One Pot Synthesis of Nanofiber-Coated Magnetic Composites as Magnetic Dispersive Solid-Phase Extraction Adsorbents for Rapid Determination of Tetracyclines in Aquatic Food Products
Abstract
:1. Introduction
2. Results
2.1. Optimization of Ultra-Performance Liquid Chromatography–Tandem Mass Spectrometry Conditions
2.2. Preparation and Characterization of the Carbon Nanofiber Magnetic Material Composites
2.3. Optimization of MSPE with the Nanocomposite Adsorbent
2.3.1. Effect of pH of the Sample Solution and Type of Extraction Solvent
2.3.2. Effect of the Type of Extraction Solvent
2.3.3. Effect of Adsorbent Amount
2.3.4. Effect of Adsorption Time
2.3.5. Effect of Eluent Type
2.3.6. Effect of Eluent Volume and Desorption Time
2.4. Method Validation
2.5. Reproducibility and Recyclability of Fe3O4@C–NFs
2.6. Comparison of MSPE with Other Methods
2.7. Analysis of Real Samples
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Apparatus
3.3. LC-MS/MS Conditions
3.4. Synthesis of Fe3O4@C–NF Composites
3.5. Samples Preparation
3.6. Magnetic Solid Phase Extraction
3.7. Method Validation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aslipashaki, S.N.; Khayamian, T.; Hashemian, Z. Aptamer based extraction followed by electrospray ionization-ion mobility spectrometry for analysis oftetracycline in biological fluids. J. Chromatogr. B 2013, 925, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Bougrini, M.; Florea, A.; Cristea, C.; Sandulescu, R.; Vocanson, F.; Errachid, A.; Bouchikhi, B.; El Bari, N.; Jaffrezic-Renault, N. Development of a novel sensitive molecularly imprinted polymer sensor based on electropolymerization of amicroporous-metal-organic framework for tetracycline detection in honey. Food Control 2016, 59, 424–429. [Google Scholar] [CrossRef]
- Saridal, K.; Ulusoy, H.I. A simple methodology based on cloud point extraction prior to HPLC-PDA analysis for tetracycline residues in food samples. Microchem. J. 2019, 150, 104170. [Google Scholar] [CrossRef]
- Nabavi, M.; Housaindokht, M.R.; Bozorgmehr, M.R.; Sadeghi, A. Theoretical design and experimental study of new aptamers with the enhanced binding affinity relying on colorimetric assay for tetracycline detection. J. Mol. Liq. 2022, 349, 118196. [Google Scholar] [CrossRef]
- Marinou, E.; Samanidou, V.F.; Papadoyannis, I.N. Development of a high pressure liquid chromatography with diode array detection method for the determination of four tetracycline residues in milk by using quenchers dispersive extraction. Separations 2019, 6, 21–29. [Google Scholar] [CrossRef]
- Li, X.; Liu, T.; Zhang, Y.; Cai, J.; He, M.; Li, M.; Chen, Z.; Zhang, L. Growth of biobr/zif-67 nanocomposites on carbon fiber cloth as filter-membrane-shaped photocatalyst for degrading pollutants in flowing wastewater. Adv. Fiber Mater. 2022, 4, 1620–1631. [Google Scholar] [CrossRef]
- Li, S.; Cai, M.; Wang, C.; Liu, Y. Ta3N5/CdS Core–Shell S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Removal of Antibiotic Tetracycline and Cr(VI): Performance and Mechanism Insights. Adv. Fiber Mater. 2023, 5, 994–1007. [Google Scholar] [CrossRef]
- Li, S.; Wang, C.; Dong, K.; Zhang, P.; Chen, X.; Li, X. MIL-101(Fe)/BiOBr S-scheme photocatalyst for promoting photocatalytic abatement of Cr(VI) and enrofloxacin antibiotic: Performance and mechanism. Chin. J. Catal. 2023, 51, 101–112. [Google Scholar] [CrossRef]
- Karageorgou, E.; Armeni, M.; Moschou, I.; Samanidou, V. Ultrasoundassisted dispersive extraction for the high pressure liquid chromatographic determination of tetracycline residues in milk with diode array detection. Food Chem. 2014, 150, 328–334. [Google Scholar] [CrossRef]
- Phomai, K.; Supharoek, S.-A.; Vichapong, J.; Grudpan, K.; Ponhong, K. One-pot co-extraction of dispersive solid phase extraction employing iron-tannic nanoparticles assisted cloud point extraction for the determination of tetracyclines by high-performance liquid chromatography. Talanta 2023, 252, 123852. [Google Scholar] [CrossRef]
