Organophosphorus Azoles Incorporating a Tetra-, Penta-, and Hexacoordinated Phosphorus Atom: NMR Spectroscopy and Quantum Chemistry
Abstract
:1. Introduction
2. The Stereochemical Structure of Phosphorylated N-Vinylpyrazoles, N-Vinylindazoles and N-Vinylbenzotriazoles
3. Computation of 31P NMR Chemical Shifts of Tetra-, Penta- and Hexacoordinated Phosphorus Atom in Phosphorylated N-Vinylpyrazoles
4. The Structural Features of Molecular Complexes of Vinylazoles with Phosphorus Pentachloride
5. Quantum-Chemical Calculations of 31P NMR Chemical Shifts of Molecular Complexes of Azoles
6. Theoretical 31P NMR Chemical Shifts of Pyrazolylphosphine and Related Compounds
7. The Stereochemical Structure of Phosphorylated Pyrroles and Their Annulated Analogs
8. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, W.-Q.; Ma, J.-A. Stabilized Nucleophiles with Electron Deficient Alkenes, Alkynes, Allenes. In Comprehensive Organic Synthesis, 2nd ed.; Knochel, P., Molander, G.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; Volume 4, pp. 1–85. [Google Scholar] [CrossRef]
- Zarate, C.; Van Gemmeren, M.; Somerville, R.; Martin, R. Chapter Four-Phenol Derivatives: Modern Electrophiles in Cross-Coupling Reactions. Adv. Organometall. Chem. 2016, 66, 143–222. [Google Scholar] [CrossRef]
- Gusarova, N.K.; Trofimov, B.A. Organophosphorus chemistry based on elemental phosphorus: Advances and horizons. Russ. Chem. Rev. 2020, 89, 225–249. [Google Scholar] [CrossRef]
- Müller, C. Copper(I) complexes of low-coordinate phosphorus(III) compounds. In Copper(I) Chemistry of Phosphines, Functionalized Phosphines and Phosphorus Heterocycles; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–19. [Google Scholar] [CrossRef]
- Clausing, S.T.; Morales, D.; Orthaber, S.A. Preparation, photo- and electrochemical studies of a homoleptic imine-phosphaalkene Cu(I) complex. Inorg. Chim. Acta 2020, 513, 119958. [Google Scholar] [CrossRef]
- Gafurov, Z.N.; Kagilev, A.A.; Kantyukov, A.O.; Sinyashin, O.G.; Yakhvarov, D.G. The role of organonickel reagents in organophosphorus chemistry. Coord. Chem. Rev. 2021, 438, 213889. [Google Scholar] [CrossRef]
- Zagidullin, A.A.; Sakhapov, I.F.; Miluykov, V.A.; Yakhvarov, D.G. Nickel Complexes in C-P Bond Formation. Molecules 2021, 26, 5283. [Google Scholar] [CrossRef]
- Yurko, E.O.; Gryaznova, T.V.; Kholin, K.V.; Khrizanforova, V.V.; Budnikova, Y.H. External oxidant-free cross- coupling: Electrochemically induced aromatic C–H phosphonation of azoles with dialkyl-H-phosphonates under silver catalysis. Dalton Trans. 2018, 47, 190–196. [Google Scholar] [CrossRef] [Green Version]
- Budnikova, Y.H. Opportunities and challenges for combining electro- and organometallic catalysis in C(sp2)-H phosphonation. Pure Appl. Chem. 2018, 91, 17–31. [Google Scholar] [CrossRef]
- Abdurakhmanova, E.R.; Kondratyuk, K.M.; Holovchenko, O.V.; Brovarets, V.S. The synthesis and transformation of 4-phosphorylated derivatives of 1,3-azoles. J. Org. Pharm. Chem. 2018, 16, 1–30. [Google Scholar] [CrossRef]
- Semenyuta, I.V.; Kobzar, O.L.; Hodyna, D.M.; Brovarets, V.S.; Metelytsia, L.O. In silico study of 4-phosphorylated derivatives of 1,3-oxazole as inhibitors of Candida albicans fructose-1,6-bisphosphate aldolase II. Heliyon 2019, 5, e01462. [Google Scholar] [CrossRef] [Green Version]
- Medvedeva, E.N.; Babkin, V.A.; Rozinov, V.G.; Dmitrichenko, M.Y.; Popova, O.V.; Hindu, S.O. Use of phosphonoacetic acid derivatives to increase the efficiency of peroxide bleaching of cellulose. Russ. J. Bioorg. Chem. 2000, 55–59. [Google Scholar]
- Larina, L.I.; Lopyrev, V.A. Nitroazoles: Synthesis, Structure and Applications; Springer: New York, NY, USA, 2009; 446p. [Google Scholar]
- Lopyrev, V.A.; Larina, L.I.; Voronkov, M.G. Nitration of Azoles. Rev. Heteroat. Chem. 1994, 11, 27–64. [Google Scholar]
- Larina, L.I.; Lopyrev, V.A.; Voronkov, M.G. Methods of nitroazoles synthesis. Russ. J. Org. Chem. 1994, 30, 1141–1179. [Google Scholar]
- Larina, L.I.; Lopyrev, V.A. Synthesis of nitrobenzazoles. Part 1. In Targets in Heterocyclic Systems—Chemistry and Properties; Attanasi, O.A., Spinelli, D., Eds.; Italian Society Chemistry: Rome, Italy, 2005; Volume 9, pp. 327–365. [Google Scholar]
- Larina, L.I.; Titiva, I.A.; Lopyrev, V.A. Synthesis of nitrobenzazoles. Part 2. In Targets in Heterocyclic Systems—Chemistry and Properties; Attanasi, O.A., Spinelli, D., Eds.; Italian Society Chemistry: Rome, Italy, 2006; Volume 10, pp. 321–359. [Google Scholar]
- Lopyrev, V.A.; Larina, L.I.; Voronkov, M.G. Trimethylsilylazoles chemistry. Russ. J. Org. Chem. 2001, 37, 149–193. [Google Scholar] [CrossRef]
- Larina, L.I.; Lopyrev, V.A. Nuclear Magnetic Resonance of Nitroazoles. In Topics in Heterocyclic Systems—Synthesis, Reactions and Properties; Attanasi, O.A., Spinelli, D., Eds.; Research Signpost: Trivandrum, India, 1996; Volume 1, pp. 187–237. [Google Scholar]
- Larina, L.I.; Lopyrev, V.A.; Klyba, L.V.; Bochkarev, V.N. Mass spectrometry of nitroazoles. In Targets in Heterocyclic Systems—Chemistry and Properties; Attanasi, O.A., Spinelli, D., Eds.; Italian Society Chemistry: Rome, Italy, 1998; Volume 2, pp. 443–470. [Google Scholar]
