Nutrigenomic Effects of White Rice and Brown Rice on the Pathogenesis of Metabolic Disorders in a Fruit Fly Model
Abstract
:1. Introduction
2. Results
2.1. Proximate Analysis
2.2. Bioactive Compounds Analyses
2.3. Effects on Body Weight Changes
2.4. Effects on Negative Geotaxis
2.5. Effects on Biochemical Variables
2.5.1. Effects on Fasting Glucose Level
2.5.2. Effects on Trehalose Levels
2.5.3. Effects on Glycogen Levels
2.5.4. Effects on Triglyceride Level
2.5.5. Effects on Oxidative Stress Markers
2.6. Effects on Gene Expression
2.6.1. Expression of Insulin Receptor Substrate (IRS)
2.6.2. Expression of Phosphoenol Pyruvate Carboxylase (PEPCK)
2.6.3. Expression of Acetyl-CoA Carboxylase (ACC)
3. Materials and Methods
3.1. Materials
3.2. Sample Preparation
3.3. Proximate Analysis and Crude Fibre Content Determination of the Rice Cultivars
3.4. Analyses of the Bioactive Compound Components of the Rice Cultivars
3.4.1. Preparation of WR and BR Methanolic Extracts
3.4.2. Determination of Total Phenolic Content (TPC)
3.4.3. Determination of Total Flavonoid Contents (TFC)
3.4.4. Determination of Total Oryzanol Content (TOC)
3.5. Fruit Fly Husbandry and Experimental Design
3.6. Body Weight Measurements
3.7. Negative Geotaxis Assay
3.8. Biochemical Analyses
3.8.1. Glucose Assay
3.8.2. Trehalose Assay
3.8.3. Glycogen Assay
3.8.4. Triglyceride Assay
3.8.5. Anti-Oxidant Markers Assay
3.9. Gene Expression Analysis
3.9.1. Extraction of RNA
3.9.2. Primer Design
3.9.3. Quantitative Real-Time Polymerase Chain Reaction (RT-qPCR) Analysis
3.10. Statistical Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Flanary, S.J.; Keane, R.E. United States Department of Agriculture. USDA For. Serv. Res. Note PNW-RN 2020, 2020, 1–12. [Google Scholar] [CrossRef]
- Atkinson, F.S.; Foster-Powell, K.; Brand-Miller, J.C. International Tables of Glycemic Index and Glycemic Load Values: 2008. Diabetes Care 2008, 31, 2281–2283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohan, V.; Spiegelman, D.; Sudha, V.; Gayathri, R.; Hong, B.; Praseena, K.; Anjana, R.M.; Wedick, N.M.; Arumugam, K.; Malik, V.; et al. Effect of Brown Rice, White Rice, and Brown Rice with Legumes on Blood Glucose and Insulin Responses in Overweight Asian Indians: A Randomized Controlled Trial. Diabetes Technol. Ther. 2014, 16, 317–325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.; Xu, H.; Sui, Y.; Mei, X.; Shi, J.; Cai, S.; Xiong, T.; Carrillo, C.; Castagnini, J.M.; Zhu, Z.; et al. Comparing the LC-MS Phenolic Acids Profiles of Seven Different Varieties of Brown Rice (Oryza sativa L.). Foods 2022, 11, 1552. [Google Scholar] [CrossRef] [PubMed]
- Oselebe, H.O.; Ogah, O.; Odo, M.I.; Ogbu, K.I. Determination of Phytochemical and Antioxidant Properties of Some Rice Varieties and Hybrids Grown in Ebonyi State, Nigeria. Niger. J. Biotechnol. 2013, 26, 60–67. [Google Scholar]
- Adebamowo, S.N.; Eseyin, O.; Yilme, S.; Adeyemi, D.; Willett, W.C.; Hu, F.B.; Spiegelman, D.; Adebamowo, C.A. A Mixed-Methods Study on Acceptability, Tolerability, and Substitution of Brown Rice for White Rice to Lower Blood Glucose Levels among Nigerian Adults. Front. Nutr. 2017, 4, 33. [Google Scholar] [CrossRef] [Green Version]
- Shimabukuro, M.; Higa, M.; Kinjo, R.; Yamakawa, K.; Tanaka, H.; Kozuka, C.; Yabiku, K.; Taira, S.I.; Sata, M.; Masuzaki, H. Effects of the Brown Rice Diet on Visceral Obesity and Endothelial Function: The BRAVO Study. Br. J. Nutr. 2014, 111, 310–320. [Google Scholar] [CrossRef] [Green Version]
- Bahadoran, Z.; Mirmiran, P.; Delshad, H.; Azizi, F. White Rice Consumption Is a Risk Factor for Metabolic Syndrome in Tehrani Adults: A Prospective Approach in Tehran Lipid and Glucose Study. Arch. Iran. Med. 2014, 17, 435–440. [Google Scholar]
- Imam, M.U.; Ismail, M.; Ooi, D.J.; Sarega, N.; Ishaka, A. Increased Risk of Insulin Resistance in Rat Offsprings Exposed Prenatally to White Rice. Mol. Nutr. Food Res. 2015, 59, 180–184. [Google Scholar] [CrossRef]
- Imam, M.U.; Ishaka, A.; Ooi, D.J.; Zamri, N.D.M.; Sarega, N.; Ismail, M.; Esa, N.M. Germinated Brown Rice Regulates Hepatic Cholesterol Metabolism and Cardiovascular Disease Risk in Hypercholesterolaemic Rats. J. Funct. Foods 2014, 8, 193–203. [Google Scholar] [CrossRef]
- Abubakar, B.; Ismail, N.; Omar, A.R.; Abu Bakar, M.Z.; Ismail, M. Rice Consumption and Predisposition to Metabolic Diseases: The Role of PPARγ and GLUT4 Dysregulation. J. Nutr. Intermed. Metab. 2017, 10, 8–18. [Google Scholar] [CrossRef]
