Anti-Struvite, Antimicrobial, and Anti-Inflammatory Activities of Aqueous and Ethanolic Extracts of Saussurea costus (Falc) Lipsch Asteraceae
Abstract
:1. Introduction
2. Results
2.1. Antilithiatic Activity In Vitro Study
2.1.1. In Vitro Study of Struvite Crystallization
2.1.2. Turbidity Inhibition Test
2.1.3. Characterization of the Crystals by FT-IR
2.2. Antimicrobial Activity
2.2.1. Qualitative Evaluation
Antibiotic Susceptibility Test
Disk Diffusion Test
2.2.2. Quantitative Evaluation
Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC)
2.3. Anti-Inflammatory Activity
The Carrageenan Edema Test
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Extraction
4.3. Antilithiatic Activity In Vitro Study
4.3.1. In Vitro Study of Struvite Crystallization
4.3.2. Turbidity Inhibition Test
4.3.3. Characterization of the Crystals
4.4. Antimicrobial Activity
4.4.1. Tested Bacterial Strains
4.4.2. Antibiotic Susceptibility Test
4.4.3. Qualitative Evaluation
Disc-Diffusion Method
4.4.4. Quantitative Evaluation
Minimum Inhibitory Concentration (MIC)
Minimum Bactericidal Concentration (MBC)
4.5. In Vivo Study
4.5.1. Anti-Inflammatory Activity
Animal Material
The Carrageenan Edema Test
4.6. Data Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Lieske, J.C.; Rule, A.D.; Krambeck, A.E.; Williams, J.C.; Bergstralh, E.J.; Mehta, R.A.; Moyer, T.P. Stone Composition as a Function of Age and Sex. Clin. J. Am. Soc. Nephrol. 2014, 9, 2141–2146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polat, S.; Eral, H.B. Effect of Hyaluronic Acid on the Struvite Crystallization: A Structural, Morphological, and Thermal Analysis Study. J. Cryst. Growth 2022, 592, 126734. [Google Scholar] [CrossRef]
- Rieu, P. Lithiases d’infection. Ann. D’Urologie 2005, 39, 16–29. [Google Scholar] [CrossRef] [PubMed]
- Lange, D.; Chew, B. (Eds.) The Role of Bacteria in Urology; Springer International Publishing: Cham, Switzerland; Berlin/Heidelberg, Germany, 2016; ISBN 978-3-319-17731-1. [Google Scholar]
- McLean, R.J.; Nickel, J.C.; Noakes, V.C.; Costerton, J.W. An in Vitro Ultrastructural Study of Infectious Kidney Stone Genesis. Infect. Immun. 1985, 49, 805–811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Traxer, O.; Lechevallier, E.; Saussine, C. Lithiase cystinique: Diagnostic et prise en charge thérapeutique. Progrès Urol. 2008, 18, 832–836. [Google Scholar] [CrossRef]
- Bichler, K.-H.; Eipper, E.; Naber, K.; Braun, V.; Zimmermann, R.; Lahme, S. Urinary Infection Stones. Int. J. Antimicrob. Agents 2002, 19, 488–498. [Google Scholar] [CrossRef]
- Palma, D.; Langston, C.; Gisselman, K.; McCue, J. Canine Struvite Urolithiasis. Compend. Cont. Educ. Vet. 2013, 9, E1. [Google Scholar]
- Flannigan, R.; Choy, W.H.; Chew, B.; Lange, D. Renal Struvite Stones—Pathogenesis, Microbiology, and Management Strategies. Nat. Rev. Urol. 2014, 11, 333–341. [Google Scholar] [CrossRef]