- Larina, L.I.; Lopyrev, V.A.; Vakulskaya, T.I. Quantitative estimation of electronic substituent effects in five membered, nitrogen-containing aromatic heterocycles. Russ. Chem. Rev. 1986, 55, 411–425. [Google Scholar]
- Larina, L.I. NMR Spectroscopy and Structure of Substituted Azoles. Ph.D. Thesis, Irkutsk Institute of Chemistry, Russian Academy of Science, Irkutsk, Russia, 2003; 385p. (In Russian). [Google Scholar]
- Larina, L.I. Tautomerism and Structure of azoles: Nuclear Magnetic Resonance Spectroscopy. Adv. Heterocycl. Chem. 2018, 124, 233–321. [Google Scholar] [CrossRef]
- Larina, L.I. Nuclear Quadrupole Resonance Spectroscopy: Tautomerism and structure of functional azoles. Crystals 2019, 9, 366. [Google Scholar] [CrossRef] [Green Version]
- Semenov, A.V.; Larina, L.I.; Demina, M.M. Stereochemistry and tautomerism of silicon-containing 1,2,3-triazole: Ab initio and NMR study. Struct. Chem. 2020, 31, 1927–1933. [Google Scholar] [CrossRef]
- Larina, L.I. Organosilicon azoles: Structure, silylotropy and NMR spectroscopy. Adv. Heterocycl. Chem. 2021, 133, 1–63. [Google Scholar] [CrossRef]
- Boyer, J.H. Nitroazoles: The C-Nitro Derivatives of Five-Membered N- and N,O-Heterocycles; VCH Publishers: Deerfield Beach, FL, USA, 1989; 368p. [Google Scholar]
- Catalan, J.; Abboud, J.M.; Elguero, J.J. Basicity and Acidity of Azoles. Adv. Heterocycl. Chem. 1987, 41, 187–274. [Google Scholar]
- Katritzky, A.R.; Pozharskii, A.F. Handbook of Heterocyclic Chemistry, 2nd ed.; Pergamon: Amsterdam, The Netherland, 2000; 734p. [Google Scholar]
- Rozinov, V.G.; Pensionerova, G.A.; Donskikh, V.I.; Kalabina, A.V.; Domnina, E.S.; Skvortsova, G.G. Unsaturated organophosphorus compounds based on 1-vinylbenzotriazole. Russ. J. Gen. Chem. 1983, 53, 697–698. (In Russian) [Google Scholar]
- Rozinov, V.G.; Dmitrichenko, M.Y.; Eskova, L.A.; Zhilyakov, A.V. Intramolecular interaction at phosphorylation of vinyl pyrazoles and azolides. Russ. J. Gen. Chem. 1997, 67, 1921–1922. (In Russian) [Google Scholar]
- Larina, L.I.; Rudyakova, E.V.; Savosik, V.A.; Levkovskaya, G.G.; Rozinov, V.G.; Dmitrichenko, M.Y. Phosphorylation of C-alkenylsubstituted pyrazoles with phophorus pentachloride. Russ. J. Gen. Chem. 2009, 79, 1221–1222. [Google Scholar] [CrossRef]
- Larina, L.I.; Rozinov, V.G.; Dmitrichenko, M.Y.; Eskova, L.A. NMR investigation of chlorophosphorylation products of N-vinylazoles. Magn. Reson. Chem. 2009, 47, 149–157. [Google Scholar] [CrossRef]
- Larina, L.I.; Rozinov, V.G.; Rudyakova, E.V.; Savosik, V.A.; Levkovskaya, G.G.; Dmitrichenko, M.Y.; Bidusenko, I.A. Reaction of phosphorus pentachloride with N-vinylimidazole and N-vinylbenzimidazole. Russ. J. Gen. Chem. 2010, 80, 374–375. [Google Scholar] [CrossRef]
- Kaupp, M.; Bühl, M.; Malkin, V.G. (Eds.) Calculation of NMR and EPR Parameters. In Theory and Applications; Wiley: Weinheim, Germany, 2004. [Google Scholar]
- Latypov, S.K.; Polyancev, F.M.; Yakhvarov, D.G.; Sinyashin, O.G. Quantum chemical calculations of 31P NMR chemical shifts: Scopes and limitations. Phys. Chem. Chem. Phys. 2015, 17, 6976–6987. [Google Scholar] [CrossRef] [PubMed]
- Krivdin, L.B. Recent advances in computational 31P NMR: Part 1. Chemical shifts. Magn. Reson. Chem. 2020, 58, 478–499. [Google Scholar] [CrossRef] [PubMed]
- Krivdin, L.B. Recent advances in computational 31P NMR: Part 2. Spin–spin coupling constants. Magn. Reson. Chem. 2020, 58, 500–511. [Google Scholar] [CrossRef]
- Chesnut, D.B.; Quin, L.D. A study of NMR chemical shielding in 5-coordinate phosphorus compounds (phosphoranes). Tetrahedron 2005, 61, 12343–12349. [Google Scholar] [CrossRef]
- Chernyshev, K.A.; Larina, L.I.; Chirkina, E.A.; Rozinov, V.G.; Krivdin, L.B. Quantum-chemical calculation of NMR chemical shifts of organic molecules: III. Intramolecular coordination effects on the 31P NMR chemical shifts of phosphorylated N-vinylazoles. Russ. J. Org. Chem. 2011, 47, 1859–1864. [Google Scholar] [CrossRef]
- Chernyshev, K.A.; Larina, L.I.; Chirkina, E.A.; Krivdin, L.B. The effects of intramolecular and intermolecular coordination on 31P nuclear shielding: Phosphorylated azoles. Magn. Reson. Chem. 2012, 50, 120–127. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ditchfield, R. Molecular Orbital Theory of Magnetic Shielding and Magnetic Susceptibility. J. Chem. Phys. 1972, 56, 5688–5692. [Google Scholar] [CrossRef]
- Chernyshev, K.A.; Krivdin, L.B. Quantum-chemical calculations of NMR chemical shifts of organic molecules: II. Influence of medium, relativistic effects, and vibrational corrections on phosphorus magnetic shielding constants in the simplest phosphines and phosphine chalcogenides. Russ. J. Org. Chem. 2011, 47, 355–362. [Google Scholar] [CrossRef]
- Wolff, S.K.; Ziegler, T.; van Lenthe, E.; Baerends, E.J. Density functional calculations of nuclear magnetic shieldings using the zeroth-order regular approximation (ZORA) for relativistic effects: ZORA nuclear magnetic resonance. J. Chem. Phys. 1999, 110, 7689–7698. [Google Scholar] [CrossRef]
- Fukui, H.; Baba, T.J. Calculation of nuclear magnetic shieldings. XV. Ab initio zeroth-order regular approximation method. Chem. Phys. 2002, 117, 7836–7844. [Google Scholar] [CrossRef]
- SCM. ADF2009.01, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands. Available online: http://www.scm.com (accessed on 20 December 2022).