- Imam, M.U.; Musa, S.N.A.; Azmi, N.H.; Ismail, M. Effects of White Rice, Brown Rice and Germinated Brown Rice on Antioxidant Status of Type 2 Diabetic Rats. Int. J. Mol. Sci. 2012, 13, 12952–12969. [Google Scholar] [CrossRef] [PubMed]
- Ho, J.N.; Son, M.E.; Lim, W.C.; Lim, S.T.; Cho, H.Y. Germinated Brown Rice Extract Inhibits Adipogenesis through the Down-Regulation of Adipogenic Genes in 3T3-L1 Adipocytes. Plant Foods Hum. Nutr. 2013, 68, 274–278. [Google Scholar] [CrossRef] [PubMed]
- Abubakar, B.; Zawawi, N.; Omar, A.R.; Ismail, M. Predisposition to Insulin Resistance and Obesity due to Staple Consumption of Rice: Amylose Content versus Germination Status. PLoS ONE 2017, 12, e0181309. [Google Scholar] [CrossRef] [Green Version]
- Sawada, K.; Takemi, Y.; Murayama, N.; Ishida, H. Relationship between Rice Consumption and Body Weight Gain in Japanese Workers: White versus Brown Rice/Multigrain Rice. Appl. Physiol. Nutr. Metab. 2019, 44, 528–532. [Google Scholar] [CrossRef] [Green Version]
- Abubakar, B.; Yakasai, H.M.; Zawawi, N.; Ismail, M. Compositional Analyses of White, Brown and Germinated Forms of Popular Malaysian Rice to Offer Insight into the Growing Diet-Related Diseases. J. Food Drug Anal. 2018, 26, 706–715. [Google Scholar] [CrossRef] [Green Version]
- Cáceres, P.J.; Martínez-Villaluenga, C.; Amigo, L.; Frias, J. Assessment on Proximate Composition, Dietary Fiber, Phytic Acid and Protein Hydrolysis of Germinated Ecuatorian Brown Rice. Plant Foods Hum. Nutr. 2014, 69, 261–267. [Google Scholar] [CrossRef] [Green Version]
- Deng, G.F.; Xu, X.R.; Zhang, Y.; Li, D.; Gan, R.Y.; Li, H. Bin Phenolic Compounds and Bioactivities of Pigmented Rice. Crit. Rev. Food Sci. Nutr. 2013, 53, 296–306. [Google Scholar] [CrossRef]
- Maulani, R.R.; Sumardi, D.; Pancoro, A. Total Flavonoids and Anthocyanins Content of Pigmented Rice. Drug Inventig. Today 2019, 12, 369–373. [Google Scholar]
- Samyor, D.; Das, A.B.; Deka, S.C. Pigmented Rice a Potential Source of Bioactive Compounds: A Review. Int. J. Food Sci. Technol. 2017, 52, 1073–1081. [Google Scholar] [CrossRef]
- Tyagi, A.; Shabbir, U.; Chen, X.; Chelliah, R.; Elahi, F.; Ham, H.J.; Oh, D.H. Phytochemical Profiling and Cellular Antioxidant Efficacy of Different Rice Varieties in Colorectal Adenocarcinoma Cells Exposed to Oxidative Stress. PLoS ONE 2022, 17, e0269403. [Google Scholar] [CrossRef] [PubMed]
- Jennings, B.H. Drosophila—A Versatile Model in Biology & Medicine. Mater. Today 2011, 14, 190–195. [Google Scholar]
- Graham, P.; Pick, L. Drosophila as a Model for Diabetes and Diseases of Insulin Resistance. Curr. Top. Dev. Biol. 2017, 121, 397–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ooi, D.J.; Iqbal, S.; Ismail, M. Proximate Composition, Nutritional Attributes and Mineral Composition of Peperomia pellucida L. (Ketumpangan air) Grown in Malaysia. Molecules 2012, 17, 11139–11145. [Google Scholar] [CrossRef]
- AOAC. Official Method of Analysis, 18th ed.; AOAC Press: Rockville, MD, USA, 2005; Volume 1, pp. 73–80. [Google Scholar]
- Arvouet-Grand, A.; Vennat, B.; Pourrat, A.; Legret, P. Standardisation D’Un Extrait De Propolis Et Identification Des Principaux Constituants. J. Pharm. Belg. 1994, 49, 462–468. [Google Scholar]
- Praveen, K.R.; Bono, A. Antioxidant activity, total phenolic and flavonoid content of morinda citrifolia fruit extracts from various extraction pro-cesses. J. Eng. Sci. Technol. 2007, 2, 70–80. [Google Scholar]
- Lamien-Meda, A.; Lamien, C.E.; Compaoré, M.M.Y.; Meda, R.N.T.; Kiendrebeogo, M.; Zeba, B.; Millogo, J.F.; Nacoulma, O.G. Polyphenol Content and Antioxidant Activity of Fourteen Wild Edible Fruits from Burkina Faso. Molecules 2008, 13, 581–594. [Google Scholar] [CrossRef] [Green Version]
- Heidtmann-Bemvenuti, R.; Nora, N.S.; Badiale-Furlong, E. Extração de γ-Oryzanol de Farelo de Arroz. Cienc. E Agrotecnol. 2012, 36, 665–673. [Google Scholar] [CrossRef] [Green Version]
- Heinrichsen, E.T.; Zhang, H.; Robinson, J.E.; Ngo, J.; Diop, S.; Bodmer, R.; Joiner, W.J.; Metallo, C.M.; Haddad, G.G. Metabolic and Transcriptional Response to a High-Fat Diet in Drosophila Melanogaster. Mol. Metab. 2014, 3, 42–54. [Google Scholar] [CrossRef]
- Nichols, C.D.; Becnel, J.; Pandey, U.B. Methods to Assay Drosophila Behavior. J. Vis. Exp. 2012, 61, e3795. [Google Scholar] [CrossRef] [Green Version]
- Nucleotide [Internet]. National library of Medicine; National Center of Biotechnology Information: Bethesda, MD, USA, 2021. Available online: www.ncbi.nlm.nih.gov/nucleotide (accessed on 31 August 2022).
