sci Technol. 2005, 40, 32–44. [Google Scholar] [CrossRef] [PubMed]
- Pelch, K.E.; Reade, A.; Kwiatkowski, C.F.; Merced-Nieves, F.M.; Cavalier, H.; Schultz, K.; Wolffe, T.; Varshavsky, J. The PFAS-Tox Database: A Systematic Evidence Map of Health Studies on 29 per- and Polyfluoroalkyl Substances. Environ. Int. 2022, 167, 107408. [Google Scholar] [CrossRef] [PubMed]
- Boyd, R.I.; Ahmad, S.; Singh, R.; Fazal, Z.; Prins, G.S.; Erdogan, Z.M.; Irudayaraj, J.; Spinella, M.J. Toward a Mechanistic Understanding of Poly-and Perfluoroalkylated Substances and Cancer. Cancers 2022, 14, 2919. [Google Scholar] [CrossRef] [PubMed]
- Boulanger, B.; Vargo, J.D.; Schnoor, J.L.; Hornbuckle, K.C. Evaluation of Perfluorooctane Surfactants in a Wastewater Treatment System and in a Commercial Surface Protection Product. Environ. Sci. Technol. 2005, 39, 5524–5530. [Google Scholar] [CrossRef]
- Harada, K.; Nakanishi, S.; Sasaki, K.; Furuyama, K.; Nakayama, S.; Saito, N.; Yamakawa, K.; Koizumi, A. Particle Size Distribution and Respiratory Deposition Estimates of Airborne Perfluorooctanoate and Perfluorooctanesulfonate in Kyoto Area, Japan. Bull. Environ. Contam. Toxicol. 2006, 76, 306–310. [Google Scholar] [CrossRef]
- Emmett, E.A.; Zhang, H.; Shofer, F.S.; Freeman, D.; Rodway, N.V.; Desai, C.; Shaw, L.M. Community Exposure to Perfluorooctanoate: Relationships Between Serum Levels and Certain Health Parameters. J Occup. Environ. Med. 2006, 48, 771–779. [Google Scholar] [CrossRef] [Green Version]
- Butenhoff, J.L.; Gaylor, D.W.; Moore, J.A.; Olsen, G.W.; Rodricks, J.; Mandel, J.H.; Zobel, L.R. Characterization of Risk for General Population Exposure to Perfluorooctanoate. Regul. Toxicol. Pharm. 2004, 39, 363–380. [Google Scholar] [CrossRef]
- Calafat, A.M.; Wong, L.-Y.; Kuklenyik, Z.; Reidy, J.A.; Needham, L.L. Polyfluoroalkyl Chemicals in the U.S. Population: Data from the National Health and Nutrition Examination Survey (NHANES) 2003–2004 and Comparisons with NHANES 1999–2000. Environ. Health Persp. 2007, 115, 1596–1602. [Google Scholar] [CrossRef]
- Kudo, N.; Suzuki-Nakajima, E.; Mitsumoto, A.; Kawashima, Y. Responses of the Liver to Perfluorinated Fatty Acids with Different Carbon Chain Length in Male and Female Mice: In Relation to Induction of Hepatomegaly, Peroxisomal β-Oxidation and Microsomal 1-Acylglycerophosphocholine Acyltransferase. Biol. Pharm. Bull. 2006, 29, 1952–1957. [Google Scholar] [CrossRef]
- Kärrman, A.; Ericson, I.; van Bavel, B.; Darnerud, P.O.; Aune, M.; Glynn, A.; Lignell, S.; Lindström, G. Exposure of Perfluorinated Chemicals through Lactation: Levels of Matched Human Milk and Serum and a Temporal Trend, 1996–2004, in Sweden. Enviorn. Health Persp. 2007, 115, 226–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frawley, R.P.; Smith, M.; Cesta, M.F.; Hayes-Bouknight, S.; Blystone, C.; Kissling, G.E.; Harris, S.; Germolec, D. Immunotoxic and Hepatotoxic Effects of Perfluoro-n-Decanoic Acid (PFDA) on Female Harlan Sprague-Dawley Rats and B6C3F1/N Mice When Administered by Oral Gavage for 28 Days. J. Immunotoxicol. 2018, 15, 41–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Innes, K.E.; Wimsatt, J.H.; Frisbee, S.; Ducatman, A.M. Inverse Association of Colorectal Cancer Prevalence to Serum Levels of Per-fluorooctane Sulfonate (PFOS) and Perfluorooctanoate (PFOA) in a Large Appalachian Population. BMC Cancer 2014, 14, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaballah, S.; Swank, A.; Sobus, J.R.; Howey, X.M.; Schmid, J.; Catron, T.; McCord, J.; Hines, E.; Strynar, M.; Tal, T. Evaluation of Developmental Toxicity, Developmental Neurotoxicity, and Tissue Dose in Zebrafish Exposed to GenX and Other PFAS. Environ. Health Persp. 2020, 128, 47005. [Google Scholar] [CrossRef] [Green Version]
- SC-4/17: Perfluorooctane Sulfonic Acid, Its Salts and Perfluorooctane Sulfonyl Fluoride. In Proceedings of the Fourth Meeting of the Conference of the Parties to the Stockholm Convention, Geneva, Switzerland, 4–8 May 2009; Available online: http://Chm.Pops.Int/TheConvention/ThePOPs/TheNewPOPs/Tabid/2511/Default.AspxL (accessed on 2 November 2022).