- Kutzelnigg, W.; Fleischer, U.; Schindler, M. NMR Basic Principles and Progress; Springer: Berlin, Germany, 1990; p. 165. [Google Scholar]
- Chernyshev, K.A.; Krivdin, L.B. Quantum-chemical calculations of NMR chemical shifts of organic molecules: I. Phosphines, phosphine oxides, and phosphine sulfides. Russ. J. Org. Chem. 2010, 46, 785–790. [Google Scholar] [CrossRef]
- Van Lenthe, E.; Baerends, E.J. Optimized Slater-type basis sets for the elements 1–118. J. Comput. Chem. 2003, 24, 1142–1156. [Google Scholar] [CrossRef]
- Jensen, F. Introduction to Computational Chemistry; Wiley: New York, NY, USA, 1998. [Google Scholar]
- Klamt, A.; Schüürmann, G. COSMO: A new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J. Chem. Soc. Perkin Trans. 1993, 2, 799–805. [Google Scholar] [CrossRef]
- Klamt, A. Conductor-like Screening Model for Real Solvents: A New Approach to the Quantitative Calculation of Solvation Phenomena. J. Phys. Chem. 1995, 99, 2224–2235. [Google Scholar] [CrossRef]
- Wüllen, C.V. A comparison of density functional methods for the calculation of phosphorus-31 NMR chemical shifts. Phys. Chem. Chem. Phys. 2000, 2, 2137–2144. [Google Scholar] [CrossRef]
- Chernyshev, K.A.; Larina, L.I.; Chirkina, E.A.; Rozinov, V.G.; Krivdin, L.B. Quantum-chemical calculation of NMR chemical shifts of organic molecules: IV. Effect of intermolecular coordination on 31P NMR shielding constants and chemical shifts of molecular complexes of phosphorus pentachloride with azoles. Russ. J. Org. Chem. 2011, 47, 1865–1869. [Google Scholar] [CrossRef]
- Larina, L.I.; Rozinov, V.G.; Chernyshev, K.A. The products of phosphorylation of N,N-dialkylureas and dialkylcyanamides with phosphorus pentachloride. NMR spectroscopy study. Russ. J. Gen. Chem. 2012, 82, 72–76. [Google Scholar] [CrossRef]
- Rozinov, V.G.; Kolbina, V.E.; Dmitrichenko, M.Y.; Dolgushin, G.V.; Donskikh, V.I. Diphosphorylated chloroformamidine from urea. Russ. J. Gen. Chem. 1994, 64, 1746–1753. [Google Scholar]
- Chernyshev, K.A.; Larina, L.I.; Chirkina, E.A.; Rozinov, V.G.; Krivdin, L.B. Quantum-chemical calculation of NMR chemical shifts of organic molecules: V. Stereochemical structure of unsaturated phosphonic acids dichlorides from 31P NMR spectral data. Russ. J. Org. Chem. 2012, 48, 676–681. [Google Scholar] [CrossRef]
- Rozinov, V.G.; Pensionerova, G.A.; Donskih, V.I.; Sergienko, L.M.; Petrova, O.V.; Kalabina, A.V.; Mikhaleva, A. IPhosphorus-containing enamines. III. Phosphorylation of N-vinyl-substituted trifluoroacetylpyrroles. Russ. J. Gen. Chem. 1984, 54, 2241–2246. [Google Scholar]
- Rozinov, V.G.; Pensionerova, G.A.; Donskih, V.I.; Sergienko, L.M.; Korostova, S.E.; Mikhaleva, A.I.; Dolgushin, G.V. Reaction of alkyl- and phenyl-substituted N-vinylpyrroles with phosphorus pentachloride. Russ. J. Gen. Chem. 1986, 56, 790–804. [Google Scholar]
- Gurevich, P.A.; Yaroshevskaya, V.A. Phosphorus-containing indole and pyrrole derivatives (review). Chem. Heterocycl. Comp. 2000, 36, 1361–1401. [Google Scholar] [CrossRef]
- Dmitrichenko, M.Y.; Ivanov, A.V.; Bidusenko, I.A.; Ushakov, I.A.; Mikhaleva, A.I.; Trofimov, B.A. Reaction of 1-vinylpyrrole-2-carbaldehydes with phosphorus pentachloride: A stereoselective synthesis of E-2-(2-dichloromethylpyrrol-1-yl)vinylphosphonyl dichlorides. Tetrahedron Lett. 2011, 52, 1317–1319. [Google Scholar] [CrossRef]
- Tan, Q.; Xu, B. CH bond activation as a powerful tool in the construction of biologically active nitrogen-containing heterocycles. Stud. Nat. Prod. Chem. 2016, 9, 299–340. [Google Scholar] [CrossRef]
- Wu, J.; Chen, X.; Xie, Y.; Guo, Y.; Zhang, Q.; Deng, G.-J. Carbazole and triarylpyrrole synthesis from anilines and cyclohexanones or acetophenones under transition-metal-free condition. J. Org. Chem. 2017, 82, 5743–5750. [Google Scholar] [CrossRef]
- Georgiades, S.N.; Nicolaou, P.G. Recent advances in carbazole syntheses. Adv. Heterocycl. Chem. 2019, 129, 1–88. [Google Scholar] [CrossRef]
