Preparation of Chiral Porous Organic Cage Clicked Chiral Stationary Phase for HPLC Enantioseparation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of the Prepared Chiral POC and CSP
2.2. Resolution of Racemates
2.3. Separation of Positional Isomers
2.4. Effect of Injection Mass on Separation
2.5. Effect of the Column Temperature on Separation
2.6. Reproducibility and Stability of the Column
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Instrumentation
3.3. Synthesis of Chiral POC
3.4. Preparation of the Chiral POC-Based CSP
3.4.1. Preparation of Thiol-Functionalized Silica Gel
3.4.2. Synthesis of Alkenyl-Functionalized Chiral POC
3.4.3. Bonding of Alkenyl-Functionalized Chiral POC onto Thiol-Functionalized Silica Gel
3.5. Column Packing
3.6. Calculation of the Surface-Bound Amount of the CSP
3.7. Calculation of the Thermodynamic Parameters
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Wang, R.Q.; Ong, T.T.; Ng, S.C.; Tang, W.H. Recent advances in pharmaceutical separations with supercritical fluid chromatography using chiral stationary phases. TrAC-Trends Anal. Chem. 2012, 37, 83–100. [Google Scholar]
- Maier, N.M.; Franco, P.; Lindner, W. Separation of enantiomers: Needs, challenges, perspectives. J. Chromatogr. A 2001, 906, 3–33. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Okamoto, Y. Efficient separation of enantiomers using stereoregular chiral polymers. Chem. Rev. 2016, 116, 1094–1138. [Google Scholar] [CrossRef] [PubMed]
- Chankvetadze, B. Recent trends in preparation, investigation and application of polysaccharide-based chiral stationary phases for separation of enantiomers in high-performance liquid chromatography. TrAC-Trends Anal. Chem. 2020, 122, 115709. [Google Scholar] [CrossRef]
- Lämmerhofer, M. Chiral recognition by enantioselective liquid chromatography: Mechanisms and modern chiral stationary phases. J. Chromatogr. A 2010, 1217, 814–856. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; Mei, X.; Chen, W.; Huang, S.H.; Bai, Z.W. A high-performance chiral selector derived from chitosan (p-methylbenzylurea) for efficient enantiomer separation. Talanta 2018, 185, 42–52. [Google Scholar] [CrossRef]
- Teixeira, J.; Tiritan, M.E.; Pinto, M.M.; Fernandes, C. Chiral stationary phases for liquid chromatography: Recent developments. Molecules 2019, 24, 865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okamoto, Y.; Yashima, E. Polysaccharide derivatives for chromatographic separation of enantiomers. Angew. Chem. Int. Ed. 1998, 37, 1020–1043. [Google Scholar] [CrossRef]
- Lämmerhofer, M.; Lindner, W. Quinine and quinidine derivatives as chiral selectors I. Brush type chiral stationary phases for high-performance liquid chromatography based on cinchonan carbamates and their application as chiral anion exchangers. J. Chromatogr. A 1996, 741, 33–48. [Google Scholar] [CrossRef]
- Ferri, M.; Bäurer, S.; Carotti, A.; Wolter, M.; Alshaar, B.; Theiner, J.; Ikegami, T.; West, C.; Lämmerhofer, M. Fragment-based design of zwitterionic, strong cation-and weak anion-exchange type mixed-mode liquid chromatography ligands and their chromatographic exploration. J. Chromatogr. A 2020, 1621, 461075. [Google Scholar] [CrossRef]
- Hyun, M.H. Liquid chromatographic enantioseparations on crown ether-based chiral stationary phases. J. Chromatogr. A 2016, 1467, 19–32. [Google Scholar] [CrossRef]
