The Effect of Chinese Agarwood Essential Oil with Cyclodextrin Inclusion against PCPA-Induced Insomnia Rats
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Composition of Agarwood
2.2. Process Investigation and Characterization of a-β-CD
2.2.1. Determination of AEO in a-β-CD by UV Analysis
2.2.2. Single Factor Investigation of the β-CD Inclusion Process
2.2.3. Box–Behnken Design (BBD) Response Surface Methodology for Optimization of the Cyclodextrin Inclusion Process of AEO [28]
2.2.4. Appearance of a-β-CD
2.2.5. FT-IR Analysis
2.2.6. XRD Analysis
2.2.7. SEM Analysis
2.3. Safety Evaluation of Nasal Mucosa
2.3.1. The Effect on the Cilia of Bufo Gargarizans Maxillary Mucosa In Vitro/In Vivo
2.3.2. The Observation Results of Ciliary Movement in the Maxillary Mucosa in Bufo Gargarizans
2.4. Effect on Rat Nasal Mucosal Cilia
2.4.1. H&E Staining Observation
2.4.2. SEM Observation
2.5. The Effect of AA on Sleep in Rats with PCPA-Induced Insomnia
Weight Change and Independent Activities
2.6. Open Field Test
2.7. Tail Suspension Test
2.8. Elevated Cross Maze Test
2.9. Sleep Induction in Rats by Drugs Combined with Pentobarbital Sodium
2.10. The Effects on Monoamine Neurotransmitters and Amino Acids in the Hypothalamus of Rats
3. Conclusions
4. Methods and Materials
4.1. Materials
4.2. Chemical Composition of Agarwood
4.2.1. Chemical Composition of the AEO
4.2.2. The Determination of Agarotetraol in EA by HPLC
4.3. Process Investigation of a-β-CD
4.3.1. Preparation of a-β-CD and Determination of Its Oil Content
4.3.2. Single Factor Investigation of the Cyclodextrin Inclusion Process
4.3.3. Box–Behnken Design (BBD) Response Surface Methodology for Optimization of the Cyclodextrin Inclusion Process of AEO
4.4. Characterization of a-β-CD
4.4.1. Fourier Transform Infrared (FT-IR) Spectroscopy Analysis
4.4.2. X-ray Diffraction (XRD) Analysis
4.4.3. Scanning Electron Microscopy (SEM) Analysis
4.5. Safety Evaluation on the Nasal Mucosa in Bufo Gargarizans
4.5.1. Evaluation of Mucociliary Movement of Toad Maxillary Mucosa In Vitro
4.5.2. Evaluation of Mucociliary Movement of Toad Maxillary Mucosa In Vivo
4.6. The Effect on the Cilia of Nasal Mucosa in Rats
4.6.1. H&E Staining
4.6.2. SEM Observation
4.7. The Effect of AA on Sleep in Insomnia Rats
4.8. Experiments on Pentobarbital-Sodium-Induced Sleep in Rats
4.9. Behavioral Investigation
4.9.1. Self-Activity and Weight Change
4.9.2. Open Field Test
4.9.3. Tail Suspension Test
4.9.4. Elevated Cross Maze Test
4.9.5. Detection of Monoamine Neurotransmitters and Amino Acids
4.10. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
Sample Availability
Abbreviations
References
