X-H Bond Insertion Promoted by Heterogeneous Dirhodium Metal–Organic Cage with Alkynes as Safe Carbene Precursors
Abstract
:1. Introduction
2. Results and Discussion
3. Conclusions
4. Materials and Methods
4.1. General
4.2. Preparation of MOC-Rh-1 Catalyst
4.3. General Procedure for the Catalytic Si-H Insertion Reactions
4.4. General Procedure for the Recycling Experiment
4.5. Procedure for Hot Filtration
4.6. Procedure for ICP-OES Experiment
4.7. General Procedure for the Catalytic B-H Insertion Reactions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Boquet, V.; Nasrallah, A.; Dana, A.L.; Brunard, E.; Di Chenna, P.H.; Duran, F.J.; Retailleau, P.; Darses, B.; Sircoglou, M.; Dauban, P. Rhodium(II)-Catalyzed Enantioselective Intermolecular Aziridination of Alkenes. J. Am. Chem. Soc. 2022, 144, 17156–17164. [Google Scholar] [CrossRef] [PubMed]
- Davies, H.M.L.; Liao, K. Dirhodium tetracarboxylates as catalysts for selective intermolecular C-H functionalization. Nat. Rev. Chem. 2019, 3, 347–360. [Google Scholar] [CrossRef] [PubMed]
- Wee, A.G.H. Rhodium(II)-catalyzed reaction of diazocompounds in the service of organic synthesis of natural and non-natural products. Curr. Org. Synth. 2006, 3, 499–555. [Google Scholar] [CrossRef]
- Doyle, M.P.; Duffy, R.; Ratnikov, M.; Zhou, L. Catalytic Carbene Insertion into C-H Bonds. Chem. Rev. 2010, 110, 704–724. [Google Scholar] [CrossRef] [PubMed]
- Etayo, P.; Vidal-Ferran, A. Rhodium-catalysed asymmetric hydrogenation as a valuable synthetic tool for the preparation of chiral drugs. Chem. Soc. Rev. 2013, 42, 728–754. [Google Scholar] [CrossRef]
- Wei, B.; Sharland, J.C.; Lin, P.; Wilkerson-Hill, S.M.; Fullilove, F.A.; McKinnon, S.; Blackmond, D.G.; Davies, H.M.L. In Situ Kinetic Studies of Rh(II)-Catalyzed Asymmetric Cyclopropanation with Low Catalyst Loadings. ACS Catal. 2020, 10, 1161–1170. [Google Scholar] [CrossRef]
- Li, Z.; Boyarskikh, V.; Hansen, J.H.; Autschbach, J.; Musaev, D.G.; Davies, H.M.L. Scope and Mechanistic Analysis of the Enantioselective Synthesis of Allenes by Rhodium-Catalyzed Tandem Ylide Formation/[2,3]-Sigmatropic Rearrangement between Donor/Acceptor Carbenoids and Propargylic Alcohols. J. Am. Chem. Soc. 2012, 134, 15497–15504. [Google Scholar] [CrossRef] [Green Version]
- Smith, D.T.; Njardarson, J.T. A Scalable Rhodium-Catalyzed Intermolecular Aziridination Reaction. Angew. Chem. Int. Ed. 2014, 53, 4278–4280. [Google Scholar] [CrossRef]
- Kataoka, Y.; Yano, N.; Kohara, Y.; Tsuji, T.; Inoue, S.; Kawamoto, T. Experimental and Theoretical Study of Photochemical Hydrogen Evolution Catalyzed by Paddlewheel-Type Dirhodium Complexes with Electron Withdrawing Carboxylate Ligands. ChemCatChem 2019, 11, 6218–6226. [Google Scholar] [CrossRef]