- Orlando, E.A.; Simionato, A.V.C. Extraction of tetracyclic antibiotic residues from fish filet: Comparison and optimization of different procedures using liquid chromatography with fluorescence detection. J. Chromatogr. A 2013, 1307, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Tian, J.; Wang, L.; Yan, H.; Qiao, F.; Qiao, X. One pot synthesis of magnetic graphene/carbon nanotube composites as magnetic dispersive solid-phase extraction adsorbent for rapid determination of oxytetracycline in sewage water, Journal of chromatography, A: Including electrophoresis and other separation methods. J. Chromatogr. A 2015, 1422, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Moreno-González, D.; García-Campaña, A.M. Salting-out assisted liquid–liquid extraction coupled to ultra-high performance liquid chromatography–tandem mass spectrometry for the determination of tetracycline residues in infant foods. Food Chem. 2017, 221, 1763–1769. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Z.; Zhang, S.; Chen, H. Determination of tetracycline antibiotics in fatty food samples by selective pressurized liquid extraction coupled with high performance liquid chromatography and tandem mass spectrometry. J. Sep. Sci. 2014, 38, 115–120. [Google Scholar] [CrossRef] [PubMed]
- Susakate, S.; Poapolathep, S.; Chokejaroenrat, C.; Tanhan, P.; Hajslova, J.; Giorgi, M.; Saimek, K.; Zhang, Z.; Poapolathep, A. Multiclass analysis of antimicrobial drugs in shrimp muscle by ultra high performance liquid chromatography-tandem mass spectrometry. J. Food Drug Anal. 2018, 27, 118–134. [Google Scholar] [CrossRef]
- de Souza, K.C.; Andrade, G.F.; Vasconcelos, I.; Viana, I.M.d.O.; Fernandes, C.; de Sousa, E.M.B. Magnetic solid-phase extraction based onmesoporous silica-coated magnetic nanoparticles for analysis of oral antidiabetic drugs in human plasma. Mater. Sci. Eng. C 2014, 40, 275–280. [Google Scholar] [CrossRef]
- Wen, Y.; Chen, L.; Li, J.; Liu, D.; Chen, L. Recent advances in solid-phase sorbents for sample preparation prior to chromatographic analysis. TrAC Trends Anal. Chem. 2014, 59, 26–41. [Google Scholar] [CrossRef]
- Xia, L.; Liu, L.; Lv, X.; Qu, F.; Li, G.; You, J. Towards the determination of sulfonamides in meat samples: Amagnetic and mesoporous metal-organic framework as an efficient sorbent for magnetic solid phase extraction combined with high-performance liquid chromatography. J. Chromatogr. A 2017, 1500, 24–31. [Google Scholar] [CrossRef]
- Zhao, Y.; Wu, R.; Yu, H.; Li, J.; Liu, L.; Wang, S.; Chen, X.; Chan, T.-W.D. Magnetic solid-phase extraction of sulfonamide antibiotics in water and animal-derived food samples using core-shell magnetite and molybdenum disulfide nanocomposite adsorbent. J. Chromatogr. A 2019, 1610, 460543. [Google Scholar] [CrossRef]
- Yu, H.; Jia, Y.; Wu, R.; Chen, X.; Chan, T.-W.D. Determination of fluoroquinolones in food samples by magnetic solid-phase extraction based on a magnetic molecular sieve nanocomposite prior to high-performance liquid chromatography and tandem mass spectrometry. Anal. Bioanal. Chem. 2019, 411, 2817–2826. [Google Scholar] [CrossRef]
- Lian, L.; Lv, J.; Wang, X.; Lou, D. Magnetic solid–phase extraction of tetracyclines using ferrous oxide coated magnetic silica microspheres from water samples. J. Chromatogr. A 2018, 1534, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-N.; Hu, Y.-Y.; Ding, L.; Zhou, D.-B.; Chen, W.-J. Detection of Tetracycline Antibiotics in Water by Dispersive Micro-solid Phase Extraction using Fe3O4@[Cu3(btc)2] Magnetic Composite Combined with Liquid Chromatography-Tandem Mass Spectrometry. Chin. J. Chem. Phys. 2021, 34, 238–248. [Google Scholar] [CrossRef]
- Qiao, D.; Li, Z.; Duan, J.; He, X. Adsorption and photocatalytic degradation mechanism of magnetic graphene oxide/ZnO nanocomposites for tetracycline contaminants. Chem. Eng. J. 2020, 400, 125952. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiao, Z.; Hu, Y.; Lv, S.; Fan, H.; Zeng, Y.; Hu, J.; Wang, M. Removal of tetracycline and oxytetracycline from water by magnetic Fe3O4@graphene. Environ. Sci. Pollut. Res. 2017, 24, 2987–2995. [Google Scholar] [CrossRef] [PubMed]
- Lefatle, M.C.; Matong, J.M.; Mpupa, A.; Munonde, T.S.; Waleng, N.J.; Madikizela, L.M.; Pakade, V.E.; Nomngongo, P.N. Preparation, characterization, and application of chitosan-kaolin-based nanocomposite in magnetic solid-phase extraction of tetracycline in aqueous samples. Chem. Pap. 2022, 77, 1601–1618. [Google Scholar] [CrossRef]
- Al-Afy, N.; Sereshti, H.; Hijazi, A.; Nodeh, H.R. Determination of three tetracyclines in bovine milk using magnetic solid phase extraction in tandem with dispersive liquid-liquid microextraction coupled with HPLC. J. Chromatogr. B 2018, 1092, S1570023218307864. [Google Scholar] [CrossRef]