- Castro, K.P.; Ito, M. Individual and Combined Inhalational Sedative Effects in Mice of Low Molecular Weight Aromatic Compounds Found in Agarwood Aroma. Molecules 2021, 26, 1320. [Google Scholar] [CrossRef]
- Kuo, T.H.; Huang, H.C.; Hsu, C.C. Mass spectrometry imaging guided molecular networking to expedite discovery and structural analysis of agarwood natural products. Anal. Chim. Acta 2019, 1080, 95–103. [Google Scholar] [CrossRef]
- Kao, W.Y.; Hsiang, C.Y.; Ho, S.C.; Ho, T.Y.; Lee, K.T. Novel serotonin-boosting effect of incense smoke from Kynam agarwood in mice: The involvement of multiple neuroactive pathways. J. Ethnopharmacol. 2021, 275, 114069. [Google Scholar] [CrossRef]
- Ellis, J.G.; Perlis, M.L.; Espie, C.A.; Grandner, M.A.; Bastien, C.H.; Barclay, N.L.; Altena, E.; Gardani, M. The natural history of insomnia: Predisposing, precipitating, coping, and perpetuating factors over the early developmental course of insomnia. Sleep 2021, 44, zsab095. [Google Scholar] [CrossRef] [PubMed]
- Leerssen, J.; Blanken, T.F.; Pozzi, E.; Jahanshad, N.; Aftanas, L.; Andreassen, O.A.; Baune, B.T.; Brack, I.; Carballedo, A.; Ching, C.R.K.; et al. Brain structural correlates of insomnia severity in 1053 individuals with major depressive disorder: Results from the ENIGMA MDD Working Group. Transl. Psychiatry 2020, 10, 425. [Google Scholar] [CrossRef]
- Manor, R.; Kumarnsit, E.; Samerphob, N.; Rujiralai, T.; Puangpairote, T.; Cheaha, D. Characterization of pharmaco-EEG fingerprint and sleep-wake profiles of Lavandula angustifolia Mill. essential oil inhalation and diazepam administration in rats. J. Ethnopharmacol. 2021, 276, 114193. [Google Scholar] [CrossRef] [PubMed]
- Sadeghmousavi, S.; Eskian, M.; Rahmani, F.; Rezaei, N. The effect of insomnia on development of Alzheimer’s disease. J. Neuroinflamm. 2020, 17, 289. [Google Scholar] [CrossRef]
- Madari, S.; Golebiowski, R.; Mansukhani, M.P.; Kolla, B.P. Pharmacological Management of Insomnia. Neurotherapeutics 2021, 18, 44–52. [Google Scholar] [CrossRef]
- Sweetman, A.; Putland, S.; Lack, L.; McEvoy, R.D.; Adams, R.; Grunstein, R.; Stocks, N.; Kaambwa, B.; Van Ryswyk, E.; Gordon, C.; et al. The effect of cognitive behavioural therapy for insomnia on sedative-hypnotic use: A narrative review. Sleep Med. Rev. 2021, 56, 101404. [Google Scholar] [CrossRef]
- Chan, N.Y.; Chan, J.W.Y.; Li, S.X.; Wing, Y.K. Non-pharmacological Approaches for Management of Insomnia. Neurotherapeutics 2021, 18, 32–43. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Chen, H.Q.; Wang, H.; Mei, W.L.; Dai, H.F. Natural products in agarwood and Aquilaria plants: Chemistry, biological activities and biosynthesis. Nat. Prod. Rep. 2021, 38, 528–565. