Chiral Covalent-Organic Framework MDI-β-CD-Modified COF@SiO2 Core–Shell Composite for HPLC Enantioseparation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of SiO2-NH2, MDI-β-CD-Modified COF and MDI-β-CD-Modified COF@SiO2
2.2. Resolution of Racemates on the MDI-β-CD-Modified COF@SiO2-Packed Column (Column A)
2.3. Separation of Positional Isomers on the MDI-β-CD-MODIFIED COF@SiO2-Packed Column
2.4. Effect of the Analyte Mass on the HPLC Separation
2.5. Effect of Column Temperature on the HPLC Separation
2.6. Reproducibility and Stability of Column A
3. Experimental Section
3.1. Chemicals and REAGENTS
3.2. Instrumentation
3.3. Synthesis of SiO2-NH2 Microspheres
3.4. Synthesis of MDI-β-CD-Modified COF
3.5. Synthesis of COF-TpPa-1
3.6. Synthesis of MDI-β-CD-Modified COF@SiO2
3.7. Column Packing
3.8. Calculation of the Chromatographic Parameters
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Yildirim, O.; Bonomo, M.; Barbero, N.; Atzori, C.; Barolo, C. Application of Metal-Organic Frameworks and Covalent Organic Frameworks as (Photo)Active Material in Hybrid Photovoltaic Technologies. Energies 2020, 13, 5602. [Google Scholar] [CrossRef]
- Yang, C.H.; Chang, J.S.; Lee, D.J. Chemically stable covalent organic framework as adsorbent from aqueous solution: A mini-review. J. Taiwan Inst. Chem. Eng. 2020, 110, 79–91. [Google Scholar] [CrossRef]
- Li, J.; Zhao, D.; Liu, J.; Liu, A.; Ma, D. Covalent Organic Frameworks: A Promising Materials Platform for Photocatalytic CO2 Reductions. Molecules 2020, 25, 2425. [Google Scholar] [CrossRef] [PubMed]
- Haase, F.; Gottschling, K.; Stegbauer, L.; Germann, L.S.; Gutzler, R.; Duppel, V.; Vyas, V.S.; Kern, K.; Dinnebier, R.E.; Lotsch, B.V. Tuning the stacking behaviour of a 2D covalent organic framework through non-covalent interactions. Mater. Chem. Front. 2017, 1, 1354–1361. [Google Scholar] [CrossRef] [Green Version]
- Bai, L.Y.; Phua, S.Z.F.; Lim, W.Q.; Jana, A.; Luo, Z.; Tham, H.P.; Zhao, L.Z.; Gao, Q.; Zhao, Y.L. Nanoscale covalent organic frameworks as smart carriers for drug delivery. Chem. Commun. 2016, 52, 4128–4131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, Q.R.; Wang, J.H.; Gu, S.; Kaspar, R.B.; Zhuang, Z.B.; Zheng, J.; Guo, H.X.; Qiu, S.L.; Yan, Y.S. 3D Porous Crystalline Polyimide Covalent Organic Frameworks for Drug Delivery. J. Am. Chem. Soc. 2015, 137, 8352–8355. [Google Scholar] [CrossRef]
- Yan, Q.Q.; Liang, H.; Wang, S.L.; Hu, H.; Su, X.F.; Xiao, S.T.; Xu, H.J.; Jing, X.C.; Lu, F.; Gao, Y.A. Immobilization of Ionic Liquid on a Covalent Organic Framework for Effectively Catalyzing Cycloaddition of CO2 to Epoxides. Molecules 2022, 27, 6204. [Google Scholar] [CrossRef]
- Sharma, A.; Malani, A.; Medhekar, N.V.; Babarao, R. CO2 adsorption and separation in covalent organic frameworks with interlayer slipping. Cryst. Eng. Comm. 2017, 19, 6950–6963. [Google Scholar] [CrossRef]