- Das, A.; Banik, B.K. Microwave-assisted synthesis of N-heterocycles. In Microwaves in Chemistry Applications; Chapter 5; ResearchGate: Berlin, Germany, 2021; pp. 143–198. [Google Scholar] [CrossRef]
- Rozinov, V.G.; Rybkina, V.V.; Kalabina, A.V.; Glukhikh, V.I.; Donskikh, V.I.; Seredkina, S.G. On the mechanism of phosphorylation of alkenes by phosphorus pentachloride. Russ. J. Gen. Chem. 1981, 51, 1747–1756. [Google Scholar]
- Hu, L.; Fang, Y.; Hayafuji, T.; Ma, Y.; Furuyashiki, T. Azoles activate Atf1-mediated transcription through MAP kinase pathway for antifungal effects in fission yeast. Genes Cells 2015, 20, 695–705. [Google Scholar] [CrossRef]
- Salat-Canela, C.; Paulo, E.; Sánchez-Mir, L.; Carmona, M.; Ayté, J.; Oliva, B.; Hidalgo, E. Deciphering the role of the signal- and Sty1 kinase-dependent phosphorylation of the stress-responsive transcription factor Atf1 on gene activation. J. Biol. Chem. 2017, 292, 13535–13644. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Mir, L.; Salat-Canela, C.; Paulo, E.; Carmona, M.; Ayté, J.; Oliva, B.; Hidalgo, E. Phospho-mimicking Atf1 mutants bypass the transcription activating function of the MAP kinase Sty1 of fission yeast. Curr. Genet. 2018, 64, 97–102. [Google Scholar] [CrossRef] [Green Version]
- Yurko, E.O.; Gryaznova, T.V.; Khrizanforova, V.V.; Khrizanforov, M.N.; Toropchina, A.V.; Budnikova, Y.H.; Sinyashin, O.G. Electrochemical oxidative phosphorylation of azoles in the presence of silver catalysts. Russ. Chem. Bull. 2018, 67, 102–107. (In Russian) [Google Scholar] [CrossRef]
- Liu, Z.; Jian, Y.; Chen, Y.; Kistler, H.C.; He, P.; Ma, Z.; Yin, Y. A phosphorylated transcription factor regulates sterol biosynthesis in Fusarium graminearum. Nat Commun. 2019, 10, 1228–1245. [Google Scholar] [CrossRef]
- Khandelwal, N.K.; Wasi, M.; Nair, R.; Gupta, M.; Kumar, M.; Mondal, A.K.; Gaur, N.A.; Prasad, R. Vacuolar sequestration of azoles, a novel strategy of azole antifungal resistance conserved across pathogenic and nonpathogenic yeast. Antimicrob. Agents Chemother. 2019, 63, e01347-18. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Zhao, F.; Wang, S.; Lv, S.; Mou, Y.; Yao, C.; Zhou, Y.; Li, F. Molecular mechanism of azoles resistant Candida albicans in a patient with chronic mucocutaneous candidiasis. BMC Infect. Diseas. 2020, 20, 126. [Google Scholar] [CrossRef] [Green Version]
- Sellers-Moya, A.; Nuévalos, M.; María Molina, M.; Martín, H. Clotrimazole-induced oxidative stress triggers novel yeast Pkc1-independent cell wall integrity MAPK pathway circuitry. J. Fungi 2021, 7, 647. [Google Scholar] [CrossRef] [PubMed]
- Rocha, S.; Lucas, M.; Silva, V.L.M.; Gomes, P.M.O.; Silva, A.M.S.; Araújo, A.N.; Aniceto, N.; Guedes, R.C.; Corvo, M.L.; Fernandes, E. Pyrazoles as novel protein tyrosine phosphatase 1B (PTP1B) inhibitors: An in vitro and in silico study. Int. J. Biol. Macromol. 2021, 181, 1171–1182. [Google Scholar] [CrossRef] [PubMed]
- Rocha, S.; Aniceto, N.; Guedes, R.C.; Albuquerque, H.M.T.; Silva, V.L.M.; Silva, A.M.S.; Corvo, M.L.; Fernandes, E.; Freitas, M. An In Silico and an In Vitro inhibition analysis of glycogen phosphorylase by flavonoids, styrylchromones, and pyrazoles. Nutrients 2022, 14, 306. [Google Scholar] [CrossRef] [PubMed]
- Silva, V.L.M.; Silva, A.S.M. Revisiting the chemistry of vinylpyrazoles: Properties, synthesis, and reactivity. Molecules 2022, 27, 3493. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Zhou, M.; Cao, X.; Xue, W.; Zhang, Z.; Li, S.; Sun, X. Coordinated regulation of membrane homeostasis and drug accumulation by novel kinase STK-17 in response to antifungal azole treatment. Microbiol. Spectr. 2022, 23, e0012722. [Google Scholar] [CrossRef] [PubMed]
Compound | pk (BH+) | Compound | pk (BH+) |
---|---|---|---|
1-methylpyrazole | 2.06 | 1-methylimidazole | 7.12 |
1-ethylpyrazole | 1.94 | 1-ethylimidazole | 7.19 |
1-t-buthylpyrazole | 1.92 | 1-n-propylimidazole | 7.16 |
1,3-dimethylpyrazole | 2.77 | 1-n-butylimidazole | 7.16 |
