Molecular Oxygen Activation by Citric Acid Boosted Pyrite–Photo–Fenton Process for Degradation of PPCPs in Water
Abstract
:1. Introduction
2. Results
2.1. Effects of Carboxylic Acids on Photodegradation of APAP Induced by Pyrite
2.2. Effects of Main Factors
2.2.1. pH
2.2.2. Initial APAP Concentration
2.2.3. Effect of Initial CA Concentration and Pyrite Dosage
2.3. Mechanism of APAP Degradation in the Pyrite–CA–Light System
2.4. Application of the Pyrite–CA–Light System
2.4.1. Effect of Co-Existing Anions
2.4.2. Reuse of Pyrite
2.4.3. Utilization of Natural Sunlight
2.4.4. Intermediates during the Degradation of APAP
2.4.5. Photodegradation of PPCPs
3. Materials and Methods
3.1. Chemicals
3.2. Photochemical Procedures
3.3. Scavenging Experiments
3.4. Analytical Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Babuponnusami, A.; Muthukumar, K. A review on Fenton and improvements to the Fenton process for wastewater treatment. J. Environ. Chem. Eng. 2014, 2, 557–572. [Google Scholar] [CrossRef]
- Rahim Pouran, S.; Abdul Aziz, A.R.; Wan Daud, W.M.A. Review on the main advances in photo-Fenton oxidation system for recalcitrant wastewaters. J. Ind. Eng. Chem. 2015, 21, 53–69. [Google Scholar] [CrossRef]
- Sara, G.; Dorit, A.; Yishay, D.; Joseph, R. Photolysis of Aqueous H2O2: Quantum Yield and Applications for Polychromatic UV Actinometry in Photoreactors. Environ. Sci. Technol. 2007, 41, 7486–7490. [Google Scholar] [CrossRef]
- AlSalka, Y.; Granone, L.I.; Ramadan, W.; Hakki, A.; Dillert, R.; Bahnemann, D.W. Iron-based photocatalytic and photoelectrocatalytic nano-structures: Facts, perspectives, and expectations. Appl. Catal. B Environ. 2019, 244, 1065–1095. [Google Scholar] [CrossRef]
- Thomas, N.; Dionysiou, D.D.; Pillai, S.C. Heterogeneous Fenton catalysts: A review of recent advances. J. Hazard. Mater. 2021, 404 Pt B, 124082. [Google Scholar] [CrossRef]
- Li, Q.; Li, F.-t. Recent advances in molecular oxygen activation via photocatalysis and its application in oxidation reactions. Chem. Eng. J. 2021, 421, 129915. [Google Scholar] [CrossRef]
- Jones, A.M.; Griffin, P.J.; Waite, T.D. Ferrous iron oxidation by molecular oxygen under acidic conditions: The effect of citrate, EDTA and fulvic acid. Geochim. Cosmochim. Acta 2015, 160, 117–131. [Google Scholar] [CrossRef]
- Stumm, W.; Lee, G.Z. Oxygenation of Ferrous Iron. Ind. Eng. Chem. 1961, 52, 143–146. [Google Scholar] [CrossRef]
- Ding, W.; Xu, J.; Chen, T.; Liu, C.; Li, J.; Wu, F. Co-oxidation of As(III) and Fe(II) by oxygen through complexation between As(III) and Fe(II)/Fe(III) species. Water Res. 2018, 143, 599–607. [Google Scholar] [CrossRef]
- Dos Santos, E.C.; de Mendonça Silva, J.C.; Duarte, H.A. Pyrite Oxidation Mechanism by Oxygen in Aqueous Medium. J. Phys. Chem. C 2016, 120, 2760–2768. [Google Scholar] [CrossRef]
- Ltaïef, A.H.; Pastrana-Martínez, L.M.; Ammar, S.; Gadri, A.; Faria, J.L.; Silva, A.M.T. Mined pyrite and chalcopyrite as catalysts for spontaneous acidic pH adjustment in Fenton and LED photo-Fenton-like processes. J. Chem. Technol. Biotechnol. 2018, 93, 1137–1146. [Google Scholar] [CrossRef]
- Qiu, G.; Gao, T.; Hong, J.; Tan, W.; Liu, F.; Zheng, L. Mechanisms of arsenic-containing pyrite oxidation by aqueous arsenate under anoxic conditions. Geochim. Cosmochim. Acta 2017, 217, 306–319. [Google Scholar] [CrossRef]
- Wang, W.; Qu, Y.; Yang, B.; Liu, X.; Su, W. Lactate oxidation in pyrite suspension: A Fenton-like process in situ generating H2O2. Chemosphere 2012, 86, 376–382. [Google Scholar] [CrossRef]
- Song, B.; Zeng, Z.; Almatrafi, E.; Shen, M.; Xiong, W.; Zhou, C.; Wang, W.; Zeng, G.; Gong, J. Pyrite-mediated advanced oxidation processes: Applications, mechanisms, and enhancing strategies. Water Res. 2022, 211, 118048. [Google Scholar] [CrossRef]