- Zhu, L.J.; Zhang, Y.B. Crystallization of Covalent Organic Frameworks for Gas Storage Applications. Molecules 2017, 22, 1149. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Q.Q.; Li, H.K.; Sun, X.L.; Han, Z.Y.; Sun, J.C.; He, H.M. Rational incorporation of covalent organic framework/carbon nanotube (COF/CNT) composites for electrochemical aptasensing of ultra-trace atrazine. J. Mater. Chem. C 2021, 9, 8043–8050. [Google Scholar] [CrossRef]
- Li, N.J.; Wang, C.Y.; Chen, L.J.; Ye, C.; Peng, Y.W. Ultrathin Covalent Organic Framework Nanosheets/Ti3C2Tx-Based Photoelectrochemical Biosensor for Efficient Detection of Prostate-Specific Antigen. Molecules 2022, 27, 6732. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.X.; Yang, C.; Yan, X.P. “Thiol-ene” click synthesis of chiral covalent organic frameworks for gas chromatography. J. Mater. Chem. A 2021, 9, 21151–21157. [Google Scholar] [CrossRef]
- Wei, X.; Chen, J.; Guan, M.; Qiu, H.D. Application of Covalent Organic Frameworks in Chromatographic Separation, Optical Sensing and Sample Pretreatment. Chinese J. Anal. Chem. 2019, 47, 1721–1731. [Google Scholar]
- Qian, H.L.; Liu, F.; Liu, X.; Yang, C.; Yan, X.P. Chiral covalent organic framework-monolith as stationary phase for high-performance liquid chromatographic enantioseparation of selected amino acids. Anal. Bioanal. Chem 2022, 414, 5255–5262. [Google Scholar] [CrossRef] [PubMed]
- Hang, X.; Huang, J.J.; Yuan, C.; Liu, Y.; Cui, Y. Chiral 3D Covalent Organic Frameworks for High Performance Liquid Chromatographic Enantioseparation. J. Am. Chem. Soc. 2018, 140, 892–895. [Google Scholar]
- Zhang, S.N.; Zheng, Y.L.; An, H.D.; Aguila, B.; Yang, C.X.; Dong, Y.Y.; Xie, W.; Cheng, P.; Zhang, Z.J.; Chen, Y.; et al. Covalent Organic Frameworks with Chirality Enriched by Biomolecules for Efficient Chiral Separation. Angew. Chem. Int. Edit. 2018, 57, 16754–16759. [Google Scholar] [CrossRef]
- Yu, Y.Y.; Yuan, B.Y.; Xu, N.Y.; Zhang, J.H.; Fu, N.; Xie, S.M.; Yuan, L.M. Separation of chiral compounds using chiral coxalent organic framworks CTpPa-1 as HPLC ststionary phase. J. Instrum. Anal. 2020, 39, 167–173. [Google Scholar]
- Xu, N.Y.; Yuan, B.Y.; Yu, Y.Y.; Fu, N.; Zhang, J.H.; Wang, B.J.; Ruan, Q.; Xie, S.M.; Yuan, L.M. Chiral covalent organic framework used for separation of 13 racemates in high performance liquid chromatography. Chem. Res. Appl. 2020, 32, 1427–1434. [Google Scholar]
- Xu, S.; Li, Z.X.; Zhang, L.Y.; Zhang, W.B.; Li, D.X. In situ growth of COF-rLZU1 on the surface of silica sphere as stationary phase for high performance liquid chromatography. Talanta 2021, 221, 121612. [Google Scholar] [CrossRef]
- Wang, L.L.; Yang, C.X.; Yan, X.P. In Situ Growth of Covalent Organic Framework Shells on Silica Microspheres for Application in Liquid Chromatography. Chem. Plus Chem. 2017, 82, 933–938. [Google Scholar] [CrossRef]