- Mosafa, E.; Yahyaabadi, S.; Doudi, M. In-Vitro Antibacterial Properties of Sage (Salvia Officinalis) Ethanol Extract against Multidrug Resistant Staphylococcus Aureus, Escherichia Coli, Pseudomonas Aeruginosa and Klebsiella Pneumoniae. Zahedan J. Res. Med. Sci. 2014, 16, 5. [Google Scholar]
- Medina-Escobedo, M.; Sánchez-Pozos, K.; Gutiérrez-Solis, A.L.; Avila-Nava, A.; González-Rocha, L.; Lugo, R. Recurrence of Nephrolithiasis and Surgical Events Are Associated with Chronic Kidney Disease in Adult Patients. Medicina 2022, 58, 420. [Google Scholar] [CrossRef]
- Wigner, P.; Grębowski, R.; Bijak, M.; Szemraj, J.; Saluk-Bijak, J. The Molecular Aspect of Nephrolithiasis Development. Cells 2021, 10, 1926. [Google Scholar] [CrossRef]
- Davenport, K.; Waine, E. The Role of Non-Steroidal Anti-Inflammatory Drugs in Renal Colic. Pharmaceuticals 2010, 3, 1304–1310. [Google Scholar] [CrossRef]
- Padilla-Camberos, E.; Sanchez-Hernandez, I.M.; Torres-Gonzalez, O.R.; Gallegos-Ortiz, M.D.R.; Méndez-Mona, A.L.; Baez-Moratilla, P.; Flores-Fernandez, J.M. Natural Essential Oil Mix of Sweet Orange Peel, Cumin, and Allspice Elicits Anti-Inflammatory Activity and Pharmacological Safety Similar to Non-Steroidal Anti-Inflammatory Drugs. Saudi J. Biol. Sci. 2022, 29, 3830–3837. [Google Scholar] [CrossRef]
- AlSheikh, H.M.A.; Sultan, I.; Kumar, V.; Rather, I.A.; Al-Sheikh, H.; Tasleem Jan, A.; Haq, Q.M.R. Plant-Based Phytochemicals as Possible Alternative to Antibiotics in Combating Bacterial Drug Resistance. Antibiotics 2020, 9, 480. [Google Scholar] [CrossRef]
- Akhtar, M.A.; Raju, R.; Beattie, K.D.; Bodkin, F.; Münch, G. Medicinal Plants of the Australian Aboriginal Dharawal People Exhibiting Anti-Inflammatory Activity. Evid. Based Complement. Altern. Med. 2016, 2016, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Semwal, R.B.; Joshi, K.; Pandian, A.; Badoni, P.P.; Semwal, D.K. Biological Applications and Secondary Metabolites of Saussurea Costus (Falc.) Lipsch. J. Conv. Knowl. Holist. Health 2020, 4, 1–8. [Google Scholar] [CrossRef]
- Taïbi, K.; Aït Abderrahim, L.; Boussaid, M.; Taibi, F.; Achir, M.; Souana, K.; Benaissa, T.; Farhi, K.H.; Naamani, F.Z.; Nait Said, K. Unraveling the Ethnopharmacological Potential of Medicinal Plants Used in Algerian Traditional Medicine for Urinary Diseases. Eur. J. Integr. Med. 2021, 44, 101339. [Google Scholar] [CrossRef]
- El Gizawy, H.A.; El-Haddad, A.E.; Saadeldeen, A.M.; Boshra, S.A. Tentatively Identified (UPLC/T-TOF–MS/MS) Compounds in the Extract of Saussurea Costus Roots Exhibit In Vivo Hepatoprotection via Modulation of HNF-1α, Sirtuin-1, C/Ebpα, MiRNA-34a and MiRNA-223. Molecules 2022, 27, 2802. [Google Scholar] [CrossRef]
- Mammate, N.; El oumari, F.E.; Imtara, H.; Belchkar, S.; Lahrichi, A.; Alqahtani, A.S.; Noman, O.M.; Tarayrah, M.; Houssaini, T.S. Antioxidant and Anti-Urolithiatic Activity of Aqueous and Ethanolic Extracts from Saussurea Costus (Falc) Lispich Using Scanning Electron Microscopy. Life 2022, 12, 1026. [Google Scholar] [CrossRef]