- Schmittgen, T.D.; Livak, K.J. Analyzing Real-Time PCR Data by the Comparative CT Method. Nat. Protoc. 2008, 3, 1101–1108. [Google Scholar] [CrossRef]
- Oko, A.O.; Ugwu, S.I. The Proximate and Mineral Compositions of Five Major Rice Varieties in Abakaliki, South-Eastern Nigeria. Int. J. Plant Physiol. Biochem. 2011, 3, 25–27. [Google Scholar]
- Odenigbo, A. Nutrient Composition and Predicted Glycemic Index of Rice Varieties from Nigeria. Br. J. Appl. Sci. Technol. 2014, 4, 302–318. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, W.; Zeng, F.; Zhang, G. Effect of Planting Method on Grain Quality and Nutrient Utilization for No-Tillage Rice. Commun. Soil Sci. Plant Anal. 2011, 42, 1324–1335. [Google Scholar] [CrossRef]
- Raza, M.A.; Bin Khalid, M.H.; Zhang, X.; Feng, L.Y.; Khan, I.; Hassan, M.J.; Ahmed, M.; Ansar, M.; Chen, Y.K.; Fan, Y.F.; et al. Effect of Planting Patterns on Yield, Nutrient Accumulation and Distribution in Maize and Soybean under Relay Intercropping Systems. Sci. Rep. 2019, 9, 4947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wordu, G.O.; Banigo, E.B. Evaluation of the Glycemic Index of Some Cooked Variety of Rice Products in Nigeria. Net J. Agric. Sci. 2013, 1, 38–41. [Google Scholar]
- National Research Council. Dietary Reference Intakes for Energy, Protein and Amino Acids; National Academies Press (US): Washington, DC, USA, 2005; ISBN 9780309085250.
- Minatel, I.O.; Francisqueti, F.V.; Corrêa, C.R.; Pereira Lima, G.P. Antioxidant Activity of γ-Oryzanol: A Complex Network of Interactions. Int. J. Mol. Sci. 2016, 17, 1107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishaka, A.; Imam, M.U.; Ismail, M.; Mahmud, R.; Abu Bakar, Z.Z. Nanoemulsified Gamma-Oryzanol Rich Fraction Blend Regulates Hepatic Cholesterol Metabolism and Cardiovascular Disease Risk in Hypercholesterolaemic Rats. J. Funct. Foods 2016, 26, 338–349. [Google Scholar] [CrossRef]
- Masuzaki, H.; Kozuka, C.; Okamoto, S.; Yonamine, M.; Tanaka, H.; Shimabukuro, M. Brown Rice-Specific γ-Oryzanol as a Promising Prophylactic Avenue to Protect against Diabetes Mellitus and Obesity in Humans. J. Diabetes Investig. 2019, 10, 18–25. [Google Scholar] [CrossRef] [Green Version]
- Hongsibsong, S.; Sutan, K.; Kerdnoi, T.; Prapamontol, T. γ-Oryzanol Content Screening in Local Brown Rice Samples from Chiang Mai, Thailand and Comparison between Uncooked and Cooked Brown Rice. Int. J. Agric. Res. 2016, 11, 84–89. [Google Scholar] [CrossRef] [Green Version]
- Md Zamri, N.D.; Imam, M.U.; Abd Ghafar, S.A.; Ismail, M. Antioxidative Effects of Germinated Brown Rice-Derived Extracts on H2O2-Induced Oxidative Stress in HepG2 Cells. Evid.-Based Complement. Altern. Med. 2014, 2014, 371907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goufo, P.; Trindade, H. Rice Antioxidants: Phenolic Acids, Flavonoids, Anthocyanins, Proanthocyanidins, Tocopherols, Tocotrienols, c-Oryzanol, and Phytic Acid. Food Sci. Nutr. 2014, 2, 75–104. [Google Scholar] [CrossRef] [PubMed]
- Ghatak, S.B.; Panchal, S.S. Anti-Diabetic Activity of Oryzanol and Its Relationship with the Anti-Oxidant Property. Int. J. Diabetes Dev. Ctries. 2012, 32, 185–192. [Google Scholar] [CrossRef]
- Salawu, S.O.; Alao, O.F.; Faloye, O.F.; Akindahunsi, A.A.; Boligon, A.A.; Athayde, M.L. Antioxidant Potential of Phenolic-Rich Two Varieties of Nigerian Local Rice and Their Anti-Cholinesterase Activities after in vitro Digestion. Nutr. Food Sci. 2016, 46, 171–189. [Google Scholar] [CrossRef]
- Al-Ishaq, R.K.; Abotaleb, M.; Kubatka, P.; Kajo, K.; Büsselberg, D. Flavonoids and Their Anti-Diabetic Effects: Cellular Mechanisms and Effects to Improve Blood Sugar Levels. Biomolecules 2019, 9, 430. [Google Scholar] [CrossRef] [Green Version]
- Hansakul, P.; Srisawat, U.; Itharat, A.; Lerdvuthisopon, N. Phenolic and Flavonoid Contents of Thai Rice Extracts and Their Correlation with Antioxidant Activities Using Chemical and Cell Assays. J. Med. Assoc. Thai. 2011, 94 (Suppl. S7), 122–130. [Google Scholar]