1,4-dimethylpyrazole | 2.44 | 1,2-dimethylimidazole | 8.00 |
1,3,5-trimethylpyrazole | 3.74 | 1-methylbenzimidazole | 5.55 |
1-methylindazole | 0.30 | 1-ethylbenzimidazole | 5.62 |
2-methylindazole | 2.01 | 1-n-propylbenzimidazole | 5.46 |
1-methyl-1,2,4-triazole | 3.20 | 1-n-butylbenzimidazole | 5.31 |
1-methyl-3-nitro-1,2,4-triazole | −3.51 | 1-methyl-5-nitrobenzimidazole | 3.66 |
1,3-dimethyl-1,2,4-triazole | 3.64 | 1-methyl-6-nitrobenzimidazole | 4.2 |
1-methyl-1,2,3-triazole | 1.23 | 1-methyl-7-nitrobenzimidazole | 3.25 |
1-methyl-4-bromo-1,2,3-triazole | −1.65 | 1-methyl-5-chlorobenzimidazole | 4.66 |
1-methyl-5-bromo-1,2,3-triazole | −0.47 | benzotriazole | 8.38 |
1-methyl-4-formyl-1,2,3-triazole | −0.58 | 5(6)-chlorobenzotriazole | 7.7 |
2-methyl-1,2,3-triazole | <1 | 4,5,6,7-tetrachlorobenzotriazole | 5.48 |
No | Structure | δ1H | δ31P, JPH | |
---|---|---|---|---|
=CH-PCl3 | PCl6 | |||
1E | 7.96 dd, 1H, =CH-N 3JPH = 24.8, 3JHH =14.1 7.64 dd, 1H, =CH-P 2JPH = 38.5, 3JHH = 14.1 7.21 d, H-5, 3JHH = 6.5 7.21 d, H-3, 3JHH = 5.5 6.1 dd, H-4 3JHH = 6.5, 3JHH = 5.5 | 94.4 2JPH = 38.5 3JPH = 24.8 | −296.0 | |
1Z | 8.26 dd, 1H, =CH-N 3JPH = 67.7, 3JHH = 6.1 7.84 dd, =CH-P 2JPH = 61.4 1H, 3JHH = 6.1 7.36 d, H-5, 3JHH = 6.7 7.18 d, H-3, 3JHH = 5.9 6.1 dd, H-4 3JHH = 6.7, 3JHH = 5.9 | −55.2 2JPH = 61.4 3JPH = 67.7 | −295.2 | |
2E | 8.02 dd, 1H, =CH-N 3JPH = 27.5, 3JHH = 13.3 7.43 dd, 1H, =CH-P 3JPH = 39.7, 3JHH = 13.3 7.21 d, H-5, 3JHH = 5.7 6.48 d, H-4, 3JHH = 5.7 2.67 s, CH3-3 | 92.9 2JPH = 39.7 3JPH = 27.5 | −296.6 | |
2Z | 8.34 dd 1H, =CH-N 3JPH = 62.3, 3JHH = 6.3 7.42 dd, 1H, =CH-P 2JPH = 62.3, 3JHH = 6.3 7.23 s, H-5 6.40 s, H-4 2.68 s, CH3-3 | −71.4 2JPH = 62.3 3JPH = 65.7 | −295.0 | |
3E | 8.40 dd 1H, =CH-N 3JPH = 27.5, 3JHH = 15.2 7.66 dd 1H, =CH-P 2JPH = 39.7, 3JHH = 15.2 7.11 s, H-3 6.35 s, H-4 2.80 s, CH3-5 | 94.6 2JPH = 39.7 3JPH = 27.5 | −296.0 | |
3Z | 8.44 dd 1H, =CH-N 3JPH = 67.2, 3JHH = 6.8 7.73 dd 1H, =CH-P 2JPH = 61.0, 3JHH = 6.8 7.32 s, H-3 6.45 s, H-4 2.82 s, CH3-5 | −39.4 2JPH = 61.0 3JPH = 67.2 | −296.1 | |
4Z | 8.54 dd, =CH-N 3JPH = 64.5, 3JHH = 6.7 7.63 dd, =CH-P 2JPH = 60.3, 3JHH = 6.7 6.41 s, H-4 2.89 s, CH3-5 2.76 s, CH3-3 | −52.9 2JPH = 60.3 3JPH = 64.5 | −296.4 | |
9Z | 8.27 dd, 1H, =CH-N 3JPH = 23.8, 3JHH = 6.8 7.90 s, H-5 7.68 dd, 1H, =CH-P 2JPH = 35.1, 3JHH = 6.8 7.39–7.50 4H, Ph | −78.7 2JPH = 35.1 3JPH = 23.8 | −285.0 | |
11E | 8.16 dd, 1H, =CH-N 3JPH = 22.8, 3JHH = 14.1 7.81 s, H-3 7.60 dd, 1H, =CH-P 3JPH = 34.1, 3JHH = 14.1 7.24–7.43 4H Ph | 73.2 2JPH = 34.1 3JPH = 22.8 | −298.5 | |
13E | 8.47 dd, 1H, =CH-N 3JPH = 25.8, 3JHH = 13.4 7.59dd 1H, =CH-P 2JPH = 38.1, 3JHH = 13.4 2.78 s, CH3-5 2.59 s, CH3-3 | 96.1 2JPH = 38.1 3JPH = 25.8 | −294.9 | |
18E | 7.84 dd, 1H, =CH-N 3JPH = 27.6, 3JHH = 14.4 7.49 dd, 1H, =CH-P 3JPH = 32.1, 3JHH = 14.4 7.24–7.43 4H Ph | 92.1 2JPH = 32.1 3JPH = 27.6 | −296.2 |
Compound | R | R′ | δ31P | 3JPH | 2JPH |
---|---|---|---|---|---|
15 | H | H | −216.2 | 68.1 | 55.7 |
16 | Me | H | −165.0 | 68.2 | 56.1 |
17 | Me | Me | −198.8 | 68.0 | 58.0 |
No | Structure | δ1H | δ31P |
---|---|---|---|
5E | 7.71 dd, 1H, N–CH= 3JPH = 21.8, 3JHH = 14.2 7.60 d, 1H, H-5 3JHH = 5.2 7.23 d, 1H, H-3 3JHH = 5.8 6.64 dd, 1H, P–CH= 2JPH = 28.7, 3JHH = 14.2 6.15 dd, 1H, H-4 3JHH = 5.8, 3JHH = 5.2 | 30.7 2JPH = 28.7 3JPH = 21.8 | |
5Z | 7.57 dd, 1H, N–CH= 3JPH = 57.0, 3JHH = 6.7 7.64 d, 1H, H-5, 3JHH = 5.6 7.21 d, 1H, H-3, 3JHH = 5.9 6.46 dd, 1H, P–CH= 2JPH = 28.7, 3JHH = 6.7 6.12 dd, 1H, H-4 3JHH 5.9, 3JHH 5.6 | 23.9 2JPH = 28.0 3JPH = 57.0 | |
6E | 7.75 dd, 1H, N–CH= 3JPH = 22.0, 3JHH = 14.5 7.58 d, 1H, H-5, 3JHH = 5.7 6.63 dd, 1H, P–CH= 2JPH = 28.5, 3JHH = 14.5 6.30 d, 1H, H-4, 3JHH = 5.7 2.35 s, 3H, CH3-3 | 31.3 2JPH = 28.5 3JPH = 22.0 | |
6Z | 7.81 d, 1H, H-5, 3JHH = 5.5 7.34 dd, 1H, N–CH= 3JPH = 57.6, 3JHH = 11.0 6.60 dd, 1H, P–CH= 2JPH = 28.5, 3JHH = 11.0 6.30 d, 1H, H-4, 3JHH = 5.5 2.33 s, 3H, CH3-3 | 24.4 2JPH = 28.5 3JPH = 57.6 | |