- Zhang, K.; Cai, S.L.; Yan, Y.L.; He, Z.H.; Lin, H.M.; Huang, X.L.; Zheng, S.R.; Fan, J.; Zhang, W.G. Construction of a hydrazone-linked chiral covalent organic framework-silica composite as the stationary phase for high performance liquid chromatography. J. Chromatogr. A 2017, 1519, 100–109. [Google Scholar] [CrossRef] [PubMed]
- Li, W.X.; Chen, N.; Zhu, Y.; Shou, D.; Zhi, M.Y.; Zeng, X.Q. A nanocomposite consisting of an amorphous seed and a molecularly imprinted covalent organic framework shell for extraction and HPLC determination of nonsteroidal anti-inflammatory drugs. Microchim. Acta 2019, 186, 76. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, L.; Xiao, R.; Chen, H.; Chu, Z.; Zhang, W.; Liu, F. Fabrication of SiO2@COF5 microspheres and its application in high performance liquid chromatography. Anal. Methods 2018, 10, 1968–1976. [Google Scholar] [CrossRef]
- Guo, P.; Yuan, B.Y.; Yu, Y.Y.; Zhang, J.H.; Wang, B.J.; Xie, S.M.; Yuan, L.M. Chiral covalent organic framework core-shell composite CTpBD@SiO2 used as stationary phase for HPLC enantioseparation. Microchim. Acta 2021, 188, 292. [Google Scholar] [CrossRef]
- Xu, N.Y.; Guo, P.; Chen, J.K.; Zhang, J.H.; Wang, B.J.; Xie, S.M.; Yuan, L.M. Chiral core-shell microspheres β-CD-COF@SiO2 used for HPLC enantioseparation. Talanta 2021, 235, 122754. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.Q.; Wei, X.B.; Feng, Y.Q. β-Cyclodextrin Covalent Organic Framework for Selective Molecular Adsorption. Chem. Eur. J. 2018, 24, 10979–10983. [Google Scholar] [CrossRef]
- Lu, X.L.; Chen, M.; Yang, J.T.; Zhang, M.; Li, Y.; Wang, Y. Surface-up construction of quinine bridged functional cyclodextrin for single-column versatile enantioseparation. J. Chromatogr. A 2022, 1664, 462786. [Google Scholar] [CrossRef]
- Yao, X.B.; Zheng, H.; Zhang, Y.; Ma, X.F.; Xiao, Y.; Wang, Y. Engineering Thiol-Ene Click Chemistry for the Fabrication of Novel Structurally Well-Defined Multifunctional Cyclodextrin Separation Materials for Enhanced Enantioseparation. Anal. Chem. 2016, 88, 4955–4964. [Google Scholar] [CrossRef] [PubMed]
- Ozmen, E.Y.; Yilmaz, M. Use of β-cyclodextrin and starch based polymers for sorption of congored form aqueous solutions. J. Hazard. Mater. 2007, 148, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Lin, X.; Qin, S.; Gao, L.; Tang, Y.; Liu, S.; Wang, Y. β-Cyclodextrin-modified covalent organic framework as chiral stationary phase for the separation of amino acids and β-blockers by capillary electrochromatography. Chirality 2020, 32, 1008–1019. [Google Scholar] [CrossRef]
- Kandambeth, S.; Mallick, A.; Lukose, B.; Mane, M.V.; Heine, T.; Banerjee, R. Construction of Crystalline 2D Covalent Organic Frameworks with Remarkable Chemical (Acid/Base) Stability via a Combined Reversible and Irreversible Route. J. Am. Chem. Soc. 2012, 134, 19524–19527. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zhang, J.H.; Zhang, Y.; Wang, B.J.; Xie, S.M.; Yuan, L.M. Chromatographic study on the high performance separation ability of a homochiral Cu-2(D-Cam)(2)(4,4 ‘-bpy) (n) based-column by using racemates and positional isomers as test probes. J. Chromatogr. A 2014, 1325, 163–170. [Google Scholar] [CrossRef] [PubMed]