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Yang, J.L.; Dong, W.H.; Wang, Y.L.; Zeng, J.; Yuan, J.Z.; Wang, H.; Mei, W.L.; Dai, H.F. The Characteristic Fragrant Sesquiterpenes and 2-(2-Phenylethyl)chromones in Wild and Cultivated “Qi-Nan” Agarwood. Molecules 2021, 26, 436. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.R.; Li, W.; Luo, S.; Zhao, X.; Ma, C.H.; Liu, S.X. GC-MS Study of the Chemical Components of Different Aquilaria sinensis (Lour.) Gilgorgans and Agarwood from Different Asian Countries. Molecules 2018, 23, 2168. [Google Scholar] [CrossRef] [Green Version]
- Takamatsu, S.; Ito, M. Agarotetrol in agarwood: Its use in evaluation of agarwood quality. J. Nat. Med. 2020, 74, 98–105. [Google Scholar] [CrossRef]
- Chang, G.H.; Lin, Y.S.; Hsu, K.H.; Cheng, Y.C.; Yang, P.R.; Tsai, M.S.; Tsai, Y.T.; Hsu, C.M.; Chang, P.J.; Shi, C.S.; et al. Nasal irrigation with Glycyrrhiza glabra extract for treatment of allergic rhinitis—A study of in vitro, in vivo and clinical trial. J. Ethnopharmacol. 2021, 275, 114116. [Google Scholar] [CrossRef]
- Long, Y.; Yang, Q.; Xiang, Y.; Zhang, Y.; Wan, J.; Liu, S.; Li, N.; Peng, W. Nose to brain drug delivery—A promising strategy for active components from herbal medicine for treating cerebral ischemia reperfusion. Pharmacol. Res. 2020, 159, 104795. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, M.; Saraf, S.; Saraf, S.; Dubey, S.K.; Puri, A.; Gupta, U.; Kesharwani, P.; Ravichandiran, V.; Kumar, P.; Naidu, V.G.M.; et al. Stimuli-responsive In Situ gelling system for nose-to-brain drug delivery. J. Control. Release 2020, 327, 235–265. [Google Scholar] [CrossRef]
- Zhu, S.; Zhang, S.; Pang, L.; Ou, G.; Zhu, L.; Ma, J.; Li, R.; Liu, Y.; Wang, L.; Wang, L.; et al. Effects of armodafinil nanocrystal nasal hydrogel on recovery of cognitive function in sleep-deprived rats. Int. J. Pharm. 2021, 597, 120343. [Google Scholar] [CrossRef]
- Alexander, J.F.; Seua, A.V.; Arroyo, L.D.; Ray, P.R.; Wangzhou, A.; Heibeta-Luckemann, L.; Schedlowski, M.; Price, T.J.; Kavelaars, A.; Heijnen, C.J. Nasal administration of mitochondria reverses chemotherapy-induced cognitive deficits. Theranostics 2021, 11, 3109–3130. [Google Scholar] [CrossRef]
- Matarazzo, A.P.; Elisei, L.M.S.; Carvalho, F.C.; Bonfilio, R.; Ruela, A.L.M.; Galdino, G.; Pereira, G.R. Mucoadhesive nanostructured lipid carriers as a cannabidiol nasal delivery system for the treatment of neuropathic pain. Eur. J. Pharm. Sci. 2021, 159, 105698. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Y.; Tian, Z.; Ma, J.; Kang, M.; Ding, C.; Ming, D. Preparation of beta-CD-Ellagic Acid Microspheres and Their Effects on HepG2 Cell Proliferation. Molecules 2017, 22, 2175. [Google Scholar] [CrossRef] [Green Version]