- Ghosh, A.C.; Legrand, A.; Rajapaksha, R.; Craig, G.A.; Sassoye, C.; Balázs, G.; Farrusseng, D.; Furukawa, S.; Canivet, J.; Wisser, F.M. Rhodium-Based Metal–Organic Polyhedra Assemblies for Selective CO2 Photoreduction. J. Am. Chem. Soc. 2022, 144, 3626–3636. [Google Scholar] [CrossRef]
- Chinapang, P.; Iwami, H.; Enomoto, T.; Akai, T.; Kondo, M.; Masaoka, S. Dirhodium-Based Supramolecular Framework Catalyst for Visible-Light-Driven Hydrogen Evolution. Inorg. Chem. 2021, 60, 12634–12643. [Google Scholar] [CrossRef] [PubMed]
- Dikarev, E.V.; Kumar, D.K.; Filatov, A.S.; Anan, A.; Xie, Y.; Asefa, T.; Petrukhina, M.A. Recyclable Dirhodium Catalysts Embedded in Nanoporous Surface-Functionalized Organosilica Hosts for Carbenoid-Mediated Cyclopropanation Reactions. ChemCatChem 2010, 2, 1461–1466. [Google Scholar] [CrossRef]
- Li, Z.; Jiang, H.; Liu, J.; Ning, T.; Phan, N.T.S.; Zhang, F. Self-Adaptive Dirhodium Complexes in a Metal–Organic Framework for Synthesis of N–H Aziridines. ACS Appl. Mater. Interfaces 2022, 14, 30714–30723. [Google Scholar] [CrossRef]
- Chen, L.; Yang, T.; Cui, H.; Cai, T.; Zhang, L.; Su, C.-Y. A porous metal–organic cage constructed from dirhodium paddle-wheels: Synthesis, structure and catalysis. J. Mater. Chem. A 2015, 3, 20201–20209. [Google Scholar] [CrossRef]
- Zhu, B.; Liu, G.; Chen, L.; Qiu, L.; Chen, L.; Zhang, J.; Zhang, L.; Barboiu, M.; Si, R.; Su, C.-Y. Metal–organic aerogels based on dinuclear rhodium paddle-wheel units: Design, synthesis and catalysis. Inorg. Chem. Front. 2016, 3, 702–710. [Google Scholar] [CrossRef]
- Sánchez-González, E.; Tsang, M.Y.; Troyano, J.; Craig, G.A.; Furukawa, S. Assembling metal–organic cages as porous materials. Chem. Soc. Rev. 2022, 51, 4876–4889. [Google Scholar] [CrossRef] [PubMed]
- Yadav, A.; Gupta, A.K.; Steiner, A.; Boomishankar, R. Mapping the Assembly of Metal–Organic Cages into Complex Coordination Networks. Chem.–Eur. J. 2017, 23, 18296–18302. [Google Scholar] [CrossRef]
- Lee, B.; Park, I.-H.; Park, J. Bridging and Fixing Metal–Organic Cages. ACS Mater. Lett. 2022, 4, 2388–2393. [Google Scholar] [CrossRef]
- Oldenhuis, N.J.; Qin, K.P.; Wang, S.; Ye, H.-Z.; Alt, E.A.; Willard, A.P.; Van Voorhis, T.; Craig, S.L.; Johnson, J.A. Photoswitchable Sol–Gel Transitions and Catalysis Mediated by Polymer Networks with Coumarin-Decorated Cu24L24 Metal–Organic Cages as Junctions. Angew. Chem. Int. Ed. 2020, 59, 2784–2792. [Google Scholar] [CrossRef]
- Wu, K.; Li, K.; Chen, S.; Hou, Y.-J.; Lu, Y.-L.; Wang, J.-S.; Wei, M.-J.; Pan, M.; Su, C.-Y. The Redox Coupling Effect in a Photocatalytic RuII-PdII Cage with TTF Guest as Electron Relay Mediator for Visible-Light Hydrogen-Evolving Promotion. Angew. Chem. Int. Ed. 2020, 59, 2639–2643. [Google Scholar] [CrossRef]
