The Functional and Physicochemical Properties of Rice Protein Concentrate Subjected to Acetylation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Functional Properties
2.1.1. Protein Solubility Index (PSI)
2.1.2. Water- and Oil-Absorption Capacity
2.1.3. Foaming Properties
2.1.4. Emulsifying Properties
2.2. Chemical Composition
2.3. Amino Acid Composition
2.4. Degree of Acetylation and In Vitro Digestibility
2.5. Sodium Dodecyl Sulfate–Polyacrylamide Gel Electrophoresis (SDS-PAGE)
2.6. Fourier Transform Infrared Spectroscopy (FT-IR)
3. Materials and Methods
3.1. Materials and Chemicals
3.2. Acetylation of RPC
3.3. Determination of Functional Properties
3.3.1. Effect of pH on Protein Solubility
3.3.2. Water-Binding Capacity and Oil-Absorption Capacity
3.3.3. Effect of pH on Foaming Capacity and Stability
3.3.4. Effect of pH on Emulsifying Properties
3.4. Basic Chemical Composition
3.5. Amino Acid Composition
3.6. Measurement of Degree of N-Acylation
3.7. Digestibility of Protein Preparations
3.8. Sodium Dodecyl Sulfate–Polyacrylamide Gel Electrophoresis (SDS–PAGE)
3.9. Fourier Transform Infrared (FT-IR) Spectroscopy
3.10. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Kowalczewski, P.Ł.; Olejnik, A.; Świtek, S.; Bzducha-Wróbel, A.; Kubiak, P.; Kujawska, M.; Lewandowicz, G. Bioactive compounds of potato (Solanum tuberosum L.) juice: From industry waste to food and medical applications. CRC Crit. Rev. Plant Sci. 2022, 41, 52–89. [Google Scholar] [CrossRef]
- Day, L.; Cakebread, J.A.; Loveday, S.M. Food proteins from animals and plants: Differences in the nutritional and functional properties. Trends Food Sci. Technol. 2022, 119, 428–442. [Google Scholar] [CrossRef]
- Schutyser, M.A.I.; Pelgrom, P.J.M.; van der Goot, A.J.; Boom, R.M. Dry fractionation for sustainable production of functional legume protein concentrates. Trends Food Sci. Technol. 2015, 45, 327–335. [Google Scholar] [CrossRef]
- Assatory, A.; Vitelli, M.; Rajabzadeh, A.R.; Legge, R.L. Dry fractionation methods for plant protein, starch and fiber enrichment: A review. Trends Food Sci. Technol. 2019, 86, 340–351. [Google Scholar] [CrossRef]
- Tabtabaei, S.; Konakbayeva, D.; Rajabzadeh, A.R.; Legge, R.L. Functional properties of navy bean (Phaseolus vulgaris) protein concentrates obtained by pneumatic tribo-electrostatic separation. Food Chem. 2019, 283, 101–110. [Google Scholar] [CrossRef]
- Vitelli, M.; Rajabzadeh, A.R.; Tabtabaei, S.; Assatory, A.; Shahnam, E.; Legge, R.L. Effect of hammer and pin milling on troboelectrostatic separation of legume flour. Powder Technol. 2020, 372, 317–324. [Google Scholar] [CrossRef]
- Nikbakht Nasrabadi, M.; Sedaghat Doost, A.; Mezzenga, R. Modification approaches of plant-based proteins to improve their techno-functionality and use in food products. Food Hydrocoll. 2021, 118, 106789. [Google Scholar] [CrossRef]
- El-Adawy, T.A. Functional properties and nutritional quality of acetylated and succinylated mung bean protein isolate. Food Chem. 2000, 70, 83–91. [Google Scholar] [CrossRef]
- Zhao, C.B.; Zhang, H.; Xu, X.Y.; Cao, Y.; Zheng, M.Z.; Liu, J.S.; Wu, F. Effect of acetylation and succinylation on physicochemical properties and structural characteristics of oat protein isolate. Process Biochem. 2017, 57, 117–123. [Google Scholar] [CrossRef]
- Damodaran, S.; Parkin, K.L. (Eds.) Fennema’s Food Chemistry, 5th ed.; CRC Press: Boca Raton, FL, USA, 2017; Available online: https://www.taylorfrancis.com/books/edit/10.1201/9781315372914/fennema-food-chemistry-srinivasan-damodaran-kirk-parkin?refId=bc906e60-da21-4a53-827a-5198971cd958&context=ubx (accessed on 26 August 2022).