- Azmi, N.H.; Ismail, N.; Imam, M.U.; Ismail, M. Ethyl Acetate Extract of Germinated Brown Rice Attenuates Hydrogen Peroxide-Induced Oxidative Stress in Human SH-SY5Y Neuroblastoma Cells: Role of Anti-Apoptotic, pro-Survival and Antioxidant Genes. BMC Complement. Altern. Med. 2013, 13, 177. [Google Scholar] [CrossRef] [Green Version]
- Pengkumsri, N.; Chaiyasut, C.; Saenjum, C.; Sirilun, S.; Peerajan, S.; Suwannalert, P.; Sirisattha, S.; Sivamaruthi, B.S. Physicochemical and Antioxidative Properties of Black, Brown and Red Rice Varieties of Northern Thailand. Food Sci. Technol. 2015, 35, 331–338. [Google Scholar] [CrossRef] [Green Version]
- Bhurosy, T.; Kaschalk, E.; Smiley, A.; He, K. Comment On “Ultraprocessed Food Consumption and Risk of Overweight and Obesity: The University of Navarra Follow-Up (SUN) Cohort Study”. Am. J. Clin. Nutr. 2017, 105, 1012. [Google Scholar] [CrossRef] [Green Version]
- Bradley, P. Refined Carbohydrates, Phenotypic Plasticity and the Obesity Epidemic. Med. Hypotheses 2019, 131, 109317. [Google Scholar] [CrossRef]
- Kim, K.; Yun, S.H.; Choi, B.Y.; Kim, M.K. Cross-Sectional Relationship between Dietary Carbohydrate, Glycaemic Index, Glycaemic Load and Risk of the Metabolic Syndrome in a Korean Population. Br. J. Nutr. 2008, 100, 576–584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lalitha, R.; Shetty, S.B. Is White Rice the Culprit for the Expanding Waist Line in South Indians? IOSR J. Dent. Med. Sci. 2016, 15, 21–28. [Google Scholar] [CrossRef]
- Bui, T.N.; Le Hop, T.; Nguyen, D.H.; Tran, Q.B.; Nguyen, T.L.; Le, D.T.; Nguyen, D.V.A.; Vu, A.L.; Aoto, H.; Okuhara, Y.; et al. Pre-Germinated Brown Rice Reduced Both Blood Glucose Concentration and Body Weight in Vietnamese Women with Impaired Glucose Tolerance. J. Nutr. Sci. Vitaminol. 2014, 60, 183–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ho, J.N.; Son, M.E.; Lim, W.C.; Lim, S.T.; Cho, H.Y. Anti-Obesity Effects of Germinated Brown Rice Extract through down-Regulation of Lipogenic Genes in High Fat Diet-Induced Obese Mice. Biosci. Biotechnol. Biochem. 2012, 76, 1068–1074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdul Rahim, A.F.; Norhayati, M.N.; Zainudin, A.M. The Effect of a Brown-Rice Diets on Glycemic Control and Metabolic Parameters in Prediabetes and Type 2 Diabetes Mellitus: A Meta-Analysis of Randomized Controlled Trials and Controlled Clinical Trials. PeerJ 2021, 9, e11291. [Google Scholar] [CrossRef]
- Ali, Y.O.; Escala, W.; Ruan, K.; Zhai, R.G. Assaying Locomotor, Learning, and Memory Deficits in Drosophila Models of Neurodegeneration. J. Vis. Exp. 2011, 49, e2504. [Google Scholar] [CrossRef] [Green Version]
- Rivera, O.; McHan, L.; Konadu, B.; Patel, S.; Sint Jago, S.; Talbert, M.E. A High-Fat Diet Impacts Memory and Gene Expression of the Head in Mated Female Drosophila Melanogaster. J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 2019, 189, 179–198. [Google Scholar] [CrossRef]
- Trindade de Paula, M.; Poetini Silva, M.R.; Machado Araujo, S.; Cardoso Bortolotto, V.; Barreto Meichtry, L.; Zemolin, A.P.P.; Wallau, G.L.; Jesse, C.R.; Franco, J.L.; Posser, T.; et al. High-Fat Diet Induces Oxidative Stress and MPK2 and HSP83 Gene Expression in Drosophila Melanogaster. Oxid. Med. Cell. Longev. 2016, 2016, 4018157. [Google Scholar] [CrossRef] [Green Version]
- Matsushita, R.; Nishimura, T. Trehalose Metabolism Confers Developmental Robustness and Stability in Drosophila by Regulating Glucose Homeostasis. Commun. Biol. 2020, 3, 170. [Google Scholar] [CrossRef]
- Musselman, L.P.; Fink, J.L.; Narzinski, K.; Ramachandran, P.V.; Hathiramani, S.S.; Cagan, R.L.; Baranski, T.J. A High-Sugar Diet Produces Obesity and Insulin Resistance in Wild-Type Drosophila. DMM Dis. Model. Mech. 2011, 4, 842–849. [Google Scholar] [CrossRef] [Green Version]