- Sadki, C.; Atmani, F. Évaluation de l’effet antilithiasique, oxalo-calcique et phospho-ammoniaco-magnésien d’extrait aqueux d’ Erica multiflora L. Progrès En Urol. 2017, 27, 1058–1067. [Google Scholar] [CrossRef]
- Salsabili, A.; Idris, A.; Yunus, R.; R, S.A. Investigating the Effects of Specific Gravity on the Size and Morphology of Struvite Crystals Grown through Gel Growth Technique in Silica Gel. In Proceedings of the 7th International Conference on Sustainable Agriculture for Food, Energy and Industry in Regional and Global Context, Serdang, Malaysia, 25–27 August 2015. [Google Scholar] [CrossRef]
- Heraldy, E.; Rahmawati, F.; Putra, D.P. Preparation of Struvite from Desalination Waste. J. Environ. Chem. Eng. 2017, 5, 1666–1675. [Google Scholar] [CrossRef]
- Minhas, S.A.; Khan, F.M.; Abbas, F.I.; Faiz, A.U.H. Phytochemical Screening and Determination of Antibacterial, Anti-Tumorigenic and DNA Protection Ability of Root Extracts of Saussurea Lappa. J. Bioresour. Manag. 2017, 4, 1. [Google Scholar]
- Othman, M. Anti-Bacterial Effect of Indian Costus and Sea-Qust and Their Water Extracts on Some Pathogenic Bacteria of the Human Respiratory System. J. Med. Plants Res. 2013, 7, 1418–1423. [Google Scholar]
- Crunkhorn, P.; Meacock, S.C.R. Mediators of the Inflammation Induced in the Rat Paw by Carrageenin. Br. J. Pharmacol. 1971, 42, 392–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gokhale, A.B.; Damre, A.S.; Kulkarni, K.R.; Saraf, M.N. Preliminary Evaluation of Anti-Inflammatory and Anti-Arthritic Activity of S. Lappa, A. Speciosa and A. Aspera. Phytomedicine 2002, 9, 433–437. [Google Scholar] [CrossRef]
- Hassan, M.; Shahid-Ud-Daula, A.F.M.; Jahan, I.A.; Nimmi, I.; Adnan, T.; Hossain, H. Anti-Inflammatory Activity, Total Flavonoids and Tannin Content from the Ethanolic Extract of Ageratum Conyzoides Linn. Leaf. Int. J. Pharm. Phytopharm. Res. 2012, 9, 271–277. [Google Scholar]
- López-Bascón, M.A.; Luque de Castro, M.D. Soxhlet Extraction. In Liquid-Phase Extraction; Elsevier: Amsterdam, The Netherlands, 2020; pp. 327–354. ISBN 978-0-12-816911-7. [Google Scholar]
- Redfern, J.; Kinninmonth, M.; Burdass, D.; Verran, J. Using Soxhlet Ethanol Extraction to Produce and Test Plant Material (Essential Oils) for Their Antimicrobial Properties. J. Microbiol. Biol. Educ. 2014, 15, 45–46. [Google Scholar] [CrossRef] [Green Version]
- Kaloustian, J.; El-Moselhy, T.F.; Portugal, H. Determination of Calcium Oxalate (Mono- and Dihydrate) in Mixtures with Magnesium Ammonium Phosphate or Uric Acid: The Use of Simultaneous Thermal Analysis in Urinary Calculi. Clin. Chim. Acta 2003, 334, 117–129. [Google Scholar] [CrossRef]