- Wen, Z.; Yan, Z.; He, R.; Pang, Z.; Guo, L.; Qian, Y.; Jiang, X.; Fang, L. Brain targeting and toxicity study of odorranalectin-conjugated nanoparticles following intranasal administration. Drug Deliv. 2011, 18, 555–561. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.B.; Zhou, Q.; Yan, J.X.; Luo, L.S.; Zhang, J.L. Enzymolysis peptides from Mauremys mutica plastron improve the disorder of neurotransmitter system and facilitate sleep-promoting in the PCPA-induced insomnia mice. J. Ethnopharmacol. 2021, 274, 114047. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.; Chen, J.; Kan, J.; Liu, M.; Yang, D.; Ullah, R. Effects of Acupuncture Treatment in Reducing Sleep Disorder and Gut Microbiota Alterations in PCPA-Induced Insomnia Mice. Evid.-Based Complement. Altern. Med. 2020, 2020, 3626120. [Google Scholar] [CrossRef] [PubMed]
- Cryan, J.F.; Mombereau, C.; Vassout, A. The tail suspension test as a model for assessing antidepressant activity: Review of pharmacological and genetic studies in mice. Neurosci. Biobehav. Rev. 2005, 29, 571–625. [Google Scholar] [CrossRef]
- Knight, P.; Chellian, R.; Wilson, R.; Behnood-Rod, A.; Panunzio, S.; Bruijnzeel, A.W. Sex differences in the elevated plus-maze test and large open field test in adult Wistar rats. Pharmacol. Biochem. Behav. 2021, 204, 173168. [Google Scholar] [CrossRef]
- Aldrich, M.S. Insomnia in neurological diseases. J. Psychosom. Res. 1993, 37 (Suppl. 1), 3–11. [Google Scholar] [CrossRef]
- Routray, S.B.; Patra, C.N.; Raju, R.; Panigrahi, K.C.; Jena, G.K. Lyophilized SLN of Cinnacalcet HCl: BBD enabled optimization, characterization and pharmacokinetic study. Drug Dev. Ind. Pharm. 2020, 46, 1080–1091. [Google Scholar] [CrossRef] [PubMed]
- Paladini, G.; Caridi, F.; Crupi, V.; De Gaetano, F.; Majolino, D.; Tommasini, S.; Ventura, C.A.; Venuti, V.; Stancanelli, R. Temperature-Dependent Dynamical Evolution in Coum/SBE-beta-CD Inclusion Complexes Revealed by Two-Dimensional FTIR Correlation Spectroscopy (2D-COS). Molecules 2021, 26, 3749. [Google Scholar] [CrossRef]
- Rege, M.D.; Ghadi, R.; Katiyar, S.S.; Kushwah, V.; Jain, S. Exploring an interesting dual functionality of anacardic acid for efficient paclitaxel delivery in breast cancer therapy. Nanomedicine 2019, 14, 57–75. [Google Scholar] [CrossRef]
- Wu, D.; Zhang, H.; Hu, G.; Zhang, W. Fine Characterization of the Macromolecular Structure of Huainan Coal Using XRD, FTIR, 13C-CP/MAS NMR, SEM, and AFM Techniques. Molecules 2020, 25, 2661. [Google Scholar] [CrossRef]