- SC-9/12: Perfluorooctanoic Acid (PFOA), Its Salts and PFOA-Related Compounds. In Proceedings of the Ninth Meeting of the Conference of the Parties to the Stockholm Convention, Geneva, Switzerland, 29 April–10 May 2019; Available online: http://Chm.Pops.Int/TheConvention/ThePOPs/TheNewPOPs/Tabid/2511/Default.Aspx (accessed on 2 November 2022).
- Yu, S.; Ren, J.; Lv, Z.; Li, R.; Zhong, Y.; Yao, W.; Yuan, J. Prediction of the Endocrine-Disrupting Ability of 49 per- and Polyfluoro-alkyl Substances: In Silico and Epidemiological Evidence. Chemosphere 2022, 290, 133366. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.; Ng, C.A. Using Machine Learning to Classify Bioactivity for 3486 Per- and Polyfluoroalkyl Substances (PFASs) from the OECD List. Environ. Sci. Technol. 2019, 53, 13970–13980. [Google Scholar] [CrossRef]
- Walker, C.; Garza, S.; Papadopoulos, V.; Culty, M. Impact of Endocrine-Disrupting Chemicals on Steroidogenesis and Consequences on Testicular Function. Mol. Cell Endocrinol. 2021, 527, 111215. [Google Scholar] [CrossRef]
- Behr, A.-C.; Plinsch, C.; Braeuning, A.; Buhrke, T. Activation of Human Nuclear Receptors by Perfluoroalkylated Substances (PFAS). Toxicol. In Vitro 2020, 62, 104700. [Google Scholar] [CrossRef]
- Takacs, M.L.; Abbott, B.D. Activation of Mouse and Human Peroxisome Proliferator–Activated Receptors (α, β/δ, γ) by Perfluorooctanoic Acid and Perfluorooctane Sulfonate. Toxicol. Sci. 2007, 95, 108–117. [Google Scholar] [CrossRef] [Green Version]
- Wolf, C.J.; Takacs, M.L.; Schmid, J.E.; Lau, C.; Abbott, B.D. Activation of Mouse and Human Peroxisome Proliferator−Activated Receptor Alpha by Perfluoroalkyl Acids of Different Functional Groups and Chain Lengths. Toxicol. Sci. 2008, 106, 162–171. [Google Scholar] [CrossRef]
- Christofides, A.; Konstantinidou, E.; Jani, C.; Boussiotis, V.A. The Role of Peroxisome Proliferator-Activated Receptors (PPAR) in Immune Responses. Metabolis 2020, 114, 154338. [Google Scholar] [CrossRef] [PubMed]
- Chawla, A.; Repa, J.J.; Evans, R.M.; Mangelsdorf, D.J. Nuclear Receptors and Lipid Physiology: Opening the X-Files. Science 2001, 294, 1866–1870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berger, J.; Moller, D.E. The Mechanisms of Action of PPARs. Annu. Rev. Med. 2002, 53, 409–435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shipley, J.M.; Hurst, C.H.; Tanaka, S.S.; DeRoos, F.L.; Butenhoff, J.L.; Seacat, A.M.; Waxman, D.J. Trans-Activation of PPARα and Induction of PPARα Target Genes by Perfluorooctane-Based Chemicals. Toxicol. Sci. 2004, 80, 151–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heuvel, J.P.V.; Thompson, J.T.; Frame, S.R.; Gillies, P.J. Differential Activation of Nuclear Receptors by Perfluorinated Fatty Acid Analogs and Natural Fatty Acids: A Comparison of Human, Mouse, and Rat Peroxisome Proliferator-Activated Receptor-α, -β, and -γ, Liver X Receptor-β, and Retinoid X Receptor-α. Toxicol. Sci. 2006, 92, 476–489. [Google Scholar] [CrossRef] [Green Version]
- Tao, L.J.; Seo, D.E.; Jackson, B.; Ivanova, N.B.; Santori, F.R. Nuclear Hormone Receptors and Their Ligands: Metabolites in Control of Transcription. Cells 2020, 9, 2606. [Google Scholar] [CrossRef]