Racemates | Mobile Phase n-Hexane/ Isopropanol (v/v) | Retention Factor (k) | Separation Factor (α) | Resolution (Rs) |
---|---|---|---|---|
(+/−)-Hydrobenzoin | 9:1 | 1.49 | 1.44 | 1.48 |
1,2-Bis(4-fluorophenyl)-2-hydroxyethanone | 9:1 | 1.51 | 1.28 | 1.34 |
1-Phenyl-1,2-ethanediol | 8:2 | 1.20 | 1.75 | 2.17 |
Trans-stilbene oxide | 9:1 | 0.46 | 3.15 | 3.26 |
1-Phenylethylamine | 9:1 | 0.42 | 1.55 | 1.04 |
2-Chloro-2-phenylacetophenone | 9:1 | 0.52 | 1.66 | 0.97 |
2,3-Dihydro-1H-inden-1-ol | 9:1 | 1.38 | 1.35 | 1.14 |
Benzoin ethyl ether | 8:2 | 0.47 | 1.54 | 1.01 |
Piperoin | 9:1 | 1.50 | 2.00 | 2.15 |
Warfarin | 7:3 | 1.02 | 2.11 | 1.60 |
Mandelic acid methyl ester | 7:3 | 0.65 | 1.19 | 0.57 |
Isomers | Mobile Phase n-Hexane/ Isopropanol (v/v) | Retention Factor (k) | Separation Factor (α) | Resolution (Rs) | ||||
---|---|---|---|---|---|---|---|---|
m | o | p | αm-/o- | αp-/m- | RS1 | RS2 | ||
Iodoaniline | 9:1 | 1.35 | 2.90 | 3.68 | 4.37 | 1.27 | 2.04 | 0.67 |
Bromoaniline | 9:1 | 1.20 | 2.63 | 3.41 | 2.19 | 1.30 | 2.39 | 0.72 |
Chloroaniline | 9:1 | 1.20 | 2.63 | 3.47 | 2.18 | 1.32 | 1.98 | 0.67 |
Nitroaniline | 9:1 | 1.72 | 2.87 | 5.08 | 1.67 | 1.77 | 1.32 | 1.00 |
Dinitrobenzene | 9:1 | 1.04 | 1.80 | 4.66 | 1.73 | 2.59 | 2.01 | 4.11 |
Analytes | ΔH (kJ·mol−1) | ΔS (J·mol−1·K−1) | ΔG (kJ·mol−1) | R2 |
---|---|---|---|---|
S-1,2-bis(4-fluorophenyl)-2-hydroxyethanone | −4.04 ± 0.19 | −5.94 ± 0.67 | −2.27 ± 0.19 | 0.9934 |
R-1,2-Bis(4-fluorophenyl)-2-hydroxyethanone | −3.35 ± 0.13 | −1.79 ± 0.42 | −2.82 ± 0.13 | 0.9956 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ran, X.; Guo, P.; Liu, C.; Zhu, Y.; Liu, C.; Wang, B.; Zhang, J.; Xie, S.; Yuan, L. Chiral Covalent-Organic Framework MDI-β-CD-Modified COF@SiO2 Core–Shell Composite for HPLC Enantioseparation. Molecules 2023, 28, 662. https://doi.org/10.3390/molecules28020662
Ran X, Guo P, Liu C, Zhu Y, Liu C, Wang B, Zhang J, Xie S, Yuan L. Chiral Covalent-Organic Framework MDI-β-CD-Modified COF@SiO2 Core–Shell Composite for HPLC Enantioseparation. Molecules. 2023; 28(2):662. https://doi.org/10.3390/molecules28020662
Chicago/Turabian StyleRan, Xiaoyan, Ping Guo, Caifang Liu, Yulan Zhu, Cheng Liu, Bangjin Wang, Junhui Zhang, Shengming Xie, and Liming Yuan. 2023. "Chiral Covalent-Organic Framework MDI-β-CD-Modified COF@SiO2 Core–Shell Composite for HPLC Enantioseparation" Molecules 28, no. 2: 662. https://doi.org/10.3390/molecules28020662
APA StyleRan, X., Guo, P., Liu, C., Zhu, Y., Liu, C., Wang, B., Zhang, J., Xie, S., & Yuan, L. (2023). Chiral Covalent-Organic Framework MDI-β-CD-Modified COF@SiO2 Core–Shell Composite for HPLC Enantioseparation. Molecules, 28(2), 662. https://doi.org/10.3390/molecules28020662