- Rodrigues, L.B.; Martins, A.O.B.P.B.; Ribeiro-Filho, J.; Cesário, F.R.A.S.; e Castro, F.F.; de Albuquerque, T.R.; Fernandes, M.N.M.; da Silva, B.A.F.; Quintans Júnior, L.J.; Araújo, A.A.D.S.; et al. Anti-inflammatory activity of the essential oil obtained from Ocimum basilicum complexed with beta-cyclodextrin (beta-CD) in mice. Food Chem. Toxicol. 2017, 109, 836–846. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wang, C.; Peng, D.; Liu, X.; Wu, C.; Guo, P.; Wei, J. Agarwood Essential Oil Displays Sedative-Hypnotic Effects through the GABAergic System. Molecules 2017, 22, 2190. [Google Scholar] [CrossRef] [Green Version]
- Zhong, Y.; Zheng, Q.; Hu, P.; Huang, X.; Yang, M.; Ren, G.; Du, Q.; Luo, J.; Zhang, K.; Li, J.; et al. Sedative and hypnotic effects of compound Anshen essential oil inhalation for insomnia. BMC Complement. Altern. Med. 2019, 19, 306. [Google Scholar] [CrossRef]
- Samadi, M.; Zainal Abidin, Z.; Yoshida, H.; Yunus, R.; Awang Biak, D.R. Towards Higher Oil Yield and Quality of Essential Oil Extracted from Aquilaria malaccensis Wood via the Subcritical Technique. Molecules 2020, 25, 3872. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, M.; Chao, J.; Shuang, S. Preparation and characterization of the inclusion complex of Baicalin (BG) with beta-CD and HP-beta-CD in solution: An antioxidant ability study. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2009, 73, 752–756. [Google Scholar] [CrossRef]
- Liu, S.; Ho, P.C. Formulation optimization of scutellarin-loaded HP-beta-CD/chitosan nanoparticles using response surface methodology with Box-Behnken design. Asian J. Pharm. Sci. 2017, 12, 378–385. [Google Scholar] [CrossRef] [PubMed]
- Mangolim, C.S.; Moriwaki, C.; Nogueira, A.C.; Sato, F.; Baesso, M.L.; Neto, A.M.; Matioli, G. Curcumin-beta-cyclodextrin inclusion complex: Stability, solubility, characterisation by FT-IR, FT-Raman, X-ray diffraction and photoacoustic spectroscopy, and food application. Food Chem. 2014, 153, 361–370. [Google Scholar] [CrossRef] [Green Version]
- Srinivasan, K.; Stalin, T. Study of inclusion complex between 2,6-dinitrobenzoic acid and beta-cyclodextrin by 1H NMR, 2D 1H NMR (ROESY), FT-IR, XRD, SEM and photophysical methods. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 130, 105–115. [Google Scholar] [CrossRef]
- Yang, P.; Li, Y.; Li, W.; Zhang, H.; Gao, J.; Sun, J.; Yin, X.; Zheng, A. Preparation and evaluation of carfentanil nasal spray employing cyclodextrin inclusion technology. Drug Dev. Ind. Pharm. 2018, 44, 953–960. [Google Scholar] [CrossRef]
- Li, Y.F.; Wu, P.A.; Ning, Y.M.; Yan, X.K.; Zhu, T.T.; Ma, C.B.; Liu, A.G. Sedative and hypnotic effect of freeze-dried paeoniflorin and Sini San freeze-dried powder in pentobarbital sodium-induced mice. J. Tradit. Chin. Med. 2014, 34, 184–187. [Google Scholar] [CrossRef] [PubMed]
Sequence | Substance Name | Molecular Formula | RT | Peak Area Ratio (%) |
---|---|---|---|---|