- Eliceiri, B.P.; Brown, D.D. Quantitation of Endogenous Thyroid Hormone Receptors Alpha and Beta during Embryogenesis and Metamorphosis in Xenopus Laevis. J. Biol. Chem. 1994, 269, 24459–24465. [Google Scholar] [CrossRef]
- Collet, B.; Simon, E.; van der Linden, S.; El Abdellaoui, N.; Naderman, M.; Man, H.; Middelhof, I.; van der Burg, B.; Besselink, H.; Brouwer, A. Evaluation of a Panel of in Vitro Methods for Assessing Thyroid Receptor β and Transthyretin Transporter Disrupting Activities. Reprod. Toxicol. 2020, 96, 432–444. [Google Scholar] [CrossRef]
- Jabbar, A.; Pingitore, A.; Pearce, S.H.S.; Zaman, A.; Iervasi, G.; Razvi, S. Thyroid Hormones and Cardiovascular Disease. Nat. Rev. Cardiol. 2016, 14, 39–55. [Google Scholar] [CrossRef]
- Szilagyi, J.T.; Avula, V.; Fry, R.C. Perfluoroalkyl Substances (PFAS) and Their Effects on the Placenta, Pregnancy, and Child Development: A Potential Mechanistic Role for Placental Peroxisome Proliferator–Activated Receptors (PPARs). Curr. Environ. Health Rep. 2020, 7, 222–230. [Google Scholar] [CrossRef]
- Jones, P.D.; Hu, W.; Coen, W.D.; Newsted, J.L.; Giesy, J.P. Binding of Perfluorinated Fatty Acids to Serum Proteins. Environ. Toxicol. Chem. 2003, 22, 2639–2649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, X.; Nabb, D.L.; Russell, M.H.; Kennedy, G.L.; Rickard, R.W. Renal Elimination of Perfluorocarboxylates (PFCAs). Chem. Res. Toxicol. 2012, 25, 35–46. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, S.; Bloom, M.S.; Yucel, R.; Seegal, R.F.; Wu, Q.; Kannan, K.; Rej, R.; Fitzgerald, E.F. Perfluoroalkyl Substances and Thyroid Function in Older Adults. Environ. Int. 2015, 75, 206–214. [Google Scholar] [CrossRef] [PubMed]
- Wyrzykowska, E.; Rybińska-Fryca, A.; Sosnowska, A.; Puzyn, T. Virtual Screening in the Design of Ionic Liquids as Environmentally Safe Bactericides. Green Chem. 2019, 21, 1965–1973. [Google Scholar] [CrossRef]
- Barycki, M.; Sosnowska, A.; Puzyn, T. AquaBoxIL—A Computational Tool for Determining the Environmental Distribution Profile of Ionic Liquids. Green Chem. 2018, 20, 3359–3370. [Google Scholar] [CrossRef]
- Ahuja, S.; Deep, P.; Shravani; Nair, S.; Sambhyal, S.; Mishra, D.; Pandey, C.; Manchanda, P.; Krishma; Dee, A.; et al. Molecular Docking; Future of Medicinal Research. Ecol. Environ. Conserv. 2022, 28, 18. [Google Scholar] [CrossRef]
- Kolsek, K.; Mavri, J.; Dolenc, M.S.; Gobec, S.; Turk, S. Endocrine Disruptome-An Open Source Prediction Tool for Assessing En-docrine Disruption Potential through Nuclear Receptor Binding. J. Chem. Inf. Model 2014, 54, 1254–1267. [Google Scholar] [CrossRef]
- Sangion, A.; Gramatica, P. PBT Assessment and Prioritization of Contaminants of Emerging Concern: Pharmaceuticals. Environ. Res. 2016, 147, 297–306. [Google Scholar] [CrossRef]
- Puzyn, T.; Leszczynska, D.; Leszczynski, J. Toward the Development of “Nano-QSARs”: Advances and Challenges. Small Weinh. Der. Bergstr. Ger. 2009, 5, 2494–2509. [Google Scholar] [CrossRef]
- Gramatica, P. Recent Advances in QSAR Studies. Chall. Adv. Comput. Chem. Phys. 2009, 8, 327–366. [Google Scholar] [CrossRef]