- Shen, K.P.; Hao, C.L.; Yen, H.W.; Chen, C.Y.; Wu, B.N.; Lin, H.L. Pre-Germinated Brown Rice Prevents High-Fat Diet Induced Hyperglycemia through Elevated Insulin Secretion and Glucose Metabolism Pathway in C57BL/6J Strain Mice. J. Clin. Biochem. Nutr. 2015, 56, 28–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yen, H.W.; Lin, H.L.; Hao, C.L.; Chen, F.C.; Chen, C.Y.; Chen, J.H.; Shen, K.P. Effects of Pre-Germinated Brown Rice Treatment High-Fat Diet-Induced Metabolic Syndrome in C57BL/6J Mice. Biosci. Biotechnol. Biochem. 2017, 81, 979–986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stern, J.H.; Rutkowski, J.M.; Scherer, P.E. Adiponectin, Leptin, and Fatty Acids in the Maintenance of Metabolic Homeostasis through Adipose Tissue Crosstalk. Cell Metab. 2016, 23, 770–784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, Q.; Jiang, Y.; Luo, T.; Xu, Y.; Le, G.; Shi, Y. [Γ-Aminobutyric Acid Fortified Rice Alleviated Oxidative Stress and Pancreatic Injury in Type 2 Diabetic Mice]. Wei Sheng Yan Jiu 2019, 48, 179–199. [Google Scholar]
- Adamu, H.A.; Imam, M.U.; Der-Jiun, O.; Ismail, M. In Utero Exposure to Germinated Brown Rice and Its Gaba Extract Attenuates High-Fat-Diet-Induced Insulin Resistance in Rat Offspring. J. Nutrigenet. Nutr. 2017, 10, 19–31. [Google Scholar] [CrossRef]
- Greene, M.W.; Sakaue, H.; Wang, L.; Alessi, D.R.; Roth, R.A. Modulation of Insulin-Stimulated Degradation of Human Insulin Receptor Substrate-1 by Serine 312 Phosphorylation. J. Biol. Chem. 2003, 278, 8199–8211. [Google Scholar] [CrossRef] [Green Version]
- Haruta, T.; Uno, T.; Kawahara, J.; Takano, A.; Egawa, K.; Sharma, P.M.; Olefsky, J.M.; Kobayashi, M. A Rapamycin-Sensitive Pathway down-Regulates Insulin Signaling via Phosphorylation and Proteasomal Degradation of Insulin Receptor Substrate-1. Mol. Endocrinol. 2000, 14, 783–794. [Google Scholar] [CrossRef]
- Imam, M.U.; Ismail, M. Nutrigenomic Effects of Germinated Brown Rice and Its Bioactives on Hepatic Gluconeogenic Genes in Type 2 Diabetic Rats and HEPG2 Cells. Mol. Nutr. Food Res. 2013, 57, 401–411. [Google Scholar] [CrossRef]
- Runtuwene, J.; Cheng, K.C.; Asakawa, A.; Amitani, H.; Amitani, M.; Morinaga, A.; Takimoto, Y.; Kairupan, B.H.R.; Inui, A. Rosmarinic Acid Ameliorates Hyperglycemia and Insulin Sensitivity in Diabetic Rats, Potentially by Modulating the Expression of PEPCK and GLUT4. Drug Des. Devel. Ther. 2016, 10, 2193–2202. [Google Scholar] [CrossRef] [Green Version]
- Machinal-Quélin, F.; Dieudonné, M.N.; Pecquery, R.; Leneveu, M.C.; Giudicelli, Y. Direct in vitro Effects of Androgens and Estrogens on Ob Gene Expression and Leptin Secretion in Human Adipose Tissue. Endocrine 2002, 18, 179–184. [Google Scholar] [CrossRef]
- Geber, S.; Brandão, A.H.F.; Sampaio, M. Effects of Estradiol and FSH on Leptin Levels in Women with Suppressed Pituitary. Reprod. Biol. Endocrinol. 2012, 10, 45. [Google Scholar] [CrossRef] [Green Version]
- Evans, J.L.; Goldfine, I.D.; Maddux, B.A.; Grodsky, G.M. Are Oxidative Stress—Activated Signaling Pathways Mediators of Insulin Resistance and β-Cell Dysfunction? Diabetes 2003, 52, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Ho, F.M.; Liu, S.H.; Liau, C.S.; Huang, P.J.; Lin-Shiau, S.Y. High Glucose-Induced Apoptosis in Human Endothelial Cells Is Mediated by Sequential Activations of c-JUN NH2-Terminal Kinase and Caspase-3. Circulation 2000, 101, 2618–2624. [Google Scholar] [CrossRef] [Green Version]
- Kang, M.J.; Xiaoyan, W.; Hao, L.; Thai, K.; Scholey, J.W. Effect of Glucose on Stress-Activated Protein Kinase Activity in Mesangial Cells and Diabetic Glomeruli. Kidney Int. 1999, 55, 2203–2214. [Google Scholar] [CrossRef] [Green Version]
- Boden, G. Effects of Free Fatty Acids (FFA) on Glucose Metabolism: Significance for Insulin Resistance and Type 2 Diabetes. Exp. Clin. Endocrinol. Diabetes 2003, 111, 121–124. [Google Scholar] [CrossRef]