- Yao, X.; Zheng, H.; Zhang, Y.; Ma, X.; Xiao, Y.; Wang, Y. Engineering thiol–ene click chemistry for the fabrication of novel structurally well-defined multifunctional cyclodextrin separation materials for enhanced enantioseparation. Anal. Chem. 2016, 88, 4955–4964. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.Q.; Ong, T.T.; Tang, W.; Ng, S.C. Cationic cyclodextrins chemically-bonded chiral stationary phases for high-performance liquid chromatography. Anal. Chim. Acta 2012, 718, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wang, X.; Shi, C.; Zhao, L.; Li, Z.; Qiu, H. Chiral phenethylamine synergistic tricarboxylic acid modified β-cyclodextrin immobilized on porous silica for enantioseparation. Chin. Chem. Lett. 2022, 34, 107606. [Google Scholar] [CrossRef]
- Armstrong, D.W.; Tang, Y.; Chen, S.; Zhou, Y.; Bagwill, C.; Chen, J.R. Macrocyclic antibiotics as a new class of chiral selectors for liquid chromatography. Anal. Chem. 1994, 66, 1473–1484. [Google Scholar] [CrossRef]
- De Gauquier, P.; Vanommeslaeghe, K.; Vander Heyden, Y.; Mangelings, D. Modelling approaches for chiral chromatography on polysaccharide-based and macrocyclic antibiotic chiral selectors: A review. Anal. Chim. Acta 2022, 1198, 338861. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Yang, K.; Zhao, X.; Zhang, W.; Liu, Y.; Jiang, J.; Cui, Y. Highly stable Zr(IV)-based metal–organic frameworks for chiral separation in reversed-phase liquid chromatography. J. Am. Chem. Soc. 2020, 143, 390–398. [Google Scholar] [CrossRef]
- Meng, S.S.; Xu, M.; Han, T.; Gu, Y.H.; Gu, Z.Y. Regulating metal–organic frameworks as stationary phases and absorbents for analytical separations. Anal. Methods 2021, 13, 1318–1331. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Xu, N.; Zhang, J.; Wang, B.; Xie, S.; Yuan, L. Chiral metal–organic framework d-His-ZIF-8@SiO2 core–shell microspheres used for HPLC enantioseparations. ACS Appl. Mater. Inter. 2020, 12, 16903–16911. [Google Scholar] [CrossRef] [PubMed]
- Qian, H.L.; Yang, C.X.; Yan, X.P. Bottom-up synthesis of chiral covalent organic frameworks and their bound capillaries for chiral separation. Nat. Commun. 2016, 7, 12104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, M.; Quan, K.; Li, H.; Liu, B.; Chen, J.; Yu, Y.; Wang, J.; Qiu, H. Non-porous silica support covalent organic frameworks as stationary phases for liquid chromatography. Chem. Commun. 2022, 59, 314–317. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Li, Z.; Li, Q.; Hu, C.; Liu, Y.; Sun, W.; Chen, Z. In situ room-temperature preparation of a covalent organic framework as stationary phase for high-efficiency capillary electrochromatographic separation. J. Chromatogr. A 2021, 1649, 462239. [Google Scholar] [CrossRef] [PubMed]
- Yuan, C.; Jia, W.; Yu, Z.; Li, Y.; Zi, M.; Yuan, L.M.; Cui, Y. Are Highly stable covalent organic frameworks the key to universal chiral stationary phases for liquid and gas chromatographic separations? J. Am. Chem. Soc. 2022, 144, 891–900. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.Y.; He, X.Q.; Yang, C.X.; Yan, X.P. Application of microporous organic networks in separation science. TrAC-Trends Anal. Chem. 2021, 139, 116268. [Google Scholar] [CrossRef]
- Yang, Y.P.; Chen, J.K.; Guo, P.; Lu, Y.R.; Liu, C.F.; Wang, B.J.; Zhang, J.H.; Xie, S.M.; Yuan, L.M. A chiral porous organic polymer COP-1 used as stationary phase for HPLC enantioseparation under normal-phase and reversed-phase conditions. Microchim. Acta 2022, 189, 360. [Google Scholar] [CrossRef] [PubMed]