- Puzyn, T.; Rasulev, B.; Gajewicz, A.; Hu, X.; Dasari, T.P.; Michalkova, A.; Hwang, H.-M.; Toropov, A.; Leszczynska, D.; Leszczynski, J. Using Nano-QSAR to Predict the Cytotoxicity of Metal Oxide Nanoparticles. Nat. Nanotechnol. 2011, 6, 175–178. [Google Scholar] [CrossRef] [PubMed]
- OECD. OECD Principles for the Validation, for Regulatory Purposes, of (Quantitative) Structure Activity Relationship Models. In 37th Joint Meeting of the Chemicals Committee and Working Party on Chemicals, Pesticides and Biotechnology; Organisation for Economic Co-Operation and Development: Paris, France, 2004. [Google Scholar]
- OECD. Guidance Document on the Validation of (Quantitative) Structure Activity Relationships [QSAR] Models; Organisation for Economic Co-Operation and Development: Paris, France, 2007. [Google Scholar]
- Tropsha, A.; Gramatica, P.; Gombar, V. The Importance of Being Earnest: Validation Is the Absolute Essential for Successful Appli-cation and Interpretation of QSPR Models. Qsar. Comb. Sci. 2003, 22, 69–77. [Google Scholar] [CrossRef]
- Sosnowska, A.; Bulawska, N.; Kowalska, D.; Puzyn, T. Towards Higher Scientific Validity and Regulatory Acceptance of Predictive Models for PFAS. 2022; manuscript submitted for publication. [Google Scholar]
- Deshpande, S.; Solomon, V.R.; Katti, S.B.; Prabhakar, Y.S. Topological Descriptors in Modelling Antimalarial Activity: N(1)-(7-Chloro-4-Quinolyl)-1,4-Bis(3-Aminopropyl)Piperazine as Prototype. J. Enzym. Inhib. Med. Chem. 2009, 24, 94–104. [Google Scholar] [CrossRef]
- da Veras, L.S.; Arakawa, M.; Funatsu, K.; Takahata, Y. 2D and 3D QSAR Studies of the Receptor Binding Affinity of Progestins. J. Brazil Chem. Soc. 2010, 21, 872–881. [Google Scholar] [CrossRef] [Green Version]
- Netzeva, T.I.; Worth, A.P.; Aldenberg, T.; Benigni, R.; Cronin, M.T.D.; Gramatica, P.; Jaworska, J.S.; Kahn, S.; Klopman, G.; Marchant, C.A.; et al. Current Status of Methods for Defining the Applicability Domain of (Quantitative) Structure-Activity Relationships. Altern Lab. Anim. 2005, 33, 155–173. [Google Scholar] [CrossRef]
- Bonchev, D. Information Theoretic Indices for Characterization of Chemical Structures (Vol. 5); Research Studies Press: Chichester, UK, 1983. [Google Scholar]
- Li, F.; Zhang, C.; Qu, Y.; Chen, J.; Chen, L.; Liu, Y.; Zhou, Q. Quantitative Characterization of Short- and Long-Chain Perfluorinated Acids in Solid Matrices in Shanghai, China. Sci. Total Environ. 2009, 408, 617–623. [Google Scholar] [CrossRef]
- Gramatica, P.; Cassani, S.; Roy, P.P.; Kovarich, S.; Yap, C.W.; Papa, E. QSAR Modeling Is Not “Push a Button and Find a Correla-tion”: A Case Study of Toxicity of (Benzo-)Triazoles on Algae. Mol. Inform. 2012, 31, 817–835. [Google Scholar] [CrossRef]
- Put, R.; Perrin, C.; Questier, F.; Coomans, D.; Massart, D.L.; Heyden, Y.V. Classification and Regression Tree Analysis for Molecular Descriptor Selection and Retention Prediction in Chromatographic Quantitative Structure–Retention Relationship Studies. J. Chromatogr. A 2003, 988, 261–276. [Google Scholar] [CrossRef]
- Norman Network: Norman Substance Database (SusDat). Available online: https://www.Norman-network.Com/Nds/Susdat/ (accessed on 17 May 2022).