- Bensatal, A.; Rahmoun, D.; Ardja, S.A.; Cheikh, M.; Kahouadji, A.; Bekhit, M. In Vitro Antilithiasic Activity of Saponins Rich Fraction from the Leaves of Zizyphus Lotus. Int. J. Green Pharm. 2020, 14, 280–285. [Google Scholar]
- Li, X.; Liang, Q.; Sun, Y.; Diao, L.; Qin, Z.; Wang, W.; Lu, J.; Fu, S.; Ma, B.; Yue, Z. Potential Mechanisms Responsible for the Antinephrolithic Effects of an Aqueous Extract of Fructus Aurantii. Evid. Based Complement. Altern. Med. 2015, 2015, 491409. [Google Scholar] [CrossRef] [Green Version]
- Georgescu, M.; Meltzer, V.; Stănculescu, I.; Pincu, E. Thermal Behavior of the Nimesulide-Salicylic Acid Eutectic Mixtures Prepared by Mechanosynthesis and Recrystallization. Materials 2021, 14, 7715. [Google Scholar] [CrossRef]
- Mustafa, Y.F.; Khalil, R.R.; Mohammed, E.T. Antimicrobial Activity of Aqueous Extracts Acquired from the Seeds of Two Apples’ Cultivars. Syst. Rev. Pharm. 2020, 11, 7. [Google Scholar]
- Hayes, A.J.; Markovic, B. Toxicity of Australian Essential Oil Backhousia Citriodora (Lemon Myrtle). Part 1. Antimicrobial Activity and in Vitro Cytotoxicity. Food Chem. Toxicol. 2002, 40, 535–543. [Google Scholar] [CrossRef]
- Alzahrani, A.J. Promising Antioxidant and Antimicrobial Potencies of Chemically-Profiled Extract from Withania Aristata (Aiton) Pauquy against Clinically-Pathogenic Microbial Strains. Molecules 2022, 27, 3614. [Google Scholar] [CrossRef]
- Loon, Y.K.; Satari, M.H.; Dewi, W. Antibacterial Effect of Pineapple (Ananas Comosus) Extract towards Staphylococcus Aureus. Padjadjaran J. Dent. 2018, 30, 1–6. [Google Scholar] [CrossRef]
- Rodríguez-Melcón, C.; Alonso-Calleja, C.; García-Fernández, C.; Carballo, J.; Capita, R. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) for Twelve Antimicrobials (Biocides and Antibiotics) in Eight Strains of Listeria Monocytogenes. Biology 2021, 11, 46. [Google Scholar] [CrossRef]
- Rahmawati, L.; Park, S.H.; Kim, D.S.; Lee, H.P.; Aziz, N.; Lee, C.Y.; Kim, S.A.; Jang, S.G.; Kim, D.S.; Cho, J.Y. Anti-Inflammatory Activities of the Ethanol Extract of Prasiola Japonica, an Edible Freshwater Green Algae, and Its Various Solvent Fractions in LPS-Induced Macrophages and Carrageenan-Induced Paw Edema via the AP-1 Pathway. Molecules 2021, 27, 194. [Google Scholar] [CrossRef]
Concentrations | Cystone Solution | S. costus (Aqueous) | S. costus (Ethanolic) |
---|---|---|---|
0.1 mg mL−1 | >1000/mm3 | >1000/mm3 | >1000/mm3 |
0.25 mg mL−1 | >700/mm3 | >900/mm3 | >900/mm3 |
0.5 mg mL−1 | >600/mm3 | >800/mm3 | >600/mm3 |
0.75 mg mL−1 | 500/mm3 | >700/mm3 | 500/mm3 |
1 mg mL−1 | 400/mm3 | 700/mm3 | <100/mm3 |
Bonds | Absorption Peaks |
---|---|
vas (NH4) | 2940 cm−1 |
vs (N-H) | 1675 cm−1 |
P=O | 760 cm−1 |
PO4 | 1005 cm−1 |
vas (PO4) | 571 cm−1 |
vas (H-O-H) | 2345 cm−1 |
Bacteria | Staphylococcus aureus | Pseudomonas aeruginosa | Escherichia coli | Klebsiella pneumoniae | |
---|---|---|---|---|---|
Antibiotic | |||||
Erythromycine | - | R (7 mm) | R (6 mm) | R (6 mm) | |