- Tozawa, T.; Jones, J.T.A.; Swamy, S.I.; Jiang, S.; Adams, D.J.; Shakespeare, S.; Clowes, R.; Bradshaw, D.; Hasell, T.; Chong, S.Y.; et al. Porous organic cages. Nat. Mater. 2009, 8, 973–978. [Google Scholar] [CrossRef]
- Mastalerz, M. Shape-persistent organic cage compounds by dynamic covalent bond formation. Angew. Chem. Int. Ed. 2010, 49, 5042–5053. [Google Scholar] [CrossRef]
- Mastalerz, M. Porous shape-persistent organic cage compounds of different size, geometry, and function. Acc. Chem. Res. 2018, 51, 2411–2422. [Google Scholar] [CrossRef]
- Hu, D.; Zhang, J.; Liu, M. Recent advances in the applications of porous organic cages. Chem. Commun. 2022, 58, 11333–11346. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Voss, B.A.; Noble, R.D.; Zhang, W. A shape-persistent organic molecular cage with high selectivity for the adsorption of CO2 over N2. Angew. Chem. Int. Ed. 2010, 49, 6348–6351. [Google Scholar] [CrossRef]
- Martínez-Ahumada, E.; He, D.; Berryman, V.; López-Olvera, A.; Hernandez, M.; Jancik, V.; Martis, V.; Vera, M.A.; Lima, E.; Parker, D.J.; et al. SO2 capture using porous organic cages. Angew. Chem. Int. Ed. 2021, 60, 17556–17563. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Sun, J.K.; Kitta, M.; Pang, H.; Xu, Q. Encapsulating highly catalytically active metal nanoclusters inside porous organic cages. Nat. Catal. 2018, 1, 214–220. [Google Scholar] [CrossRef]
- Gao, S.; Liu, Y.; Wang, L.; Wang, Z.; Liu, P.; Gao, J.; Jiang, Y. Incorporation of metals and enzymes with porous imine molecule cages for highly efficient semiheterogeneous chemoenzymatic catalysis. ACS Catal. 2021, 11, 5544–5553. [Google Scholar] [CrossRef]
- Chen, G.J.; Xin, W.L.; Wang, J.S.; Cheng, J.Y.; Dong, Y.B. Visible-light triggered selective reduction of nitroarenes to azo compounds catalysed by Ag@organic molecular cages. Chem. Commun. 2019, 55, 3586–3589. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Reiss, P.S.; Chong, S.Y.; Holden, D.; Jelfs, K.E.; Hasell, T.; Little, M.A.; Kewley, A.; Briggs, M.E.; Stephenson, A.; et al. Separation of rare gases and chiral molecules by selective binding in porous organic cages. Nat. Mater. 2014, 13, 954–960. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Wu, B.; Hou, L.; Zhu, Y.; Sheng, F.; Zhao, Z.; Dong, Y.; Liu, J.; Ye, B.; Li, X.; et al. Highly ion-permselective porous organic cage membranes with hierarchical channels. J. Am. Chem. Soc. 2022, 144, 10220–10229. [Google Scholar] [CrossRef] [PubMed]
- Su, K.; Wang, W.; Du, S.; Ji, C.; Yuan, D. Efficient ethylene purification by a robust ethane-trapping porous organic cage. Nat. Commun. 2021, 12, 3703. [Google Scholar] [CrossRef] [PubMed]
- Dai, C.; Gu, B.; Tang, S.P.; Deng, P.H.; Liu, B. Fluorescent porous organic cage with good water solubility for ratiometric sensing of gold(III) ion in aqueous solution. Anal. Chim. Acta 2022, 1192, 339376. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Lu, X.; Zhong, Y.; Hu, Y.; Li, G.; Zhang, R. Carbon dot-decorated porous organic cage as fluorescent sensor for rapid discrimination of nitrophenol isomers and chiral alcohols. Anal. Chim. Acta 2019, 1050, 146–153. [Google Scholar] [CrossRef] [PubMed]