- Li, C.-H.; Ren, X.-M.; Cao, L.-Y.; Qin, W.-P.; Guo, L.-H. Investigation of Binding and Activity of Perfluoroalkyl Substances to the Human Peroxisome Proliferator-Activated Receptor β/δ. Environ. Sci. Process Impacts 2019, 21, 1908–1914. [Google Scholar] [CrossRef]
- Zhang, L.; Ren, X.-M.; Guo, L.-H. Structure-Based Investigation on the Interaction of Perfluorinated Compounds with Human Liver Fatty Acid Binding Protein. Environ. Sci. Technol 2013, 47, 11293–11301. [Google Scholar] [CrossRef]
- Xie, W.; Zhong, W.; Appenzeller, B.M.R.; Zhang, J.; Junaid, M.; Xu, N. Nexus between Perfluoroalkyl Compounds (PFCs) and Hu-man Thyroid Dysfunction: A Systematic Review Evidenced from Laboratory Investigations and Epidemiological Studies. Crit. Rev. Environ. Sci. Tec. 2020, 51, 2485–2530. [Google Scholar] [CrossRef]
- Available online: https://Www.Rcsb.Org/Structure/3ILZ (accessed on 2 November 2022).
- Available online: https://Www.Rcsb.Org/Structure/3IMY (accessed on 2 November 2022).
- Yao, B.; Yang, C.; Pan, C.; Li, Y. Thyroid Hormone Resistance: Mechanisms and Therapeutic Development. Mol. Cell Endocrinol. 2022, 553, 111679. [Google Scholar] [CrossRef] [PubMed]
- Coperchini, F.; Croce, L.; Pignatti, P.; Ricci, G.; Gangemi, D.; Magri, F.; Imbriani, M.; Rotondi, M.; Chiovato, L. The New Generation PFAS C6O4 Does Not Produce Adverse Effects on Thyroid Cells in Vitro. J. Endocrinol. Investig. 2021, 44, 1625–1635. [Google Scholar] [CrossRef] [PubMed]
- Coperchini, F.; Croce, L.; Ricci, G.; Magri, F.; Rotondi, M.; Imbriani, M.; Chiovato, L. Thyroid Disrupting Effects of Old and New Generation PFAS. Front. Endocrinol. 2021, 11, 612320. [Google Scholar] [CrossRef] [PubMed]
- Young, A.S.; Zoeller, T.; Hauser, R.; James-Todd, T.; Coull, B.A.; Behnisch, P.A.; Brouwer, A.; Zhu, H.; Kannan, K.; Allen, J.G. Assessing Indoor Dust Interference with Human Nuclear Hormone Receptors in Cell-Based Luciferase Reporter Assays. Environ. Health Persp. 2021, 129, 47010. [Google Scholar] [CrossRef] [PubMed]
- Behnisch, P.A.; Besselink, H.; Weber, R.; Willand, W.; Huang, J.; Brouwer, A. Developing Potency Factors for Thyroid Hormone Disruption by PFASs Using TTR-TRβ CALUX® Bioassay and Assessment of PFASs Mixtures in Technical Products. Environ. Int. 2021, 157, 106791. [Google Scholar] [CrossRef]
- Metzger, D.; Imai, T.; Jiang, M.; Takukawa, R.; Desvergne, B.; Wahli, W.; Chambon, P. Functional Role of RXRs and PPARgamma in Mature Adipocytes. Prostaglandins Leukot. Essent. Fat. Acids 2005, 73, 51–58. [Google Scholar] [CrossRef]
- Xu, H.E.; Lambert, M.H.; Montana, V.G.; Plunket, K.D.; Moore, L.B.; Collins, J.L.; Oplinger, J.A.; Kliewer, S.A.; Gampe, R.T.; McKee, D.D.; et al. Structural Determinants of Ligand Binding Selectivity between the Peroxisome Proliferator-Activated Receptors. Proc. Natl. Acad. Sci. USA 2001, 98, 13919–13924. [Google Scholar] [CrossRef] [Green Version]
- Hughes, T.S.; Giri, P.K.; de Vera, I.M.S.; Marciano, D.P.; Kuruvilla, D.S.; Shin, Y.; Blayo, A.-L.; Kamenecka, T.M.; Burris, T.P.; Grif-fin, P.R.; et al. An Alternate Binding Site for PPARγ Ligands. Nat. Commun. 2014, 5, 3571. [Google Scholar] [CrossRef] [Green Version]