7E | 7.64 dd, 1H, N–CH= 3JPH = 21.4, 3JHH = 14.4 7.56 d, 1H, H-3, 3JHH =5.1 6.35 dd, 1H, P–CH= 2JPH = 28.5, 3JHH = 14.4 6.12 d, 1H, H-4, 3JHH = 5.1 2.31 s, 3H, CH3-5 | 32.3 2JPH = 28.4 3JPH = 21.4 | |
7Z | 7.53 d, 1H, H-3 3JHH = 5.3 7.26 dd, 1H, N–CH= 3JPH = 54.9, 3JHH = 10.5 5.73 dd, 1H, P–CH= 2JPH = 28.8, 3JHH = 10.5 6.05 d, 1H, H-4, 3JHH = 5.3 2.34 s, 3H, CH3-5 | 26.8 2JPH = 28.8 3JPH = 54.9 | |
8E | 7.59 dd, 1H, N–CH= 3JPH = 20.8, 3JHH = 13.7 6.47 dd, 1H, P–CH= 2JPH = 28.6, 3JHH = 13.7 5.96 s, 1H, H-4 2.18 s, 3H, CH3-5 2.13 s, 3H, CH3-3 | 29.4 2JPH = 28.6 3JPH = 20.8 | |
8Z | 7.24 dd, 1H, N–CH= 3JPH = 53.7, 3JHH = 10.3 5.60 dd, 1H, P–CH= 2JPH = 28.8, 3JHH = 10.3 5.92 s, 1H, H-4 2.25 s, 3H, CH3-5 2.18 s, 3H, CH3-3 | 24.5 2JPH = 28.8 3JPH = 53.7 | |
14E | 7.74 dd, 1H, N–CH= 3JPH = 21.5, 3JHH = 14.0 6.84 dd, 1H, P–CH= 2JPH = 29.0, 3JHH = 14.0 2.32 s, 3H, CH3-5 2.27 s, 3H, CH3-3 | 26.9 2JPH = 29.0 3JPH = 21.5 | |
14Z | 7.59 dd, 1H, N–CH= 3JPH = 52.9, 3JHH = 9.0 6.73 dd, 1H, P–CH= 2JPH = 26.8, 3JHH = 9.0 2.37 s, 3H, CH3-5 2.23 s, 3H, CH3-3 | 26.9 2JPH = 26.8 3JPH = 52.9 | |
10Z | 8.44 s, 1H, H-3 7.70 dd, 1H, N–CH= 3JPH = 56.0, 3JHH = 10.7 7.20–7.70 m, 4H, Ph 5.98 dd, 1H, P–CH= 2JPH = 24.9, 3JHH = 10.7 | 22.4 2JPH = 24.9 3JPH = 56.0 | |
12E | 8.24 s, 1H, H-3 8.14 dd, 1H, N–CH= 3JPH = 27.8, 3JHH = 14.0 7.30–7.76 m, 4H, Ph 6.63 dd, 1H, P–CH= 2JPH = 20.5, 3JHH = 14.0 | 30.8 2JPH = 27.8 3JPH = 20.5 | |
19E | 8.26 dd, 1H, N–CH= 3JPH = 21.8, 3JHH = 14.9 7.32, 7.51, 7.69, 7.90 4H, Ph 6.91 dd, 1H, P–CH= 2JPH = 25.2, 3JHH = 14.9 | 28.5 2JPH = 25.2 3JPH = 21.8 |
Compound | 21 | 22 | 23 | 24 | 25 |
---|---|---|---|---|---|
Structure | |||||
δ, ppm | 35.0 ddd | 33.5 ddd | 34.7 ddd | 33.9 ddd | 34.2 m |
JPH, Hz | 2J = 17.7 2J = 13.5 3J = 8.3 | 2J = 17.3 2J = 13.0 3J = 7.9 | 2J = 17.8 2J = 13.9 3J = 8.0 | 2J = 17.0 2J = 13.2 3J = 7.5 | - |
Phosphorous Chloride | ||||
---|---|---|---|---|
Coordination number | 3 | 4 | 5 | 6 |
31P NMR chemical shift, ppm | +217 | +80 | −80 | −298 |
Medium | Compound | Conformation | B3LYP/ IGLO-III | B3LYP/DZP | Experiment CH3NO2, 25 °C | ||
---|---|---|---|---|---|---|---|
δNR | δSO | δR | |||||
Gas phase | 1E | s-cis | 145.5 | 146.5 | −34.4 | 112.1 | - |
s-trans | 147.6 | 148.5 | −34.5 | 114.0 | |||
1Z | s-cis | 140.2 | 143.6 | −35.2 | 108.4 | - | |
s-trans | 134.2 | 137.2 | −34.7 | 102.5 | |||
1Z⋯CH3NO2 | s-cis | 131.6 | 136.2 | −35.9 | 100.3 | ||
2Z | s-cis | −97.2 | −91.8 | −99.2 | −191.0 | - | |
s-trans | 33.1 | 37.7 | −73.2 | −35.5 | |||
Nitro methane | 1E | s-cis | 150.7 | 156.7 | −33.7 | 123.0 | 94.4 |
s-trans | 151.6 | 157.0 | −34.0 | 123.0 | |||
1Z | s-cis | 139.8 | 145.4 | −34.6 | 110.8 | −55.2 | |
s-trans | 138.3 | 145.4 | −34.4 | 111.0 | |||
1Z⋯CH3NO2 | s-cis | 27.6 | 34.0 | −44.1 | −10.1 | ||
15Z | s-cis | −111.8 | −108.7 | −89.4 | −198.1 | −216.2 | |
s-trans | 33.0 | 35.8 | −63.8 | −28.0 |
No | Compound | 1H | 13C | 31P |
---|---|---|---|---|
28 | 9.27 s, 1H, H-2 8.17 d, 1H, H-5, 3JHH = 2.0 7.37 d, 1H, H-4, 3JHH = 2.0 7.06 dd, 1H, =CH, 3JHH = 15.5 trans, 3JHH =8.7 cis 5.70 d 1H =CH2, 3JHH = 15.5 trans 5.32 d 1H =CH2, 3JHH = 8.6 cis | 137.56 C-2 128.81 =CH 126.33 C-4 114.60 C-5 109.77 =CH2 | −258.0 | |
29 | 13.3 br s, NH 8.76 s, 1H, H-2 7.65 d, 1H, H-5, 3JHH = 2.0 7.47 d, 1H, H-4, 3JHH 2.0 7.13 dd, 1H, =CH, 3JHH 15.6 trans, 3JHH = 8.8 cis 5.76 d, 1H, =CH2, 3JHH = 15.6 trans 5.35 d, 1H, =CH2, 3JHH = 8.8 cis | 134.28 C-2 129.19 =CH 121.33 C-4 119.82 C-5 110.66 =CH2 | −291.7 | |
30 | 9.18 s, 1H, H-2 7.88 d, 1H, H-7, 3JHH = 6.8 7.83 d, 1H, H-4, 3JHH = 7.1 7.62 m, 2H, H-5,6 7.33 dd, 1H, =CH, 3JHH = 15.8 trans, 3JHH = 8.8 cis 5.97 d 1H =CH2, 3JHH = 15.8 trans 5.65 d 1H =CH2, 3JHH = 8.8 cis | 144.28 C-2 139.08 C-9 132.58 C-8 129.08 C-5 123.17 =CH 122.78 C-6 120.31 C-4 119.82 C-7 113.68 =CH2 | −259.1 | |
31 | 13.6 br s NH 9.16 s, 1H, H-2 7.88 d, 1H, H-7, 3JHH = 7.2 7.82 d, 1H, H-4, 3JHH = 7.4 7.66 m, 2H, H-5,6 7.37 dd, 1H, =CH, 3JHH = 15.8 trans, 3JHH = 8.8 cis 5.92 d, 1H, =CH2, 3JHH = 15.8 trans 5.68 d, 1H, =CH2, 3JHH = 8.8 cis | 147.56 C-2 142.38 C-9 134.85 C-8 129.98 C-5 124.27 =CH 122.89 C-6 121.93 C-4 118.18 C-7 114.82 =CH2 | −293.2 | |