- Dai, C.; Qian, H.L.; Yan, X.P. Facile room temperature synthesis of ultra-small sized porous organic cages for fluorescent sensing of copper ion in aqueous solution. J. Hazard. Mater. 2021, 416, 125860. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Pan, Y.; Yang, K.; Yuan, Y.D.; Wee, V.; Xu, S.; Wang, Y.; Jiang, J.; Liu, B.; Zhao, D. Enhanced biological imaging via aggregation-induced emission active porous organic cages. ACS Nano 2022, 16, 2355–2368. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Duan, X.; Lv, Y.K.; Zhu, L.; Zhang, Z.; Yu, B.; Jin, Y.; Si, Y.; Wang, Z.; Li, B.; et al. Encapsulating metal nanoclusters inside porous organic cage towards enhanced radio-sensitivity and solubility. Chem. Eng. J. 2021, 426, 130872. [Google Scholar] [CrossRef]
- Zhang, J.H.; Xie, S.M.; Chen, L.; Wang, B.J.; He, P.G.; Yuan, L.M. Homochiral porous organic cage with high selectivity for the separation of racemates in gas chromatography. Anal. Chem. 2015, 87, 7817–7824. [Google Scholar] [CrossRef] [PubMed]
- Li, H.X.; Xie, T.P.; Yan, K.Q.; Xie, S.M.; Wang, B.J.; Zhang, J.H.; Yuan, L.M. A hydroxyl-functionalized homochiral porous organic cage for gas chromatographic separations. Microchim. Acta 2020, 187, 269. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.M.; Zhang, J.H.; Fu, N.; Wang, B.J.; Hu, C.; Yuan, L.M. Application of homochiral alkylated organic cages as chiral stationary phases for molecular separations by capillary gas chromatography. Molecules 2016, 21, 1466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Li, H.X.; Xie, S.M.; Wang, B.J.; Zhang, J.H.; Yuan, L.M. A [3 + 6] prismatic homochiral organic cage used as stationary phase for gas chromatography. Microchem. J. 2021, 170, 106650. [Google Scholar] [CrossRef]
- Zhang, J.H.; Xie, S.M.; Zi, M.; Yuan, L.M. Recent advances of application of porous molecular cages for enantioselective recognition and separation. J. Sep. Sci. 2020, 43, 134–149. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, J.K.; Xiong, L.X.; Wang, B.J.; Xie, S.M.; Zhang, J.H.; Yuan, L.M. Preparation of novel chiral stationary phases based on the chiral porous organic cage by thiol-ene click chemistry for enantioseparation in HPLC. Anal. Chem. 2022, 94, 4961–4969. [Google Scholar] [CrossRef]
- Kolb, H.C.; Finn, M.G.; Sharpless, K.B. Click chemistry: Diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 2001, 40, 2004–2021. [Google Scholar] [CrossRef]
- Chu, C.; Liu, R. Application of click chemistry on preparation of separation materials for liquid chromatography. Chem. Soc. Rev. 2011, 40, 2177–2188. [Google Scholar] [CrossRef]
- Petryk, M.; Szymkowiak, J.; Gierczyk, B.; Spólnik, G.; Janiak, A.; Kwit, M. Chiral, triformylphenol-derived salen-type [4+6] organic cages. Org. Biomol. Chem. 2016, 14, 7495–7499. [Google Scholar] [CrossRef] [PubMed]
- Siles, B.A.; Halsall, H.B.; Dorsey, J.G. Retention and selectivity of flavanones on homopolypeptide-bonded stationary phases in both normal-and reversed-phase liquid chromatography. J. Chromatogr. A 1995, 704, 289–305. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.X.; Yan, X.P. Metal-organic framework MIL-101 (Cr) for high-performance liquid chromatographic separation of substituted aromatics. Anal. Chem. 2011, 83, 7144–7150. [Google Scholar] [CrossRef] [PubMed]
- Anderson, A.A.; Goetzen, T.; Shackelford, S.A.; Tsank, S.A. Convenient one-step synthesis of 2-hydroxy-1,3,5-benzenetricarbaldehyde. Synth. Commun. 2000, 30, 3227–3232. [Google Scholar] [CrossRef]
Racemates | This Column | NC1-R Column [48] | Chiralpak AD-H Column | Chiralcel OD-H Column | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
k1 | α | Rs | k1 | α | Rs | k1 | α | Rs | k1 | α | Rs | |
1-(1-Naphthyl)ethanol a | 1.11 | 4.80 | 4.10 | 1.28 | 2.09 | 4.09 | 1.47 | 1.00 | _ d | 1.93 | 1.14 | 1.23 |