- Guo, J.; Fan, Y.-Z.; Lu, Y.-L.; Zheng, S.-P.; Su, C.-Y. Visible-Light Photocatalysis of Asymmetric [2+2] Cycloaddition in Cage-Confined Nanospace Merging Chirality with Triplet-State Photosensitization. Angew. Chem. Int. Ed. 2020, 59, 8661–8669. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-S.; Wu, K.; Yin, C.; Li, K.; Huang, Y.; Ruan, J.; Feng, X.; Hu, P.; Su, C.-Y. Cage-confined photocatalysis for wide-scope unusually selective 2+2 cycloaddition through visible-light triplet sensitization. Nat. Commun. 2020, 11, 4675. [Google Scholar] [CrossRef] [PubMed]
- Trost, B.M.; Ball, Z.T. Intramolecular Endo-Dig Hydrosilylation Catalyzed by Ruthenium: Evidence for a New Mechanistic Pathway. J. Am. Chem. Soc. 2003, 125, 30–31. [Google Scholar] [CrossRef] [PubMed]
- Trost, B.M.; Ball, Z.T. Markovnikov Alkyne Hydrosilylation Catalyzed by Ruthenium Complexes. J. Am. Chem. Soc. 2001, 123, 12726–12727. [Google Scholar] [CrossRef]
- Reid, W.B.; McAtee, J.R.; Watson, D.A. Synthesis of Unsaturated Silyl Heterocycles via an Intramolecular Silyl-Heck Reaction. Organometallics 2019, 38, 3796–3803. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, J.; Guo, Y.; Li, L.; Fu, Z.; Huang, W. Access to Enantioenriched Organosilanes from Enals and β-Silyl Enones: Carbene Organocatalysis. Angew. Chem. Int. Ed. 2018, 57, 4594–4598. [Google Scholar] [CrossRef]
- Mkhalid, I.A.I.; Barnard, J.H.; Marder, T.B.; Murphy, J.M.; Hartwig, J.F. C−H Activation for the Construction of C−B Bonds. Chem. Rev. 2010, 110, 890–931. [Google Scholar] [CrossRef]
- Wang, G.; Xu, L.; Li, P. Double N,B-Type Bidentate Boryl Ligands Enabling a Highly Active Iridium Catalyst for C–H Borylation. J. Am. Chem. Soc. 2015, 137, 8058–8061. [Google Scholar] [CrossRef]
- Kisan, S.; Krishnakumar, V.; Gunanathan, C. Ruthenium-Catalyzed Anti-Markovnikov Selective Hydroboration of Olefins. ACS Catal. 2017, 7, 5950–5954. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, G.; Hashmi, A.S.K. Carbene B−H Insertion Reactions for C−B Bond Formation. ChemCatChem 2021, 13, 4299–4312. [Google Scholar] [CrossRef]
- Jagannathan, J.R.; Fettinger, J.C.; Shaw, J.T.; Franz, A.K. Enantioselective Si–H Insertion Reactions of Diarylcarbenes for the Synthesis of Silicon-Stereogenic Silanes. J. Am. Chem. Soc. 2020, 142, 11674–11679. [Google Scholar] [CrossRef] [PubMed]
- Ru, G.-X.; Zhang, T.-T.; Zhang, M.; Jiang, X.-L.; Wan, Z.-K.; Zhu, X.-H.; Shen, W.-B.; Gao, G.-Q. Recent progress towards the transition-metal-catalyzed Nazarov cyclization of alkynes via metal carbenes. Org. Biomol. Chem. 2021, 19, 5274–5283. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Chen, K.; Zhu, S. Transition-Metal-Catalyzed Intramolecular Nucleophilic Addition of Carbonyl Groups to Alkynes. Chem 2018, 4, 1208–1262. [Google Scholar] [CrossRef] [Green Version]