- Mortensen, Å.-K.; Mæhre, S.; Kristiansen, K.; Heimstad, E.S.; Gabrielsen, G.W.; Jenssen, B.M.; Sylte, I. Homology Modeling to Screen for Potential Binding of Contaminants to Thyroid Hormone Receptor and Transthyretin in Glaucous Gull (Larus Hyperboreus) and Herring Gull (Larus Argentatus). Comput. Toxicol. 2020, 13, 100120. [Google Scholar] [CrossRef]
- Ren, X.-M.; Zhang, Y.-F.; Guo, L.-H.; Qin, Z.-F.; Lv, Q.-Y.; Zhang, L.-Y. Structure–Activity Relations in Binding of Perfluoroalkyl Compounds to Human Thyroid Hormone T3 Receptor. Arch. Toxicol. 2015, 89, 233–242. [Google Scholar] [CrossRef] [PubMed]
- Xin, Y.; Ren, X.-M.; Ruan, T.; Li, C.-H.; Guo, L.-H.; Jiang, G. Chlorinated Polyfluoroalkylether Sulfonates Exhibit Similar Binding Potency and Activity to Thyroid Hormone Transport Proteins and Nuclear Receptors as Perfluorooctanesulfonate. Environ. Sci. Technol. 2018, 52, 9412–9418. [Google Scholar] [CrossRef] [PubMed]
- Consonni, V.; Todeschini, R. Molecular Descriptors Recent Advances in QSAR Studies; Springer: New York, NY, USA, 2010; pp. 29–102. [Google Scholar]
- Mauri, A. Ecotoxicological QSARs; Methods in Pharmacology and Toxicology; Humana: New York, NY, USA, 2020; pp. 801–820. [Google Scholar] [CrossRef]
- Puzyn, T.; Mostrag-Szlichtyng, A.; Gajewicz, A.; Skrzyński, M.; Worth, A.P. Investigating the Influence of Data Splitting on the Pre-dictive Ability of QSAR/QSPR Models. Struct. Chem. 2011, 22, 795–804. [Google Scholar] [CrossRef] [Green Version]
- De, P.; Kar, S.; Ambure, P.; Roy, K. Prediction Reliability of QSAR Models: An Overview of Various Validation Tools. Arch. Toxicol. 2022, 96, 1279–1295. [Google Scholar] [CrossRef]
- Available online: Https://Scikit-Learn.Org/Stable/Modules/Generated/Sklearn.Preprocessing.StandardScaler.Html (accessed on 2 November 2022).
- Python Software Foundation. Python Language Reference, Version 3.8.8. Available online: Http://Www.Python.Org (accessed on 2 November 2022).
- Pires, A.M.; Rodrigues, I.M. Multiple Linear Regression with Some Correlated Errors: Classical and Robust Methods. Stat. Med. 2007, 26, 2901–2918. [Google Scholar] [CrossRef]
- Gramatica, P. Principles of QSAR Models Validation: Internal and External. Qsar. Comb Sci. 2007, 26, 694–701. [Google Scholar] [CrossRef]
- Chirico, N.; Gramatica, P. Real External Predictivity of QSAR Models: How to Evaluate It? Comparison of Different Validation Criteria and Proposal of Using the Concordance Correlation Coefficient. J. Chem. Inf. Model 2011, 51, 2320–2335. [Google Scholar] [CrossRef]
- Alexander, D.L.J.; Tropsha, A.; Winkler, D.A. Beware of R 2: Simple, Unambiguous Assessment of the Prediction Accuracy of QSAR and QSPR Models. J. Chem. Inf. Model 2015, 55, 1316–1322. [Google Scholar] [CrossRef] [Green Version]
- Helguera, A.; Cordeiro, M.N.; González, M.; Pérez, M.C.; Ruiz, R.; Castillo, Y. QSAR Modeling for Predicting Carcinogenic Potency of Nitroso-Compounds Using 0D-2D Molecular Descriptors. In Proceedings of the 11th International Electronic Conference on Synthetic Organic Chemistry, Basel, Switzerland, 1–30 November 2007; p. 1361. [Google Scholar] [CrossRef]