3-Benzyloxy-1,2-propanediol a | 1.63 | 1.87 | 3.45 | 4.65 | 1.63 | 5.47 | 2.24 | 1.19 | 0.70 | 2.73 | 1.06 | 2.12 |
2-Phenyl-1-propanol b | 1.27 | 1.62 | 2.30 | 1.10 | 1.00 | _ d | 1.36 | 1.00 | _ d | 1.52 | 1.16 | 1.82 |
trans-1,2-Diphenylethylene oxide a | 1.17 | 1.47 | 1.38 | 0.54 | 1.33 | 0.74 | 0.86 | 2.76 | 19.8 | 0.83 | 1.95 | 4.38 |
Benzoin a | 1.67 | 1.46 | 1.31 | 3.41 | 1.08 | 1.26 | 4.70 | 1.36 | 6.96 | 2.52 | 1.58 | 6.53 |
1-Phenyl-1-propanol a | 1.14 | 1.47 | 1.38 | 1.04 | 1.50 | 2.04 | 0.83 | 1.06 | 0.63 | 0.83 | 1.11 | 0.50 |
Hydrobenzoin a | 1.22 | 1.62 | 1.81 | 0.76 | 1.57 | 2.50 | 0.36 | 1.00 | _ d | 2.62 | 1.00 | _ d |
1-Phenylethylamine c | 1.41 | 1.90 | 3.72 | 0.86 | 1.37 | 1.88 | 0.71 | 1.00 | _ d | 0.96 | 1.19 | 0.81 |
Ofloxacin d | 1.01 | 3.45 | 6.95 | 0.92 | 1.00 | _ d | 0.55 | 1.00 | _ d | 0.90 | 1.00 | _ d |
Mandelic acid a | 1.52 | 1.41 | 1.02 | 0.77 | 1.73 | 3.13 | 3.36 | 1.20 | 4.55 | 2.20 | 1.06 | 0.62 |
Naproxen a | 2.20 | 1.81 | 1.33 | 2.01 | 1.00 | _ d | 3.10 | 1.00 | _ d | 1.07 | 1.00 | _ d |
1-(4-Chlorophenyl)ethanol a | 1.49 | 1.17 | 1.12 | 1.13 | 1.51 | 3.07 | 0.86 | 1.04 | 0.49 | 0.78 | 1.13 | 0.67 |
1-(3-Methylphenyl)ethanol a | 1.58 | 1.11 | 0.34 | 1.08 | 1.00 | _ d | 0.93 | 1.00 | _ d | 0.75 | 1.25 | 1.26 |
Positional Isomers | Separation Factor (α) | Resolution (Rs) | ||
---|---|---|---|---|
α1 | α2 | Rs1 | Rs2 | |
Iodoaniline a | 2.17 | 1.25 | 3.26 | 1.52 |
Bromoaniline a | 2.11 | 1.29 | 3.82 | 1.45 |
Chloroaniline a | 2.05 | 1.31 | 2.95 | 1.31 |
Dibromobenzene a | 1.21 | 2.54 | 1.42 | 8.03 |
Dichlorobenzene a | 1.17 | 3.02 | 1.31 | 9.66 |
Toluidine a | 1.25 | 1.44 | 1.60 | 1.77 |
Nitrobromobenzene b | 1.32 | 1.84 | 1.58 | 1.90 |
Nitroaniline a | 1.37 | 1.84 | 1.74 | 0.89 |
Analytes | ΔH (kJ mol−1) | ΔS (J mol−1 K−1) | ΔG (kJ mol−1) | R2 |
---|---|---|---|---|
S,S-Hydrobenzoin | −10.91 ± 0.31 | −31.62 ± 0.99 | −1.48 ± 0.31 | 0.9987 |
R,R-Hydrobenzoin | −12.25 ± 0.22 | −35.60 ± 0.72 | −1.64 ± 0.22 | 0.9968 |
o-Iodoaniline | −6.41 ± 0.10 | −20.18 ± 0.34 | −3.53 ± 0.10 | 0.9986 |
m-Iodoaniline | −9.14 ± 0.07 | −4.16 ± 0.22 | −4.87 ± 0.07 | 0.9986 |
p-Iodoaniline | −11.23 ± 0.11 | −5.64 ± 0.38 | −10.79 ± 0.11 | 0.9974 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, Y.-N.; Ma, Q.-Y.; Wang, Y.; Zhang, J.-H.; Zhang, Y.-P.; Liang, R.-X.; Wang, B.-J.; Xie, S.-M.; Yuan, L.-M. Preparation of Chiral Porous Organic Cage Clicked Chiral Stationary Phase for HPLC Enantioseparation. Molecules 2023, 28, 3235. https://doi.org/10.3390/molecules28073235
Gong Y-N, Ma Q-Y, Wang Y, Zhang J-H, Zhang Y-P, Liang R-X, Wang B-J, Xie S-M, Yuan L-M. Preparation of Chiral Porous Organic Cage Clicked Chiral Stationary Phase for HPLC Enantioseparation. Molecules. 2023; 28(7):3235. https://doi.org/10.3390/molecules28073235
Chicago/Turabian StyleGong, Ya-Nan, Qi-Yu Ma, Ying Wang, Jun-Hui Zhang, You-Ping Zhang, Rui-Xue Liang, Bang-Jin Wang, Sheng-Ming Xie, and Li-Ming Yuan. 2023. "Preparation of Chiral Porous Organic Cage Clicked Chiral Stationary Phase for HPLC Enantioseparation" Molecules 28, no. 7: 3235. https://doi.org/10.3390/molecules28073235
APA StyleGong, Y. -N., Ma, Q. -Y., Wang, Y., Zhang, J. -H., Zhang, Y. -P., Liang, R. -X., Wang, B. -J., Xie, S. -M., & Yuan, L. -M. (2023). Preparation of Chiral Porous Organic Cage Clicked Chiral Stationary Phase for HPLC Enantioseparation. Molecules, 28(7), 3235. https://doi.org/10.3390/molecules28073235