Ofloxacine | S (26 mm) | R (8 mm) | R (6 mm) | S (27 mm) | |
Oxacilline | R (6 mm) | R (6 mm) | R (6 mm) | R (6 mm) | |
Ampicilline | - | R (6 mm) | R (6 mm) | R (6 mm) | |
Norfloxacine | - | R (12 mm) | R (6 mm) | S (25 mm) | |
Ceftazidime | R (14 mm) | R (6 mm) | R (6 mm) | R (15 mm) | |
Cefotaxime | R (18 mm) | R (6 mm) | R (6 mm) | S (20 mm) |
Extracts | Staphylococcus aureus (mm) | Pseudomonas aeruginosa (mm) | Escherichia coli (mm) | Klebsiella pneumoniae (mm) |
---|---|---|---|---|
Saussurea costus (Falc) Lipsch (aqueous) 400 mg mL−1 (2 mg/disc) | 8.01 ± 0.01 | - | - | - |
Saussurea costus (Falc) Lipsch (aqueous) 200 mg mL−1 (1 mg/disc) | 9.02 ± 0.03 | - | - | - |
Saussurea costus (Falc) Lipsch (ethanolic) 400 mg mL−1 (2 mg/disc) | 14.00 ± 0.00 | - | - | 12.04 ± 0.04 |
Saussurea costus (Falc) Lipsch (ethanolic) 200 mg mL−1 (2 mg/disc) | 12.03 ± 0.005 | - | - | 12 ± 0.00 |
S. costus (Ethanolic) | S. costus (Aqueous) | |||
---|---|---|---|---|
Strain | Staphylococcus aureus (Gram+) | Klebsiella pneumoniae (Gram−) | Staphylococcus aureus (Gram+) | Klebsiella pneumoniae (Gram−) |
MIC | 50 mg mL−1 | 200 mg mL−1 | 400 mg mL−1 | 200 mg mL−1 |
MBC | 100 mg mL−1 | - | - | - |
Effect | Bactericidal | Bacteriostatic | Bacteriostatic | Bacteriostatic |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mammate, N.; El oumari, F.E.; Imtara, H.; Belchkar, S.; Benjelloun Touimi, G.; Al-Zharani, M.; A. Rudayni, H.; Ahmed Qurtam, A.; S. Aleissa, M.; A. Nasr, F.; et al. Anti-Struvite, Antimicrobial, and Anti-Inflammatory Activities of Aqueous and Ethanolic Extracts of Saussurea costus (Falc) Lipsch Asteraceae. Molecules 2023, 28, 667. https://doi.org/10.3390/molecules28020667
Mammate N, El oumari FE, Imtara H, Belchkar S, Benjelloun Touimi G, Al-Zharani M, A. Rudayni H, Ahmed Qurtam A, S. Aleissa M, A. Nasr F, et al. Anti-Struvite, Antimicrobial, and Anti-Inflammatory Activities of Aqueous and Ethanolic Extracts of Saussurea costus (Falc) Lipsch Asteraceae. Molecules. 2023; 28(2):667. https://doi.org/10.3390/molecules28020667
Chicago/Turabian StyleMammate, Naima, Fatima Ezzahra El oumari, Hamada Imtara, Salim Belchkar, Ghita Benjelloun Touimi, Mohammed Al-Zharani, Hassan A. Rudayni, Ashraf Ahmed Qurtam, Mohammed S. Aleissa, Fahd A. Nasr, and et al. 2023. "Anti-Struvite, Antimicrobial, and Anti-Inflammatory Activities of Aqueous and Ethanolic Extracts of Saussurea costus (Falc) Lipsch Asteraceae" Molecules 28, no. 2: 667. https://doi.org/10.3390/molecules28020667
APA StyleMammate, N., El oumari, F. E., Imtara, H., Belchkar, S., Benjelloun Touimi, G., Al-Zharani, M., A. Rudayni, H., Ahmed Qurtam, A., S. Aleissa, M., A. Nasr, F., M. Noman, O., & Sqalli Houssaini, T. (2023). Anti-Struvite, Antimicrobial, and Anti-Inflammatory Activities of Aqueous and Ethanolic Extracts of Saussurea costus (Falc) Lipsch Asteraceae. Molecules, 28(2), 667. https://doi.org/10.3390/molecules28020667