- Zhou, Y.; Huang, M.; Wang, X.; Gao, J.; Fang, G.; Zhou, D. Efficient transformation of diethyl phthalate using calcium peroxide activated by pyrite. Chemosphere 2020, 253, 126662. [Google Scholar] [CrossRef]
- Sun, L.; Hu, D.; Zhang, Z.; Deng, X. Oxidative Degradation of Methylene Blue via PDS-Based Advanced Oxidation Process Using Natural Pyrite. Int. J. Environ. Res. Public Health 2019, 16, 4773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.; Wang, X.; Zhu, C.; Dionysiou, D.D.; Zhao, G.; Fang, G.; Zhou, D. New insight into the mechanism of peroxymonosulfate activation by sulfur-containing minerals: Role of sulfur conversion in sulfate radical generation. Water Res. 2018, 142, 208–216. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Li, M.; Li, S.; Li, H.; Yan, L. Synthesis and adsorption/photocatalysis performance of pyrite FeS2. Appl. Surf. Sci. 2013, 268, 213–217. [Google Scholar] [CrossRef]
- Guo, Q.; Tang, G.; Zhu, W.; Luo, Y.; Gao, X. In situ construction of Z-scheme FeS(2)/Fe(2)O(3) photocatalyst via structural transformation of pyrite for photocatalytic degradation of carbamazepine and the synergistic reduction of Cr(VI). J. Environ. Sci. 2021, 101, 351–360. [Google Scholar] [CrossRef]
- Ferret, I.J.; Nevskaia, D.M.; de las Heras, C.S. About the bandd gap nature of FeS2 as determined from optical and photo electrochemical measurements. Solid State Commun. 1990, 74, 913–916. [Google Scholar] [CrossRef]
- Zeng, L.; Gong, J.; Dan, J.; Li, S.; Zhang, J.; Pu, W.; Yang, C. Novel visible light enhanced Pyrite-Fenton system toward ultrarapid oxidation of p-nitrophenol: Catalytic activity, characterization and mechanism. Chemosphere 2019, 228, 232–240. [Google Scholar] [CrossRef] [PubMed]
- Zuo, Y.; Hoigné, J. Formation of hydrogen peroxide and depletion of oxalic acid in atmospheric water by photolysis of iron(III)-oxalato complexes. Environ. Sci. Technol 1992, 26, 1014–1022. [Google Scholar] [CrossRef]
- Zuo, Y.; Hoigne, J. Evidence for Photochemical Formation of H2O2 and Oxidation of SO2 in Authentic Fog Water. Science 1993, 260, 71–73. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Deng, N. Photochemistry of hydrolytic iron (III) species and photoinduced degradation of organic compounds. Chemosphere 2000, 41, 1137–1147. [Google Scholar] [CrossRef]
- Xu, J.; Zhao, C.; Wang, T.; Yang, S.; Liu, Z. Photo-Oxidation of Bisphenol A in Aqueous Solutions at Near Neutral pH by a Fe(III)-Carboxylate Complex with Oxalacetic Acid as a Benign Molecule. Molecules 2018, 23, 1319. [Google Scholar] [CrossRef] [Green Version]
- Moradi, M.; Kalantary, R.R.; Esrafili, A.; Jafari, A.J.; Gholami, M. Visible light photocatalytic inactivation of Escherichia coli by natural pyrite assisted by oxalate at neutral pH. J. Mol. Liq. 2017, 248, 880–889. [Google Scholar] [CrossRef]
- Gong, C.; Zhai, J.; Wang, X.; Zhu, W.; Yang, D.; Luo, Y.; Gao, X. Synergistic improving photo-Fenton and photo-catalytic degradation of carbamazepine over FeS2/Fe2O3/organic acid with H2O2 in-situ generation. Chemosphere 2022, 307 Pt 4, 136199. [Google Scholar] [CrossRef]
- Hug, S.J.; Canonica, L.; Wegelin, M.; Gechter, D.; von Gunten, U. Solar oxidation and removal of arsenic at circumneutral pH in iron containing waters. Environ. Sci. Technol. 2001, 35, 2114–2121. [Google Scholar] [CrossRef]
- Huang, X.; Peng, Y.; Xu, J.; Wu, F.; Mailhot, G. Iron(III)-induced photooxidation of arsenite in the presence of carboxylic acids and phenols as model compounds of natural organic matter. Chemosphere 2021, 263, 128142. [Google Scholar] [CrossRef]
- Diao, Z.-H.; Xu, X.-R.; Liu, F.-M.; Sun, Y.-X.; Zhang, Z.-W.; Sun, K.-F.; Wang, S.-Z.; Cheng, H. Photocatalytic degradation of malachite green by pyrite and its synergism with Cr(VI) reduction: Performance and reaction mechanism. Sep. Purif. Technol. 2015, 154, 168–175. [Google Scholar] [CrossRef]