- Huang, M.-Y.; Yang, J.-M.; Zhao, Y.-T.; Zhu, S.-F. Rhodium-Catalyzed Si–H Bond Insertion Reactions Using Functionalized Alkynes as Carbene Precursors. ACS Catal. 2019, 9, 5353–5357. [Google Scholar] [CrossRef]
- Yang, J.-M.; Li, Z.-Q.; Li, M.-L.; He, Q.; Zhu, S.-F.; Zhou, Q.-L. Catalytic B–H Bond Insertion Reactions Using Alkynes as Carbene Precursors. J. Am. Chem. Soc. 2017, 139, 3784–3789. [Google Scholar] [CrossRef]
- Zhu, D.; Ma, J.; Luo, K.; Fu, H.; Zhang, L.; Zhu, S. Enantioselective Intramolecular C−H Insertion of Donor and Donor/Donor Carbenes by a Nondiazo Approach. Angew. Chem. Int. Ed. 2016, 55, 8452–8456. [Google Scholar] [CrossRef] [PubMed]
- Zhu, D.; Chen, L.; Zhang, H.; Ma, Z.; Jiang, H.; Zhu, S. Highly Chemo- and Stereoselective Catalyst-Controlled Allylic C−H Insertion and Cyclopropanation Using Donor/Donor Carbenes. Angew. Chem. Int. Ed. 2018, 57, 12405–12409. [Google Scholar] [CrossRef] [PubMed]
- Li, J.-R.; Yakovenko, A.A.; Lu, W.; Timmons, D.J.; Zhuang, W.; Yuan, D.; Zhou, H.-C. Ligand Bridging-Angle-Driven Assembly of Molecular Architectures Based on Quadruply Bonded Mo−Mo Dimers. J. Am. Chem. Soc. 2010, 132, 17599–17610. [Google Scholar] [CrossRef]
- Luo, H.; Chen, K.; Jiang, H.; Zhu, S. A Route to Polysubstituted Aziridines from Carbenes and Imines through a Nondiazo Approach. Org. Lett. 2016, 18, 5208–5211. [Google Scholar] [CrossRef]
Entry | Catalyst | Solvent | Yield (%) b |
---|---|---|---|
1 | MOC-Rh-1 | Toluene | 84 |
2 | MOC-Rh-1 | CH2Cl2 | 81 |
3 | MOC-Rh-1 | CHCl3 | 85 |
4 | MOC-Rh-1 | 1,4-dioxane | 74 |
5 | MOC-Rh-1 | Acetone | 62 |
6 | MOC-Rh-1 | THF | 38 |
7 | MOC-Rh-1 | DCE | 89 |
8 c | MOC-Rh-1 | DCE | 82 |
9 d | Rh2(CH3COO)4 | DCE | 89 |
10 d | Rh2(OPiv)4 | DCE | 91 |
11 d | Rh2(CF3COO)4 | DCE | 82 |
12 e | Rh2(CH3COO)4 | DCE | 85 |
13 e | MOC-Rh-1 | DCE | 35 |
14 | none | DCE | NR |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Zhao, C.; Mo, W.; Li, C.; Lin, X. X-H Bond Insertion Promoted by Heterogeneous Dirhodium Metal–Organic Cage with Alkynes as Safe Carbene Precursors. Molecules 2023, 28, 608. https://doi.org/10.3390/molecules28020608
Chen L, Zhao C, Mo W, Li C, Lin X. X-H Bond Insertion Promoted by Heterogeneous Dirhodium Metal–Organic Cage with Alkynes as Safe Carbene Precursors. Molecules. 2023; 28(2):608. https://doi.org/10.3390/molecules28020608
Chicago/Turabian StyleChen, Lianfen, Chaoyi Zhao, Weixian Mo, Chunsheng Li, and Xiaoming Lin. 2023. "X-H Bond Insertion Promoted by Heterogeneous Dirhodium Metal–Organic Cage with Alkynes as Safe Carbene Precursors" Molecules 28, no. 2: 608. https://doi.org/10.3390/molecules28020608
APA StyleChen, L., Zhao, C., Mo, W., Li, C., & Lin, X. (2023). X-H Bond Insertion Promoted by Heterogeneous Dirhodium Metal–Organic Cage with Alkynes as Safe Carbene Precursors. Molecules, 28(2), 608. https://doi.org/10.3390/molecules28020608