1 | Benzaldehyde | C7H6O | 3.18 | 0.09 |
2 | 2-Butanone, 4-phenyl- | C10H12O | 7.42 | 0.27 |
3 | 2-Butanone, 4-(4-methoxyphenyl)- | C11H14O2 | 11.01 | 0.23 |
4 | (4S,4aR,6R)-4,4a-Dimethyl-6-(prop-1-en-2-yl)-1,2,3,4,4a,5,6,7-octahydronaphthalene | C15H24 | 10.67 | 0.09 |
5 | α-Santalol | C15H24O | 12.08 | 0.8 |
6 | 2-((2R,4aR,8aS)-4a-Methyl-8-methylenedecahydronaphthalen-2-yl)prop-2-en-1-ol | C15H24O | 12.23 | 0.26 |
7 | 2-((2S,4aR)-4a,8-Dimethyl-1,2,3,4,4a,5,6,7-octahydronaphthalen-2-yl)propan-2-ol | C15H26O | 12.63 | 0.52 |
8 | Guaiol | C15H26O | 12.87 | 1.29 |
9 | β-Guaiene | C15H24 | 13.02 | 1.53 |
10 | 2-((2R,4aR,8aR)-4a,8-Dimethyl-1,2,3,4,4a,5,6,8a-octahydronaphthalen-2-yl)acrylaldehyde | C15H22O | 13.63 | 0.65 |
11 | 9-Isopropyl-1-methyl-2-methylene-5-oxatricyclo[5.4.0.0(3,8)]undecane | C15H24O | 13.68 | 0.27 |
12 | 2-Naphthalenol, 2,3,4,4a,5,6,7-octahydro-1,4a-dimethyl-7-(2-hydroxy-1-methylethyl) | C15H2602 | 13.85 | 0.47 |
13 | Longifolenaldehyde | C15H24O | 14.22 | 0.7 |
14 | 7-Isopropenyl-1,4a-dimethyl-4,4a,5,6,7,8-hexahydro-3H-naphthalen-2-one | C15H22O | 14.75 | 3.06 |
15 | Corymbolone | C15H24O2 | 14.81 | 0.7 |
16 | Cyclolongifolene oxide, dehydro- | C15H22O | 14.91 | 0.37 |
17 | (E)-3-((4S,7R,7aR)-3,7-Dimethyl-2,4,5,6,7,7a-hexahydro-1H-inden-4-yl)-2-methylacrylald | C15H22O | 15.14 | 1.77 |
18 | (1R,4aR,7R,8aR)-7-(2-Hydroxypropan-2-yl)-1,4a-dimethyldecahydronaphthalen-1-ol | C15H2802 | 15.25 | 0.48 |
19 | Methyl-2-((2R,4aR)-4a,8-dimethyl-1,2,3,4,4a,5,6,7-octahydronaphthalen-2-yl)acrylate | C16H24O2 | 15.53 | 0.26 |
20 | 2H-Cyclopropa[a]naphthalen-2-one1,1a,4,5,6,7,7a,7b-octahydro-1,1,7,7a-tetramethyl-, (1a. α,7. α,7a. α,7b. α)- | C15H22O | 15.71 | 0.92 |
21 | 2(1H)-Naphthalenone,4a,5,6,7,8,8a-hexahydro-6-[1-(hydroxymethyl)ethenyl]-4,8a-dimethyl-, [4ar-(4a. α.,6. α.,8a. β.)]- | C15H22O2 | 18.68 | 1.67 |
22 | β-Cyclocostunolide | C15H20O2 | 20.16 | 3.31 |
23 | (4aR,5S)-1-Hydroxy-4a,5-dimethyl-3-(propan-2-ylidene)-4,4a,5,6-tetrahydronaphthalen-2(3H)-one | C15H20O2 | 20.30 | 3.15 |
24 | (4aS,7R)-7-(2-Hydroxypropan-2-yl)-1,4a-dimethyl-4,4a,5,6,7,8-hexahydronaphthalen-2(3H)-one | C15H24O2 | 20.40 | 0.72 |
25 | 5,8-Dihydroxy-4a-methyl-4,4a,4b,5,6,7,8,8a,9,10-decahydro-2(3H)-phenanthrenone | C15H22O3 | 20.53 | 0.76 |
26 | Eudesma-5,11(13)-dien-8,12-olide | C15H20O2 | 20.64 | 0.53 |
27 | 6-(1-Hydroxymethylvinyl)-4,8a-dimethyl-3,5,6,7,8,8a-hexahydro-1H-naphthalen-2-one | C15H20O2 | 22.12 | 1.39 |
28 | 2aS,3aR,5aS,9bR)-2a,5a,9-Trimethyl-2a,4,5,5a,6,7,8,9b-octahydro-2H-naphtho[1,2-b]oxireno[2,3-c]furan | C15H22O2 | 22.96 | 1.9 |
29 | Propanoic acid, 2-methyl-, (dodecahydro-6a-hydroxy-9a-methyl-3-methylene-2,9-dioxoazuleno [4,5-b] furan-6-yl)methyl ester, [3aS-(3a. α.,6.β.,6a. α.,9a.β.,9b. α.)] - | C19H26O6 | 25.19 | 0.55 |