- Wang, Z.; Li, H.; Liang, M.; Yang, L. Glutelin and prolamin, different components of rice protein, exert differently in vitro antioxidant activities. J. Cereal Sci. 2016, 72, 108–116. [Google Scholar] [CrossRef]
- Amagliani, L.; O’Regan, J.; Kelly, A.L.; O’Mahony, J.A. The composition, extraction, functionality and applications of rice proteins: A review. Trends Food Sci. Technol. 2017, 64, 1–12. [Google Scholar] [CrossRef]
- Shih, F.F.; Daigle, K.W. Preparation and characterization of rice protein isolates. JAOCS J. Am. Oil Chem. Soc. 2000, 77, 885–889. [Google Scholar] [CrossRef]
- Jiamyangyuen, S.; Srijesdaruk, V.; Harper, W.J.; Jiamyangyuen, A.; Srijesdaruk, V.; Harper, W.J.; Sci, S.J. Extraction of rice bran protein concentrate and its application in bread. Songklanakarin J. Sci. Technol. 2005, 27, 55–64. [Google Scholar]
- Yadav, R.B.; Yadav, B.S.; Chaudhary, D. Extraction, characterization and utilization of rice bran protein concentrate for biscuit making. Br. Food J. 2011, 113, 1173–1182. [Google Scholar] [CrossRef]
- Lee, J.S.; Oh, H.; Choi, I.; Yoon, C.S.; Han, J. Physico-chemical characteristics of rice protein-based novel textured vegetable proteins as meat analogues produced by low-moisture extrusion cooking technology. LWT 2022, 157, 113056. [Google Scholar] [CrossRef]
- Lee, S.K.; Jang, I.S.; Kim, K.M.; Park, S.K.; Lee, W.Y.; Youn, K.S.; Bae, D.H. Changes in Functional Properties of Rice Bran and Sesame Meal Proteins through Chemical Modifications. Available online: https://agris.fao.org/agris-search/search.do?recordID=KR2005012450 (accessed on 25 August 2022).
- Wang, Y.R.; Yang, Q.; Fan, J.L.; Zhang, B.; Chen, H.Q. The effects of phosphorylation modification on the structure, interactions and rheological properties of rice glutelin during heat treatment. Food Chem. 2019, 297, 124978. [Google Scholar] [CrossRef]
- Guan, J.; Takai, R.; Toraya, K.; Ogawa, T.; Muramoto, K.; Mohri, S.; Ishikawa, D.; Fujii, T.; Chi, H.; Cho, S.J. Effects of alkaline deamidation on the chemical properties of rice bran protein. Food Sci. Technol. Res. 2017, 23, 697–704. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.Y.; Wang, L.; Qian, H.F.; Zhang, H.; Qi, X.G. Study on physicochemical properties and trypsin hydrolysis of acetylated rice protein. Mod. Food Sci. Technol. 2015, 31, 81–86. [Google Scholar] [CrossRef]
- Heredia-Leza, G.L.; Martínez, L.M.; Chuck-Hernandez, C. Impact of Hydrolysis, Acetylation or Succinylation on Functional Properties of Plant-Based Proteins: Patents, Regulations, and Future Trends. Processes 2022, 10, 283. [Google Scholar] [CrossRef]
- Lawal, O.S.; Adebowale, K.O. The acylated protein derivatives of Canavalia ensiformis (jack bean): A study of functional characteristics. LWT-Food Sci. Technol. 2006, 39, 918–929. [Google Scholar] [CrossRef]
- Miedzianka, J.; Pȩksa, A.; Aniołowska, M. Properties of acetylated potato protein preparations. Food Chem. 2012, 133, 1283–1291. [Google Scholar] [CrossRef]