- Parvy, J.-P.; Napal, L.; Rubin, T.; Poidevin, M.; Perrin, L.; Wicker-Thomas, C.; Montagne, J. Drosophila Melanogaster Acetyl-CoA-Carboxylase Sustains a Fatty Acid–Dependent Remote Signal to Waterproof the Respiratory System. PLOS Genet. 2012, 8, e1002925. [Google Scholar] [CrossRef] [Green Version]
- Sekiya, M.; Hiraishi, A.; Touyama, M.; Sakamoto, K. Oxidative Stress Induced Lipid Accumulation via SREBP1c Activation in HepG2 Cells. Biochem. Biophys. Res. Commun. 2008, 375, 602–607. [Google Scholar] [CrossRef] [Green Version]
- Su, W.; Cao, R.; He, Y.C.; Guan, Y.F.; Ruan, X.Z. Crosstalk of Hyperglycemia and Dyslipidemia in Diabetic Kidney Disease. Kidney Dis. 2017, 3, 171–180. [Google Scholar] [CrossRef]
- Wunjuntuk, K.; Kettawan, A.; Charoenkiatkul, S.; Rungruang, T. Parboiled Germinated Brown Rice Protects Against CCl4-Induced Oxidative Stress and Liver Injury in Rats. J. Med. Food 2016, 19, 15–23. [Google Scholar] [CrossRef]
- Azmi, N.H.; Ismail, N.; Imam, M.U.; Ooi, D.J.; Oslan, S.N. Modulation of High-Fat Diet-Induced Brain Oxidative Stress by Ferulate-Rich Germinated Brown Rice Ethyl Acetate Extract. Molecules 2022, 27, 4907. [Google Scholar] [CrossRef]
- Jacobs, D.R.; Gross, M.D.; Tapsell, L.C. Food Synergy: An Operational Concept for Understanding Nutrition. Am. J. Clin. Nutr. 2009, 89, 1543S–1548S. [Google Scholar] [CrossRef] [Green Version]
- Jacobs, D.R.; Tapsell, L.C. Food Synergy: The Key to a Healthy Diet. Proc. Nutr. Soc. 2013, 72, 200–206. [Google Scholar] [CrossRef]
S/N | RICE CULTIVARS | % PROTEIN | % CARBOHYDRATE | % MOISTURE | % ASH | % LIPID | % FIBRE |
---|---|---|---|---|---|---|---|
1 | AKM_B | 11.26 ± 0.10 a | 70.07 ± 1.07 a | 7.83 ± 0.30 a | 4.83 ± 0.28 a | 2.67 ± 0.30 a | 5.33 ± 0.77 a |
2 | AKM_W | 6.91 ± 0.10 b | 67.42 ± 0.75 b | 7.67 ± 0.29 a | 4.67 ± 0.29 a | 2.33 ± 0.29 a | 1.00 ± 0.02 b |
3 | BAI_B | 11.67 ± 0.10 a | 64.66 ± 0.67 c | 8.40 ± 0.87 a | 7.83 ± 0.30 b | 2.17 ± 0.05 a | 5.17 ± 0.25 a |
4 | BAI_W | 4.49 ± 0.27 c | 62.34 ± 0.58 c | 7.33 ± 0.77 a | 9.50 ± 0.50 c | 2.17 ± 0.33 a | 1.17 ± 0.09 b |
5 | BAB_B | 11.09 ± 0.09 a | 65.39 ± 1.79 c | 8.17 ± 0.28 a | 6.67 ± 0.58 b | 2.33 ± 0.27 a | 4.67 ± 0.30 a |
6 | BAB_W | 3.44 ± 0.27 c | 64.08 ± 0.19 c | 8.17 ± 0.58 a | 8.00 ± 0.54 b | 1.83 ± 0.05 a | 0.17 ± 0.02 b |
7 | DAN_B | 11.14 ± 0.09 a | 68.19 ± 0.54 b | 8.33 ± 0.29 a | 4.67 ± 0.27 a | 2.83 ± 0.25 a | 5.17 ± 0.58 a |
8 | DAN_W | 5.32 ± 0.20 c | 67.02 ± 0.75 b | 8.00 ± 0.50 a | 5.00 ± 0.55 a | 2.33 ± 0.28 a | 1.83 ± 0.03 b |
9 | JEEP_B | 11.26 ± 0.10 a | 66.57 ± 0.75 c | 8.23 ± 0.58 a | 7.17 ± 0.26 b | 2.33 ± 0.34 a | 4.83 ± 0.28 a |
10 | JEEP_W | 4.09 ± 0.09 c | 63.91 ± 0.42 c | 8.01 ± 0.05 a | 7.33 ± 0.32 b | 2.00 ± 0.29 a | 0.33 ± 0.08 b |
11 | JAM_B | 11.00 ± 0.10 a | 70.16 ± 0.74 a | 7.52 ± 0.02 a | 7.60 ± 0.04 b | 2.33 ± 0.31 a | 4.12 ± 0.04 a |
12 | JAM_W | 7.43 ± 0.11 b | 67.19 ± 0.02 b | 8.34 ± 0.07 a | 7.33 ± 0.56 b | 2.50 ± 0.01 a | 1.39 ± 0.27 b |
13 | MBC_B | 11.14 ± 0.10 a | 70.44 ± 0.06 a | 8.37 ± 0.28 a | 4.67 ± 0.25 a | 2.83 ± 0.26 a | 4.17 ± 0.19 a |
14 | MBC_W | 7.38 ± 0.18 b | 68.15 ± 0.03 b | 8.42 ± 0.30 a | 5.33 ± 0.57 a | 2.67 ± 0.31 a | 2.29 ± 0.20 b |
15 | YARW_B | 10.91 ± 0.10 a | 70.68 ± 0.59 a | 9.50 ± 0.51 b | 4.50 ± 0.52 a | 2.83 ± 0.35 a | 4.54 ± 0.11 a |
16 | YARW_W | 7.16 ± 0.10 b | 67.45 ± 0.57 b | 9.83 ± 0.57 b | 5.00 ± 0.45 a | 2.67 ± 0.27 a | 1.10 ± 0.00 b |
17 | KWA_B | 11.03 ± 0.18 a | 70.99 ± 0.00 a | 9.63 ± 0.58 b | 4.17 ± 0.32 a | 2.83 ± 0.19 a | 4.17 ± 0.23 a |
18 | KWA_W | 8.01 ± 0.10 b | 66.59 ± 0.43 b | 9.50 ± 0.55 b | 4.17 ± 0.30 a | 2.67 ± 0.24 a | 1.78 ± 0.02 b |
19 | YARK_B | 11.14 ± 0.10 a | 71.08 ± 0.05 a | 9.50 ± 0.50 b | 4.67 ± 0.29 a | 2.41 ± 0.34 a | 4.80 ± 0.00 a |