32 | 6.70 s, 1H, H-4 6.06 m, 1H, =CH 5.67 d, 1H, =CH2, 3JHH = 15.1 trans 5.49 d, 1H, =CH2, 3JHH = 8.2 cis 5.24 m, 2H, CH2 2.91 s, 3H, CH3-5 2.80 s, 3H, CH3-3 | 145.42 C-3 144.32 C-5 120.83 C-4 119.17 =CH2 107.2 –CH= 49.61 NCH2 10.43 CH3 10.28 CH3 | −264.3 | |
32-1 | 6.33 s, 1H, H-4 4.55 t, 2H, NCH2, 3JHH = 6.8 2.92 s, 3H, CH3-5 2.85 s, 3H, CH3-3 2.54 m, 2H, CH2 1.63 t, 3H, CH3, 3JHH = 6.6 | 144.11 C-3 143.40 C-5 109.60 C-4 48.79 NCH2 23.61 CH2 9.83 2CH3 9.54 CH3 | −261.5 | |
32–2 | 6.11 s, 1H, H-4 4.70 sept, CH, 3JHH = 6.7 2.80 s, 3H, CH3-5 2.76 s, 3H, CH3-3 1.59 d, 6H, CH3, 3JHH = 6.6 | 146.51 C-3 145.79 C-5 107.93 C-4 52.98 CH 21.19 (CH3)2 9.65 CH3 9.44 CH3 | −260.2 | |
33 | 7.50–7.58 Ph 6.77 s, 1H, H-4 6.34 dd, 1H, P–CH= 2JPH = 58.9, 3JHH = 15.4 6.23 d, 1H, =CH, 3JHH = 15.4 5.31 s, 2H, CH2 | 148.09 br s C-5 141.18 C-3 129.20 –CH= 128.8–127.0 Ph 126.9 P–CH=, 1JPC = 155.1 106.82 C-4 52.60 CH2 | 71.9 d PCl+3 2JPH = 58.9 −295.3 PCl−6 | |
34 | 7.50–7.58 Ph 6.77 s, 1H, H-4 6.34 dd, 1H, P–CH=, 2JPH = 58.9, 3JHH = 15.4 6.23 s, 1H, =CH, 5.31 s, 2H, CH2 | 150.78 br s C-5 144.49 d, C-CH3, 2JPC = 10.5 133.52 C-3 129.0–127.0 Ph 124.49 =CH, 1JPC = 153.7 110.78 C-4 57.60 CH2 28.80 d, CH3, 3JPC = 28.9 | 77.0 d PCl+3 2JPH = 60.3 −294.4 PCl−6 | |
35 | 7.30–7.38 Ph 6.70 s, 1H, H-4 6.20 dd, 1H, P–CH= 2JPH = 29.3, 3JHH =14.8 6.14 dd, 1H, =CH, 3JPH = 23.2 3JHH = 14.8 5.31 s, 2H, CH2 | 150.91 br s, C-5 135.12 C-3 131.2 –CH= 128.86, 128.20 127.80,127.42 Ph 126.0 d, P–CH=, 1JPC = 153.1 103.61 C-4 50.61 CH2 | 24.2 dd POCl2 2JPH = 29.3 3JPH = 23.2 | |
36 | 7.28–7.35 Ph 6.79 s, 1H, H-4 6.18 d, 1H, =CH, 2JPH = 34.3 5.36 s, 2H, CH2 2.34 d, 3H, CH3, 4JPH = 1.2 | 152.01br s C-5 146.99 d, C-CH3, 2JPC = 9.9 135.12 C-3 128.82, 128.24 127.88, 127.51 Ph 121.42 =CH, 1JPC = 150.4 106.68 C-4 53.56 CH2 24.82 d, CH3, 3JPC = 26.8 | 28.9 d POCl2 2JPH = 34.3 |
Medium | Compound | Conformer | Chemical Shift, ppm | |||
---|---|---|---|---|---|---|
δNR | δSO | δR | δexp | |||
Gas phase | 28 | s-cis | −69.0 | −201.4 | −270.4 | - |
s-trans | −57.8 | −210.8 | −268.6 | |||
32 | s-cis | 81.4 | −144.5 | −63.1 | - | |
s-trans | 82.3 | −145.2 | −62.9 | |||
Nitromethane | 28 | s-cis | −79.7 | −181.6 | −261.3 | −258.0 |
s-trans | −80.2 | −181.9 | −262.1 | |||
32 | s-cis | −71.0 | −204.7 | −275.7 | −264.3 | |
s-trans | −74.9 | −207.6 | −282.5 |
No | Compound | Isomer | Chemical Shift, ppm | |
---|---|---|---|---|
Calculated a | Experimental | |||
5 | E | 33.0 | 31.3 | |
Z | 22.0 | 23.9 | ||
37 | E | −3.3 | −0.6 | |
Z | −3.1 | - | ||
38 | E | −14.9 | −0.5 | |
Z | −9.8 | |||
39 | E | −2.0 −12.9 = PCl3 | 1.6 22.0 = PCl3 | |
Z | −5.7 19.9 = PCl3 | - |
Structure | Isomer | Conformer | Erel, kcal/mol | Chemical Shift, ppm |
---|---|---|---|---|
E | s-cis-s-cis | 0.0 | 33.6 | |
E | s-cis-gauche | 3.1 | 29.3 | |
E | s-trans-s-cis | 1.4 | 30.6 | |
E | s-trans-gauche | 4.0 | 29.5 | |
Z | s-cis-gauche | 4.7 | 21.4 | |
Z | s-cis-s-trans | 6.3 | 22.9 | |
Z | s-trans-s-cis | 6.5 | 32.8 | |
Z | s-trans-s-trans | 6.5 | 16.6 |
Structure | Isomer | Conformer | Erel, kcal/mol | Chemical Shift, ppm |
---|---|---|---|---|
E | s-cis | 5.0 | −15.9 | |
E | gauche | 3.9 | −1.3 | |
E | s-trans | 8.9 | −50.8 | |
Z | s-cis | 0.5 | −1.4 | |
Z | gauche | 0.0 | −0.3 | |
Z | s-trans | 0.7 | −14.8 |
Structure | Isomer | Conformer | Erel, kcal/mol | Chemical Shift, ppm |
---|---|---|---|---|
E | gauche | 4.0 | −14.9 | |
Z | s-cis | 0.5 | −5.8 | |
Z | gauche | 0.0 | −4.5 | |
Z | s-trans | 0.3 | −21.4 |
Structure | Isomer | Conformer | Erel, kcal/mol | Chemical Shift, ppm |
---|---|---|---|---|
E | s-trans-gauche | 1.8 | 1.7 | |
E | s-trans-s-trans | 2.7 | −18.7 | |
Z | s-trans-s-cis | 3.7 | −3.4 | |
Z | s-trans-gauche | 3.4 | −2.4 | |
Z | s-trans-s-trans | 4.5 | −19.6 | |
Z | s-cis-s-cis | 0.4 | −2.3 | |