- Moure, A.; Sineiro, J.; Domínguez, H.; Parajó, J.C. Functionality of oilseed protein products: A review. Food Res. Int. 2006, 39, 945–963. [Google Scholar] [CrossRef]
- Lawal, O.S. Functionality of African locust bean (Parkia biglobossa) protein isolate: Effects of pH, ionic strength and various protein concentrations. Food Chem. 2004, 86, 345–355. [Google Scholar] [CrossRef]
- Lawal, O.S.; Adebowale, K.O. Effect of acetylation and succinylation on solubility profile, water absorption capacity, oil absorption capacity and emulsifying properties of mucuna bean (Mucuna pruriens) protein concentrate. Food 2004, 48, 129–136. [Google Scholar] [CrossRef]
- Bora, P.S. Effect of acetylation on the functional properties of lentil (Lens culinaris) globulin. J. Sci. Food Agric. 2003, 83, 139–141. [Google Scholar] [CrossRef]
- Miedzianka, J.; Zambrowicz, A.; Zielińska-Dawidziak, M.; Drożdż, W.; Nemś, A. Effect of Acetylation on Physicochemical and Functional Properties of Commercial Pumpkin Protein Concentrate. Molecules 2021, 26, 1575. [Google Scholar] [CrossRef]
- Khader, A.E.; Salem, O.M.; Zedan, M.A.; Mahmoud, S.F. Impact of substituting nonfat dry milk with acetylated whey protein concentrates on the quality of chocolate ice milk. Egypt. J. Dairy Sci. 2001, 29, 299–312. [Google Scholar]
- Bergner, H.; Seidler, W.; Simon, O.; Schmandke, H. Digestibility and dietary quality of nonacetylated and acetylated Vicia faba proteins in maintenance: Studies on 15N-labelled adult rats. Ann. Nutr. Metab. 1984, 28, 156–163. [Google Scholar] [CrossRef]
- Gráf, L.A.; Szilágyi, L.A.; Venekei, I.A. Chymotrypsin. Handb. Proteolytic Enzym. 2013, 3, 2626–2633. [Google Scholar] [CrossRef]
- Zielińska-Dawidziak, M.; Tomczak, A.; Burzyńska, M.; Rokosik, E.; Dwiecki, K.; Piasecka-Kwiatkowska, D. Comparison of Lupinus angustifolius protein digestibility in dependence on protein, amino acids, trypsin inhibitors and polyphenolic compounds content. Int. J. Food Sci. Technol. 2020, 55, 2029–2040. [Google Scholar] [CrossRef]
- Ying, D.Y.; Hlaing, M.M.; Lerisson, J.; Pitts, K.; Cheng, L.; Sanguansri, L.; Augustin, M.A. Physical properties and FTIR analysis of rice-oat flour and maize-oat flour based extruded food products containing olive pomace. Food Res. Int. 2017, 100, 665–673. [Google Scholar] [CrossRef] [PubMed]
- Amir, R.M.; Anjum, F.M.; Khan, M.I.; Khan, M.R.; Pasha, I.; Nadeem, M. Application of Fourier transform infrared (FTIR) spectroscopy for the identification of wheat varieties. J. Food Sci. Technol. 2013, 50, 1018–1023. [Google Scholar] [CrossRef] [PubMed]
- Achouri, A.; Nail, V.; Boye, J.I. Sesame protein isolate: Fractionation, secondary structure and functional properties. Food Res. Int. 2012, 46, 360–369. [Google Scholar] [CrossRef]