Model | PPAR α | PPAR β | PPAR γ | TR α | TR β |
---|---|---|---|---|---|
Equation | PPARα BS = −7.499 (±0.067) − 0.947 (±0.070) × ICR − 0.394 (±0.070) × PW2 | PPARβ BS = −8.248 (±0.069) − 1.059 (±0.071) × ICR − 0.409 (±0.071) × X% | PPARγ BS = −7.727 (±0.052) − 1.099 (±0.053) × ICR − 0.398 (±0.053) × X% | TRα BS = −8.230 (±0.070) − 0.454 (±0.071) × X% − 1.189 (±0.071) × ICR | TRβ BS = −8.724 (±0.054) − 0.137 (±0.061) × X% − 1.509 (±0.061) × TPC |
n | 29 | 29 | 33 | 33 | 29 |
k | 14 | 14 | 10 | 10 | 14 |
R2 | 0.917 | 0.924 | 0.949 | 0.924 | 0.970 |
RMSEC | 0.341 | 0.352 | 0.287 | 0.384 | 0.276 |
MAEC | 0.288 | 0.272 | 0.201 | 0.327 | 0.221 |
Q2LOO | 0.878 | 0.903 | 0.940 | 0.908 | 0.955 |
RMSECV | 0.350 | 0.398 | 0.310 | 0.422 | 0.340 |
MAECV | 0.244 | 0.304 | 0.219 | 0.360 | 0.256 |
Q2F1 | 0.897 | 0.917 | 0.907 | 0.899 | 0.948 |
Q2F2 | 0.897 | 0.916 | 0.906 | 0.899 | 0.947 |
Q2F3 | 0.912 | 0.922 | 0.952 | 0.934 | 0.954 |
RMSEEXT | 0.352 | 0.359 | 0.279 | 0.359 | 0.344 |
MAEEXT | 0.257 | 0.279 | 0.223 | 0.312 | 0.280 |
CCCEXT | 0.937 | 0.952 | 0.953 | 0.946 | 0.973 |
Y2SCR | 0.070 | 0.068 | 0.062 | 0.061 | 0.070 |
Nuclear Hormone Receptor | High probability | Threshold 1 | Moderately high probability | Threshold 2 | Moderate probability | Threshold 3 | Low probability |
PPARα | −10 | −9.4 | −8.9 | ||||
PPARβ | −10.5 | −10.1 | −9.6 | ||||
PPARγ | −10.3 | −9.6 | −8.9 | ||||
TRα | −10.2 | −9.2 | −7.2 | ||||
TRβ | −10.5 | −9.4 | −7.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kowalska, D.; Sosnowska, A.; Bulawska, N.; Stępnik, M.; Besselink, H.; Behnisch, P.; Puzyn, T. How the Structure of Per- and Polyfluoroalkyl Substances (PFAS) Influences Their Binding Potency to the Peroxisome Proliferator-Activated and Thyroid Hormone Receptors—An In Silico Screening Study. Molecules 2023, 28, 479. https://doi.org/10.3390/molecules28020479
Kowalska D, Sosnowska A, Bulawska N, Stępnik M, Besselink H, Behnisch P, Puzyn T. How the Structure of Per- and Polyfluoroalkyl Substances (PFAS) Influences Their Binding Potency to the Peroxisome Proliferator-Activated and Thyroid Hormone Receptors—An In Silico Screening Study. Molecules. 2023; 28(2):479. https://doi.org/10.3390/molecules28020479
Chicago/Turabian StyleKowalska, Dominika, Anita Sosnowska, Natalia Bulawska, Maciej Stępnik, Harrie Besselink, Peter Behnisch, and Tomasz Puzyn. 2023. "How the Structure of Per- and Polyfluoroalkyl Substances (PFAS) Influences Their Binding Potency to the Peroxisome Proliferator-Activated and Thyroid Hormone Receptors—An In Silico Screening Study" Molecules 28, no. 2: 479. https://doi.org/10.3390/molecules28020479
APA StyleKowalska, D., Sosnowska, A., Bulawska, N., Stępnik, M., Besselink, H., Behnisch, P., & Puzyn, T. (2023). How the Structure of Per- and Polyfluoroalkyl Substances (PFAS) Influences Their Binding Potency to the Peroxisome Proliferator-Activated and Thyroid Hormone Receptors—An In Silico Screening Study. Molecules, 28(2), 479. https://doi.org/10.3390/molecules28020479