Z | s-cis-gauche | 0.0 | −2.1 | |
Z | s-cis-s-trans | 0.5 | −18.1 |
No | Structure | δ 1H | δ 13C | δ 31P |
---|---|---|---|---|
40 | 8.31 m, 1H, N–CH= 7.21 m, 1H, H-5 6.82 s, 1H, CHCl2 6.45 m, 1H, H-3 6.23 m, 1H, H-4 6.16 m, 1H, P–CH= | 148.7 d, N–CH=, 2JPC = 37.5 130.9 C-2, 121.4 C-5 114.2 C-3, 112.6 C-4 95.8 d, P–CH=, 1JPC = 180.0 62.0 CHCl2 | 92.1 PCl3+ –296.1 PCl6− | |
41 | 9.11 m, 1H, N–CH= 8.41–8.33 m, 5H, Ph 7.54 m, 1H, H-3 7.22 m, 1H, H-4 7.10 s, 1H, CHCl2 6.59 m, 1H, P–CH= | 150.6 d, N–CH=, 2JPC = 38.0 135.5 C-2, 133.5 C-5 133.0 132.8 131.1 130.9 Ph 119.5 C-3, 118.4 C-4 102.3 d, P–CH=, 1JPC = 170.0 62.5 CHCl2 | 89.7 PCl3+ –296.2 PCl6− | |
44 | 8.22 m, 1H, N–CH= 7.12 m, 1H, H-5 6.80 s, 1H, CHCl2 6.39 m, 1H, H-3 6.20 m, 1H, H-4 6.07 m, 1H, P–CH= | 141.3 d, N–CH=, 2JPC = 21.0 131.5 C-2, 128.7 C-5 114.0 C-4, 112.3 C-3 106.5 d, P–CH=, 1JPC = 167.0 61.8 CHCl2 | 31.9 POCl2 | |
45 | 9.87 m, 1H, N–CH= 8.28–7.82 m, 5H, Ph 7.70 m, 1H, H-3 6.97 s, 1H, CHCl2 6.81 m, 1H, H-4 5.73 m, 1H, P–CH= | 142.9 d, N–CH=, 2JPC = 19.9 137.0 C-2, 134.0 C-5 131.5 130.4 129.6 128.0 Ph 124.1 C-3, 117.9 C-4 112.5 d, P–CH=, 1JPC = 193.8 62.9 CHCl2 | 33.7 POCl2 | |
46 | 8.26 m, 1H, N–CH= 7.13 m, 1H, H-5 6.77 s, 1H, CHCl2 6.41 m, 1H, H-3 6.27 m, 1H, H-4 6.21 m, 1H, P–CH= | 140.9 d, N–CH=, 2JPC = 25.8 131.7 C-2, 128.8 C-5 114.9 C-4, 111.9 C-3 107.1 d, P–CH=, 1JPC = 208.0 61.8 CHCl2 | 12.4 PO(OH)2 |
No | Structure | δ 1H | δ 31P |
---|---|---|---|
49 | 8.59 dd, 1H, N–CH= 3JPH = 23.3, 3JHH = 15.6 7.50 s, 1H, H-4 6.59 dd, 1H, P–CH= 2JPH = 25.7, 3JHH = 15.6 6.49 s, 1H, H-3 2.61 s, 3H, CH3 | 28.6 2JPH = 25.7 3JPH = 23.3 | |
50 | 8.72 dd, 1H, N–CH= 3JPH = 24.2, 3JPH = 15.7 7.22 s, 1H, H-3 6.59 dd, 1H, P–CH= 2JPH = 25.9, 3JHH = 15.7 2.5–2.7 m, 4H, H-4,7 1.6–1.9 m, 4H, H-5,6 | 29.1 2JPH = 25.9 3JPH = 24.2 | |
51 | 8.50 dd, 1H, N–CH= 3JHH = 15.3, 3JPH = 12.5 7.39 s, 1H, H-4 6.42 dd, 1H, P–CH= 3JHH = 15.3, 2JPH = 9.4 6.38 s, 1H, H-3 2.59 s, 3H, CH3 | 153.5 2JPH = 9.4 3JPH = 12.5 | |
52 | 8.28 dd, 1H, N–CH= 3JHH = 15.5, 3JPH = 14.5 6.99 s, 1H, H-3 6.46 dd, 1H, P–CH= 3JHH = 15.5, 2JPH = 7.3 2.4–2.7 m, 4H, H-4,7 1.7–1.9 m, 4H, H-5,6 | 160.6 2 JPH = 7.3 3JPH = 14.5 |
No | Structure | δ 1H | δ 31P |
---|---|---|---|
56 | 6.68 d, 1H, H-4, 3JHH = 4.0 6.39 m, 1H, H3 6.19 d, 1H, H-3, 3JHH = 4.0 3.49 m, 1H, H1 3.17 m, 1H, H2 2.3 s, 3H, CH3 | 35.3 2JPH1 = 13.5 2JPH2 = 14.5 3JPH3 = 27.5 | |
57 | 7.4–7.1 m, 5H, Ph 6.75 d, 1H, H-4, 3JHH = 4.0 6.31 m, 1H, H3 6.15 d, 1H, H-3, 3JHH = 4.0 3.33 m, 1H, H1 3.05 m, 1H, H2 | 34.6 2JPH1 = 14.0 2JPH2 = 14.0 3JPH3 = 28.0 | |
59 | 7.38 dd, 1H, N–CH= 3JPH = 39.2, 3JHH = 6.1 6.62 dd, 1H, H-3 3JHH = 4.2, 3JPH-3 = 2.6 5.84 d, 1H, H-4, 3JHH = 4.2 5.69 dd, 1H, P–CH= 2JPH = 17.9, 3JHH = 6.1 2.07 s, 3H, Me | 28.6 2JPH = 17.9 3JPH = 39.2 3JPH-3 = 2.6 (H-3) | |
60 | 7.4–7.1 m, 5H, Ph 7.38 dd, 1H, N–CH= 3JPH = 39.5, 3JHH = 6.5 6.62 dd, 1H, H-3 3JHH = 4.2, 3JPH-3 = 2.8 5.84 d, 1H, H-4, 3JHH = 4.2 5.69 dd, 1H, P–CH= 2JPH = 18.0, 3JHH = 6.5 | 26.4 3JPH = 39.5 N–CH= 2JPH = 18.0 P–CH= 3JPH = 2.8 (H-3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Larina, L. Organophosphorus Azoles Incorporating a Tetra-, Penta-, and Hexacoordinated Phosphorus Atom: NMR Spectroscopy and Quantum Chemistry. Molecules 2023, 28, 669. https://doi.org/10.3390/molecules28020669
Larina L. Organophosphorus Azoles Incorporating a Tetra-, Penta-, and Hexacoordinated Phosphorus Atom: NMR Spectroscopy and Quantum Chemistry. Molecules. 2023; 28(2):669. https://doi.org/10.3390/molecules28020669
Chicago/Turabian StyleLarina, Lyudmila. 2023. "Organophosphorus Azoles Incorporating a Tetra-, Penta-, and Hexacoordinated Phosphorus Atom: NMR Spectroscopy and Quantum Chemistry" Molecules 28, no. 2: 669. https://doi.org/10.3390/molecules28020669
APA StyleLarina, L. (2023). Organophosphorus Azoles Incorporating a Tetra-, Penta-, and Hexacoordinated Phosphorus Atom: NMR Spectroscopy and Quantum Chemistry. Molecules, 28(2), 669. https://doi.org/10.3390/molecules28020669