30 | 1,5-diphenyl-1-Penten-3-one | C17H16O | 26.63 | 0.5 |
31 | 10-epi-γ--Eudesmol | C15H26O | 27.47 | 0.08 |
32 | Agarospirol | C15H26O | 29.23 | 0.93 |
33 | 2-Phenethyl-4H-chromen-4-one | C17H14O2 | 34.89 | 1.56 |
34 | γ--Gurjunenepoxide-(2) | C15H24O | 43.09 | 1.15 |
35 | 2-(4-Methoxyphenethyl)-4H-chromen-4-one | C18H16O3 | 49.82 | 0.75 |
36 | Acetamide, N-(4-benzyloxyphenyl)-2-cyano- | C16H14N2O2 | 55.59 | 0.26 |
37 | 13-Docosenamide, (Z)- | C22H43NO | 60.28 | 0.09 |
38 | Squalene | C30H50 | 62.28 | 0.63 |
39 | Methoxy-2-(4-methoxyphenethyl)-4H-chromen-4-7-one | C19H18O4 | 63.38 | 0.77 |
40 | 6-Methoxy-2-phenethyl-4H-chromen-4-one | C18H16O3 | 63.60 | 0.13 |
41 | 6,7-Dimethoxy-2-phenethyl-4H-chromen-4-one | C19H18O4 | 64.93 | 9.67 |
42 | 4H-1-Benzopyran-4-one, 5-hydroxy-7-methoxy-2-(4-methoxyphenyl)- | C17H14O5 | 65.86 | 0.4 |
43 | 6,7-Dimethoxy-2-(4-methoxyphenethyl)-4H-chromen-4-one | C20H20O5 | 72.54 | 2 |
44 | Stigmasterol | C29H48O | 74.88 | 0.55 |
45 | γ—Sitosterol | C29H50O | 76.33 | 0.74 |
46 | Spinasterone | C29H46O | 79.53 | 4.4 |
Factors | ICY (%) | OIC (%) | IEO (%) | |
---|---|---|---|---|
Feeding ratio (g:g) | 0.13:1.40 | 30.17 ± 0.02 | 8.50 ± 0.12 | 31.53 ± 0.71 |
0.25:1.40 | 53.03 ± 1.63 ## | 17.37 ± 0.70 ## | 59.67 ± 3.09 ## | |
0.50:1.40 | 63.21 ± 0.33 ##,** | 21.82 ± 1.12 ##,** | 52.35 ± 2.69 ## | |
Inclusion temperature (°C) | 40.00 | 52.76 ± 1.61 | 16.92 ± 0.46 | 58.79 ± 2.10 |
45.00 | 53.03 ± 1.63 | 17.37 ± 0.70 | 59.67 ± 3.09 | |
50.00 | 48.77 ± 1.80 | 16.66 ± 0.83 | 53.73 ± 4.26 | |
Inclusion time (h) | 1.00 | 49.46 ± 3.07 | 14.31 ± 0.40 | 46.68 ± 3.87 |
2.00 | 53.03 ± 1.63 | 17.37 ± 0.70 | 59.67 ± 3.09 | |
3.00 | 56.81 ± 0.42 | 17.06 ± 0.42 | 63.04 ± 1.54 |
Run | A. Feeding Ratio | B. Inclusion Temperature | C. Inclusion Time | ICY (%) | IEO (%) |
---|---|---|---|---|---|
1 | 0.13 | 40 | 2 | 15.92 | 27.01 |
2 | 0.25 | 50 | 3 | 29.39 | 45.69 |
3 | 0.25 | 45 | 2 | 43.04 | 67.59 |
4 | 0.5 | 45 | 1 | 52.11 | 34.90 |
5 | 0.5 | 50 | 2 | 51.02 | 36.60 |
6 | 0.25 | 45 | 2 | 55.99 | 61.60 |
7 | 0.25 | 45 | 2 | 55.24 | 65.29 |
8 | 0.25 | 40 | 3 | 31.53 | 35.46 |
9 | 0.25 | 45 | 2 | 54.53 | 64.50 |
10 | 0.25 | 45 | 2 | 50.36 | 68.65 |
11 | 0.5 | 40 | 2 | 42.28 | 33.36 |
12 | 0.13 | 45 | 1 | 21.66 | 46.70 |
13 | 0.13 | 50 | 2 | 17.85 | 36.29 |
14 | 0.5 | 45 | 3 | 54.86 | 36.29 |
15 | 0.25 | 40 | 1 | 37.36 | 41.74 |
16 | 0.13 | 45 | 3 | 18.88 | 51.13 |
17 | 0.25 | 50 | 1 | 36.14 | 39.96 |
Source | ICY% | IEO% | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Squares | df | Square | Value | Prob > F | Squares | df | Square | Value | Prob > F | |
Model | 3208.92 | 9 | 356.55 | 16.46 | 0.0006 ** | 2862.54 | 9 | 318.06 | 12.37 | 0.0016 ** |