- Jeżowski, P.; Polcyn, K.; Tomkowiak, A.; Rybicka, I.; Radzikowska, D. Technological and antioxidant properties of proteins obtained from waste potato juice. Open Life Sci. 2020, 15, 379–388. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Wang, Q.; Ma, T.; Ren, J. Comparative studies on the functional properties of various protein concentrate preparations of peanut protein. Food Res. Int. 2009, 42, 343–348. [Google Scholar] [CrossRef]
- Al-mentafji, H.N. Official Methods of Analysis of AOAC International; AOAC: Washington, DC, USA, 2005. [Google Scholar]
- Habeebl, A.F.S.A. Determination of Free Amino Groups in Proteins by Trinitrobenzenesulfonic Acid. Anal. Biochem. 1966, 14, 328–336. [Google Scholar] [CrossRef]
- Kowalczewski, P.Ł.; Olejnik, A.; Białas, W.; Rybicka, I.; Zielińska-Dawidziak, M.; Siger, A.; Kubiak, P.; Lewandowicz, G. The nutritional value and biological activity of concentrated protein fraction of potato juice. Nutrients 2019, 11, 1523. [Google Scholar] [CrossRef] [Green Version]
- Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef]
- Kowalczewski, P.Ł.; Siejak, P.; Jarzębski, M.; Jakubowicz, J.; Jeżowski, P.; Walkowiak, K.; Smarzyński, K.; Ostrowska-Ligęza, E.; Baranowska, H.M. Comparison of technological and physicochemical properties of cricket powders of different origin. J. Insects Food Feed 2022, 1–10. [Google Scholar] [CrossRef]
Anhydride-to-Protein Ratio (mL/g) | Dry Matter | Protein | Fat | Ash | Degree of N-Acylation | Amount of Protein Released into the Intestinal Fluid in Two-Step Digestion |
---|---|---|---|---|---|---|
(g/100 g) | % | |||||
native RPC | 94.49 ± 0.10 a | 74.20 ± 1.15 b | 6.32 ± 0.09 a | 2.15 ± 0.04 a | - | 70.00 ± 6.6 a |
0.4 | 97.32 ± 0.16 a | 83.10 ± 0.09 a | 4.99 ± 0.26 b | 1.93 ± 0.00 ab | 71.23 ± 0.15 c | 69.00 ± 10.4 a |
1.0 | 96.96 ± 0.54 a | 82.30 ± 3.69 a | 1.58 ± 0.21 c | 1.69 ± 0.14 b | 92.24 ± 0.17 b | 66.80 ± 1.9 a |
2.0 | 96.16 ± 2.21 a | 80.90 ± 0.42 a | 1.94 ± 0.31 c | 1.56 ± 0.27 b | 99.88 ± 0.11 a | 67.00 ± 5.8 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miedzianka, J.; Walkowiak, K.; Zielińska-Dawidziak, M.; Zambrowicz, A.; Wolny, S.; Kita, A. The Functional and Physicochemical Properties of Rice Protein Concentrate Subjected to Acetylation. Molecules 2023, 28, 770. https://doi.org/10.3390/molecules28020770
Miedzianka J, Walkowiak K, Zielińska-Dawidziak M, Zambrowicz A, Wolny S, Kita A. The Functional and Physicochemical Properties of Rice Protein Concentrate Subjected to Acetylation. Molecules. 2023; 28(2):770. https://doi.org/10.3390/molecules28020770
Chicago/Turabian StyleMiedzianka, Joanna, Katarzyna Walkowiak, Magdalena Zielińska-Dawidziak, Aleksandra Zambrowicz, Szymon Wolny, and Agnieszka Kita. 2023. "The Functional and Physicochemical Properties of Rice Protein Concentrate Subjected to Acetylation" Molecules 28, no. 2: 770. https://doi.org/10.3390/molecules28020770
APA StyleMiedzianka, J., Walkowiak, K., Zielińska-Dawidziak, M., Zambrowicz, A., Wolny, S., & Kita, A. (2023). The Functional and Physicochemical Properties of Rice Protein Concentrate Subjected to Acetylation. Molecules, 28(2), 770. https://doi.org/10.3390/molecules28020770