- Bai, X.; Ma, W.; Zhang, Q.; Zhang, L.; Zhong, S.; Shu, X. Photon-induced redox chemistry on pyrite promotes photoaging of polystyrene microplastics. Sci. Total Environ. 2022, 829, 154441. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.V.; Porkodi, K.; Rocha, F. Langmuir–Hinshelwood kinetics—A theoretical study. Catal. Commun. 2008, 9, 82–84. [Google Scholar] [CrossRef]
- Chen, L.; Peng, X.; Liu, J.; Li, J.; Wu, F. Decolorization of Orange II in Aqueous Solution by an Fe(II)/sulfite System: Replacement of Persulfate. Ind. Eng. Chem. Res. 2012, 51, 13632–13638. [Google Scholar] [CrossRef]
- Xu, J.; Ding, W.; Wu, F.; Mailhot, G.; Zhou, D.; Hanna, K. Rapid catalytic oxidation of arsenite to arsenate in an iron(III)/sulfite system under visible light. Appl. Catal. B Environ. 2016, 186, 56–61. [Google Scholar] [CrossRef]
- Xu, J.; Wang, X.; Pan, F.; Qin, Y.; Xia, J.; Li, J.; Wu, F. Synthesis of the mesoporous carbon-nano-zero-valent iron composite and activation of sulfite for removal of organic pollutants. Chem. Eng. J. 2018, 353, 542–549. [Google Scholar] [CrossRef]
- Diao, Z.-H.; Lin, Z.-Y.; Chen, X.-Z.; Yan, L.; Dong, F.-X.; Qian, W.; Kong, L.-J.; Du, J.-J.; Chu, W. Ultrasound-assisted heterogeneous activation of peroxymonosulphate by natural pyrite for 2,4-diclorophenol degradation in water: Synergistic effects, pathway and mechanism. Chem. Eng. J. 2020, 389, 123771. [Google Scholar] [CrossRef]
- Gad, S.C. Platinum. In Encyclopedia of Toxicology, 3rd ed.; Wexler, P., Ed.; Academic Press: Oxford, UK, 2014; pp. 979–981. [Google Scholar]
- Le, T.X.H.; Nguyen, T.V.; Amadou Yacouba, Z.; Zoungrana, L.; Avril, F.; Nguyen, D.L.; Petit, E.; Mendret, J.; Bonniol, V.; Bechelany, M.; et al. Correlation between degradation pathway and toxicity of acetaminophen and its by-products by using the electro-Fenton process in aqueous media. Chemosphere 2017, 172, 1–9. [Google Scholar] [CrossRef]
- Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; et al. PubChem in 2021: New data content and improved web interfaces. Nucleic Acids Res. 2021, 49, D1388–D1395. [Google Scholar] [CrossRef]
- MOPAC2016 James J. P. Stewart; Stewart Computational Chemistry: Colorado Springs, CO, USA, 2016; Available online: http://OpenMOPAC.net (accessed on 16 December 2022).
- Zou, Y.; Wang, W.; Wang, H.; Pan, C.; Xu, J.; Pozdnyakov, I.P.; Wu, F.; Li, J. Interaction between graphene oxide and acetaminophen in water under simulated sunlight: Implications for environmental photochemistry of PPCPs. Water Res. 2022, 228 Pt A, 119364. [Google Scholar] [CrossRef]
- Chen, L.; Luo, T.; Yang, S.; Xu, J.; Liu, Z.; Wu, F. Efficient metoprolol degradation by heterogeneous copper ferrite/sulfite reaction. Environ. Chem. Lett. 2018, 16, 599–603. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, J.; Zhang, Y.; Li, J.; Wu, F.; Luo, L. Molecular Oxygen Activation by Citric Acid Boosted Pyrite–Photo–Fenton Process for Degradation of PPCPs in Water. Molecules 2023, 28, 607. https://doi.org/10.3390/molecules28020607
Guo J, Zhang Y, Li J, Wu F, Luo L. Molecular Oxygen Activation by Citric Acid Boosted Pyrite–Photo–Fenton Process for Degradation of PPCPs in Water. Molecules. 2023; 28(2):607. https://doi.org/10.3390/molecules28020607
Chicago/Turabian StyleGuo, Juntao, Yihui Zhang, Jinjun Li, Feng Wu, and Liting Luo. 2023. "Molecular Oxygen Activation by Citric Acid Boosted Pyrite–Photo–Fenton Process for Degradation of PPCPs in Water" Molecules 28, no. 2: 607. https://doi.org/10.3390/molecules28020607
APA StyleGuo, J., Zhang, Y., Li, J., Wu, F., & Luo, L. (2023). Molecular Oxygen Activation by Citric Acid Boosted Pyrite–Photo–Fenton Process for Degradation of PPCPs in Water. Molecules, 28(2), 607. https://doi.org/10.3390/molecules28020607