A—Feeding ratio (g:g) | 1983.11 | 1 | 1983.11 | 91.56 | <0.0001 ** | 49.87 | 1 | 49.87 | 1.94 | 0.2064 |
B—Inclusion temperature (°C) | 12.39 | 1 | 12.39 | 0.57 | 0.4742 | 44.14 | 1 | 44.14 | 1.72 | 0.2315 |
C—Inclusion time (h) | 12.34 | 1 | 12.34 | 0.57 | 0.475 | 2.57 | 1 | 2.57 | 0.10 | 0.7610 |
AB | 19.85 | 1 | 19.85 | 0.92 | 0.3703 | 6.81 | 1 | 6.81 | 0.26 | 0.6227 |
AC | 13.78 | 1 | 13.78 | 0.64 | 0.4513 | 0.93 | 1 | 0.93 | 0.036 | 0.8546 |
BC | 0.21 | 1 | 0.21 | 9.70 × 10−3 | 0.9243 | 36.02 | 1 | 36.02 | 1.40 | 0.2753 |
A^2 | 740.73 | 1 | 740.73 | 34.20 | 0.0006 ** | 836.52 | 1 | 836.52 | 32.52 | 0.0007 ** |
B^2 | 573.13 | 1 | 573.13 | 26.46 | 0.0013 ** | 1198.82 | 1 | 1198.82 | 46.61 | 0.0002 ** |
C^2 | 181.13 | 1 | 181.13 | 8.36 | 0.0233 * | 265.15 | 1 | 265.15 | 10.31 | 0.0148 * |
Residual | 151.61 | 7 | 21.66 | 180.06 | 7 | 25.72 | ||||
Lack of Fit | 35.94 | 3 | 11.98 | 0.41 | 0.7525 | 149.57 | 3 | 49.86 | 6.54 | 0.0506 |
Pure Error | 115.67 | 4 | 28.92 | 30.49 | 4 | 7.62 |
In Vitro | In Vivo | |||
---|---|---|---|---|
Group | PVD (min) | PVD % | PVD (min) | PVD% |
Normal group | 1651 ± 82.92 *** | 100 *** | 1669 ± 79.23 *** | 100 *** |
Positive control group | 0 ± 0 ### | 0 ### | 0 ± 0 ### | 0 ### |
Low-dose group | 1608 ± 58.78 *** | 97.4 *** | 1617 ± 73.08 *** | 96.88 *** |
Middle-dose group | 1607 ± 74.20 *** | 97.33 *** | 1609 ± 136.78 *** | 96.38 *** |
High-dose group | 1583 ± 113.93 *** | 95.88 *** | 1598 ± 160.99 *** | 95.74 *** |
A-β-CD | 1610 ± 72.72 *** | 97.52 *** | 1625 ± 75.37 *** | 97.34 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lai, Y.; Hua, L.; Yang, J.; Xu, J.; Chen, J.; Zhang, S.; Zhu, S.; Li, J.; Shi, S. The Effect of Chinese Agarwood Essential Oil with Cyclodextrin Inclusion against PCPA-Induced Insomnia Rats. Molecules 2023, 28, 635. https://doi.org/10.3390/molecules28020635
Lai Y, Hua L, Yang J, Xu J, Chen J, Zhang S, Zhu S, Li J, Shi S. The Effect of Chinese Agarwood Essential Oil with Cyclodextrin Inclusion against PCPA-Induced Insomnia Rats. Molecules. 2023; 28(2):635. https://doi.org/10.3390/molecules28020635
Chicago/Turabian StyleLai, Yinfang, Liping Hua, Jiali Yang, Juewen Xu, Junduo Chen, Shuangshuang Zhang, Shunyao Zhu, Jingjing Li, and Senlin Shi. 2023. "The Effect of Chinese Agarwood Essential Oil with Cyclodextrin Inclusion against PCPA-Induced Insomnia Rats" Molecules 28, no. 2: 635. https://doi.org/10.3390/molecules28020635
APA StyleLai, Y., Hua, L., Yang, J., Xu, J., Chen, J., Zhang, S., Zhu, S., Li, J., & Shi, S. (2023). The Effect of Chinese Agarwood Essential Oil with Cyclodextrin Inclusion against PCPA-Induced Insomnia Rats. Molecules, 28(2), 635. https://doi.org/10.3390/molecules28020635