20 | YARK_W | 10.30 ± 0.47 b | 66.53 ± 0.35 b | 10.00 ± 0.52 b | 4.17 ± 0.26 a | 2.33 ± 0.36 a | 1.20 ± 0.01 b |
21 | DANB_B | 11.73 ± 0.18 a | 69.61 ± 0.73 a | 8.00 ± 0.51 a | 4.17 ± 0.59 a | 2.33 ± 0.28 a | 5.17 ± 0.25 a |
22 | DANB_W | 2.61 ± 0.10 c | 67.56 ± 0.67 b | 8.33 ± 0.28 a | 3.83 ± 0.48 a | 0.83 ± 0.30 b | 0.83 ± 0.07 b |
23 | BAD_B | 11.49 ± 0.20 a | 67.20 ± 1.07 b | 8.17 ± 0.29 a | 4.17 ± 0.32 a | 2.67 ± 0.26 a | 5.33 ± 0.23 a |
24 | BAD_W | 3.09 ± 0.09 c | 66.51 ± 0.09 b | 8.17 ± 0.58 a | 4.17 ± 0.28 a | 1.17 ± 0.04 b | 0.89 ± 0.01 b |
25 | FARO_B | 11.38 ± 0.30 a | 70.92 ± 0.64 a | 8.00 ± 0.49 a | 4.33 ± 0.30 a | 2.33 ± 0.33 a | 4.50 ± 0.50 a |
26 | FARO_W | 3.97 ± 0.10 c | 67.53 ± 1.01 b | 7.83 ± 0.28 a | 4.33 ± 0.33 a | 1.17 ± 0.02 b | 0.24 ± 0.08 b |
27 | JIR_B | 11.38 ± 0.18 a | 70.29 ± 0.43 a | 8.01 ± 0.53 a | 7.33 ± 0.26 b | 2.33 ± 0.54 a | 4.66 ± 0.77 a |
28 | JIR_W | 4.97 ± 0.10 c | 68.09 ± 0.86 b | 7.83 ± 0.28 a | 7.00 ± 0.50 b | 0.70 ± 0.03 b | 0.53 ± 0.09 b |
29 | YARM_B | 11.49 ± 0.27 a | 70.01 ± 0.27 a | 8.33 ± 0.30 a | 5.17 ± 0.25 a | 2.67 ± 0.25 a | 4.33 ± 0.29 a |
30 | YARM_W | 2.43 ± 0.20 c | 68.40 ± 0.93 b | 8.13 ± 0.27 a | 5.83 ± 0.57 a | 1.33 ± 0.09 b | 0.82 ± 0.08 b |
S/N | CULTIVARS | Total Oryzanol Content (mg/DW) | Total Phenolic Content (mg GAE/g DW) | Total Flavonoid Content (mg QE/gDW) |
---|---|---|---|---|
1 | AKM_B | 46.92 ± 0.12 a | 11.34 ± 0.02 a | 0.47 ± 0.03 a |
2 | AKM_W | 21.23 ± 0.09 b | 1.48 ± 0.01 b | 0.15 ± 0.02 c |
3 | BAI_B | 46.59 ± 0.57 a | 11.30 ± 0.21 a | 0.48 ± 0.01 a |
4 | BAI_W | 20.13 ± 0.05 b | 1.18 ± 0.05 b | 0.22 ± 0.01 b |
5 | BAB_B | 46.62 ± 0.13 a | 10.50. ± 0.01 a | 0.51 ± 0.04 a |
6 | BAB_W | 18.97 ± 0.38 b | 1.45 ± 0.31 b | 0.15 ± 0.02 c |
7 | DAN_B | 46.25 ± 0.08 a | 11.43 ± 0.04 a | 0.49 ± 0.07 a |
8 | DAN_W | 14.94 ± 0.54 c | 1.81 ± 0.01 b | 0.19 ± 0.02 b |
9 | JEEP_B | 47.39 ± 0.05 a | 11.21 ± 0.11 a | 0.48 ± 0.04 a |
10 | JEEP_W | 16.21 ± 0.12 c | 3.25 ± 0.02 c | 0.20 ± 0.00 b |
11 | JAM_B | 47.30 ± 0.04 a | 10.94 ± 0.05 a | 0.51 ± 0.08 a |
12 | JAM_W | 20.53 ± 0.08 b | 1.35 ± 0.08 b | 0.14 ± 0.01 c |
13 | MBC_B | 46.98 ± 0.04 a | 11.07 ± 0.53 a | 0.48 ± 0.06 a |
14 | MBC_W | 21.13 ± 0.55 b | 1.62 ± 0.01 b | 0.19 ± 0.04 b |
15 | YARW_B | 46.71 ± 0.04 a | 10.94 ± 0.31 a | 0.47 ± 0.07 a |
16 | YARW_W | 20.76 ± 0.08 b | 2.94 ± 0.01 c | 0.14 ± 0.01 c |
17 | KWA_B | 46.76 ± 0.12 a | 11.11 ± 0.11 a | 0.48 ± 0.05 a |
18 | KWA_W | 20.80 ± 0.04 b | 3.94 ± 0.00 c | 0.13 ± 0.02 c |
19 | YARK_B | 47.64 ± 0.04 a | 10.40 ± 0.20 a | 0.47 ± 0.09 a |
20 | YARK_W | 21.29 ± 0.09 b | 2.30 ± 0.01 c | 0.21 ± 0.06 b |
21 | DANB_B | 47.19 ± 0.25 a | 10.65 ± 0.31 a | 0.48 ± 0.05 a |
22 | DANB_W | 10.89 ± 0.09 d | 1.54 ± 0.01 d | 0.12 ± 0.00 c |
23 | BAD_B | 46.16 ± 0.05 a | 10.85 ± 0.22 a | 0.50 ± 0.04 a |
24 | BAD_W | 14.89 ± 0.09 c | 0.54 ± 0.01 d | 0.10 ± 0.00 c |
25 | FARO_B | 46.44 ± 0.02 a | 11.39 ± 0.02 a | 0.48 ± 0.07 a |
26 | FARO_W | 11.68 ± 0.23 d | 0.71 ± 0.02 d | 0.11 ± 0.00 c |
27 | JIR_B | 46.54 ± 0.67 a | 10.91 ± 0.24 a | 0.49 ± 0.06 a |
28 | JIR_W | 18.90 ± 0.87 b | 0.47 ± 0.01 d | 0.19 ± 0.00 b |
29 | YARM_B | 48.15 ± 0.18 a | 11.33 ± 0.42 a | 0.50 ± 0.08 a |
30 | YARM_W | 11.42 ± 0.29 c | 0.18 ± 0.01 d | 0.20 ± 0.00 b |
Male | Female | ||||
---|---|---|---|---|---|
S/N | Rice Cultivars | Weight Changes (mg) | Negative Geotaxis (No of Flies/10 s) | Weight Changes (mg) | Negative Geotaxis (No of Flies/10 s) |
1 | NCD | 4.80 ± 0.10 a | 9.67 ± 0.08 a | 9.40 ± 0.36 a | 9.33 ± 0.28 a |
2 | HFD | 12.40 ± 0.46 c | 6.33 ± 0.58 b | 13.20 ± 0.30 c | 4.67 ± 0.56 b |
3 | AKM_B | 4.23 ± 0.15 a | 9.33 ± 0.35 a | 8.53 ± 0.12 a | 8.67 ± 0.18 a |
4 | AKM_W | 8.50 ± 0.30 b | 7.03 ± 0.05 b | 11.77 ± 0.25 b | 6.33 ± 0.50 b |
5 | BAI_B | 6.17 ± 0.31 a | 8.67 ± 0.53 a | 9.93 ± 0.15 a | 8.33 ± 0.53 a |
6 | BAI_W | 10.50 ± 0.30 b | 7.00 ± 0.00 b | 11.20 ± 0.30 b | 6.00 ± 0.00 b |
7 | BAB_B | 4.97 ± 0.21 a | 8.67 ± 0.03 a | 10.10 ± 0.35 a | 8.00 ± 0.00 a |
8 | BAB_W | 10.13 ± 0.21 b | 7.13 ± 0.25 b | 12.57 ± 0.21 c | 6.00 ± 0.00 b |
9 | DAN_B | 4.80 ± 0.10 a | 9.33 ± 0.45 a | 10.00 ± 0.36 a | 8.67 ± 0.50 a |
10 | DAN_W | 9.07 ± 0.42 b | 7.23 ± 0.08 b | 12.57 ± 0.21 c | 6.33 ± 0.45 b |
11 | JEEP_B | 5.97 ± 0.55 a | 9.00 ± 0.00 a | 9.90 ± 0.20 a | 8.33 ± 0.58 a |
12 | JEEP_W | 11.17 ± 0.85 c | 7.67 ± 0.28 b | 12.97 ± 0.21 c | 6.33 ± 0.36 b |
13 | JAM_B | 5.77 ± 0.06 a | 8.53 ± 0.50 a | 8.50 ± 0.00 a | 8.33 ± 0.58 a |
14 | JAM_W | 11.40 ± 0.00 c | 7.33 ± 0.51 b | 11.13 ± 0.06 b | 6.67 ± 0.51 b |
15 | MBC_B | 5.03 ± 0.12 a | 9.00 ± 0.00 a | 8.67 ± 0.06 a | 9.00 ± 1.00 a |
16 | MBC_W | 9.47 ± 0.12 b | 6.73 ± 0.54 b | 12.63 ± 0.06 c | 5.67 ± 0.49 b |
17 | YARW_B | 6.00 ± 0.00 a | 8.67 ± 0.48 a | 8.80 ± 0.17 a | 9.67 ± 0.53 a |
18 | YARW_W | 9.87 ± 0.06 b | 6.33 ± 0.57 b | 12.97 ± 0.12 c | 5.67 ± 1.15 b |
19 | KWA_B | 4.30 ± 0.00 a | 9.33 ± 0.39 a | 8.30 ± 0.00 a | 9.33 ± 0.54 a |
20 | KWA_W | 8.83 ± 0.06 b | 7.33 ± 0.62 b | 11.83 ± 0.06 b | 6.47 ± 0.57 b |
21 | YARK_B | 5.43 ± 0.12 a | 8.00 ± 0.00 a | 8.80 ± 0.10 a | 8.67 ± 1.15 a |
22 | YARK_W | 9.77 ± 0.06 b | 6.67 ± 0.40 b | 12.77 ± 0.06 c | 6.33 ± 0.51 b |
23 | DANB_B | 5.57 ± 0.23 a | 8.33 ± 0.55 a | 9.13 ± 0.23 a | 9.33 ± 0.29 a |
24 | DANB_W | 12.10 ± 0.10 c | 7.33 ± 0.48 b | 13.13 ± 0.12 c | 5.33 ± 0.52 b |
25 | BAD_B | 4.37 ± 0.32 a | 8.67 ± 0.33 a | 9.27 ± 0.06 a | 8.33 ± 0.47 a |
26 | BAD_W | 12.27 ± 0.31 c | 3.33 ± 0.52 c | 14.20 ± 0.10 c | 5.00 ± 0.00 b |
27 | FARO_B | 6.07 ± 0.06 a | 9.00 ± 0.00 a | 9.47 ± 0.42 a | 8.33 ± 0.58 a |
28 | FARO_W | 11.50 ± 0.00 c | 5.33 ± 0.25 c | 12.03 ± 0.06 c | 6.36 ± 0.43 b |
29 | JIR_B | 6.10 ± 0.00 a | 8.00 ± 0.00 a | 8.80 ± 0.00 a | 9.00 ± 0.00 a |
30 | JIR_W | 11.47 ± 0.06 c | 7.67 ± 0.58 b | 13.57 ± 0.40 c | 6.00 ± 0.00 b |
31 | YARM_B | 5.53 ± 0.64 a | 9.00 ± 0.00 a | 9.00 ± 0.00 a | 8.33 ± 0.58 a |
32 | YARM_W | 11.20 ± 0.00 c | 6.70 ± 0.02 b | 13.50 ± 0.00 c | 5.00 ± 0.00 b |
S/N | Gene Name | Accession Number | Left | Right |
---|---|---|---|---|
1. | PEPCK | NM_079060.3 | CCTCGATGGCATGAAGGATAAG | GACTCGAATAGGTGCGAATATC |
2. | IRS-2 | NM_168448.3 | CGGGCGCTTAATACATCACTA | CTGCCGGTCAAATCTCCTATC |
3. | ACC | NM_079288.3 | ATCCCGTGATTTCCACACAAG | AGTTATCCTCCTCCTCGAACTC |
4. | RPL-32 | NM_079814.3 | GTCGTCGCTTTGTCATCT | GCAGGTTGTAGCCCTTCTT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saka, S.O.; Salisu, Y.Y.; Sahabi, H.M.; Sanusi, K.O.; Ibrahim, K.G.; Abubakar, M.B.; Isa, S.A.; Liman, M.G.; Shehu, S.; Malami, I.; et al. Nutrigenomic Effects of White Rice and Brown Rice on the Pathogenesis of Metabolic Disorders in a Fruit Fly Model. Molecules 2023, 28, 532. https://doi.org/10.3390/molecules28020532
Saka SO, Salisu YY, Sahabi HM, Sanusi KO, Ibrahim KG, Abubakar MB, Isa SA, Liman MG, Shehu S, Malami I, et al. Nutrigenomic Effects of White Rice and Brown Rice on the Pathogenesis of Metabolic Disorders in a Fruit Fly Model. Molecules. 2023; 28(2):532. https://doi.org/10.3390/molecules28020532
Chicago/Turabian StyleSaka, Saheed Olanrewaju, Yusuf Yahaya Salisu, Hauwa’u Muhammad Sahabi, Kamaldeen Olalekan Sanusi, Kasimu Ghandi Ibrahim, Murtala Bello Abubakar, Suleiman Ahmed Isa, Muhammad Gidado Liman, Sha’aya’u Shehu, Ibrahim Malami, and et al. 2023. "Nutrigenomic Effects of White Rice and Brown Rice on the Pathogenesis of Metabolic Disorders in a Fruit Fly Model" Molecules 28, no. 2: 532. https://doi.org/10.3390/molecules28020532
APA StyleSaka, S. O., Salisu, Y. Y., Sahabi, H. M., Sanusi, K. O., Ibrahim, K. G., Abubakar, M. B., Isa, S. A., Liman, M. G., Shehu, S., Malami, I., Chan, K. W., Azmi, N. H., & Imam, M. U. (2023). Nutrigenomic Effects of White Rice and Brown Rice on the Pathogenesis of Metabolic Disorders in a Fruit Fly Model. Molecules, 28(2), 532. https://doi.org/10.3390/molecules28020532