- Vuran, B.; Ulusoy, H.I.; Sarp, G.; Yilmaz, E.; Morgül, U.; Kabir, A.; Tartaglia, A.; Locatelli, M.; Soylak, M. Determination of chloramphenicol and tetracycline residues in milk samples by means of nanofiber coated magnetic particles prior to high-performance liquid chromatography-diode array detection. Talanta 2021, 230, 122307. [Google Scholar] [CrossRef] [PubMed]
- Swartz, M.E. UPLC™: An Introduction and Review. J. Liq. Chromatogr. Relat. Technol. 2005, 28, 1253–1263. [Google Scholar] [CrossRef]
- Feng, M.X.; Wang, G.N.; Yang, K.; Liu, H.Z.; Wang, J.P. Molecularly imprinted polymer-high performance liquid chromatography for the determination of tetracycline drugs in animal derived foods. Food Control 2016, 69, 171–176. [Google Scholar] [CrossRef]
- Tölgyesi, A.; Tölgyesi, L.; Békési, K.; Sharma, V.K.; Fekete, J. Determination of tetracyclines in pig and other meat samples using liquid chromatography coupled with diode array and tandem mass spectrometric detectors. Meat Sci. 2014, 96, 1332–1339. [Google Scholar] [CrossRef]
- Schneider, M.J.; Darwish, A.M.; Freeman, D.W. Simultaneous multiresidue determination of tetracyclines and fluoroquinolones in catfish muscle using high performance liquid chromatography with fluorescence detection. Anal. Chim. Acta 2007, 586, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Mookantsa, S.O.S.; Dube, S.; Nindi, M. Development and application of a dispersive liquid-liquid microextraction method for the determination of tetracyclines in beef by liquid chromatography mass spectrometry. Talanta 2016, 148, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Alanazi, F.; Almugbel, R.; Maher, H.M.; Alodaib, F.M.; Alzoman, N.Z. Determination of tetracycline, oxytetracycline and chlortetracycline residues in seafood products of Saudi Arabia using high performance liquid chromatography—Photo diode array detection. Saudi Pharm. J. 2021, 29, 566–575. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Li, X.; Ding, S.; Jiang, H.; Shen, J.; Xia, X. Multiresidue analysis of sulfonamides, quinolones, and tetracyclines in animal tissues by ultra-high performance liquid chromatography-tandem mass spectrometry. Food Chem. 2016, 204, 252–262. [Google Scholar] [CrossRef] [PubMed]
- Jing, T.; Gao, X.-D.; Wang, P.; Wang, Y.; Lin, Y.-F.; Hu, X.-Z.; Hao, Q.-L.; Zhou, Y.-K.; Mei, S.-R. Determination of trace tetracycline antibiotics in foodstuffs by liquid chromatography-tandem mass spectrometry coupled with selective molecular-imprinted solid-phase extraction. Anal. Bioanal. Chem. 2009, 393, 2009–2018. [Google Scholar] [CrossRef] [PubMed]
- Cháfer-Pericás, C.; Maquieira, Á.; Puchades, R.; Company, B.; Miralles, J.; Moreno, A. Multiresidue determination of antibiotics in aquaculture fish samples by HPLC–MS/MS. Aquac. Res. 2010, 41, e217–e225. [Google Scholar] [CrossRef]
- Fedorova, G.; Nebesky, V.; Randak, T.; Grabic, R. Simultaneous determination of 32 antibiotics in aquaculture products using LC-MS/MS. Chem. Pap. 2014, 68, 29–36. [Google Scholar] [CrossRef]
- Tu, C.; Dai, Y.; Xu, K.; Qi, M.; Wang, W.; Wu, L.; Wang, A. Determination of tetracycline in water and honey by iron(II, III)/aptamer-based magnetic solid-phase extraction with high-performance liquid chromatography analysis. Anal. Lett. 2019, 52, 1653–1669. [Google Scholar] [CrossRef]
- Tang, H.Z.; Wang, Y.H.; Li, S.; Wu, J.; Gao, Z.X.; Zhou, H.Y. Development and application of magnetic solid phase extraction in tandem with liquid-liquid extraction method for determination of four tetracyclines by HPLC with UV detection. J. Food Sci. Technol. 2020, 57, 2884–2893. [Google Scholar] [CrossRef]
- Lanjwani, M.F.; Altunay, N.; Tuzen, M. Preparation of fatty acid-based ternary deep eutectic solvents: Application for determination of tetracycline residue in water, honey and milk samples by using vortex-assisted microextraction. Food Chem. 2023, 400, 134085. [Google Scholar] [CrossRef]
- Abdullah, U.A.A.U.; Hanapi, N.S.M.; Ibrahim, W.N.W.; Hadzir, N.M.; Zaini, N.; Anis, A.L. Pre-concentration and determination of tetracyclines antibiotics residues in water samples using rGO/Fe3O4 nanocomposite as extraction sorbent. Indones. J. Chem. 2021, 21, 1196–1211. [Google Scholar] [CrossRef]
- The Commission of the European Communities. Commission decision 2002/657/EC of 12 August 2002 implementing council directive 96/23/EC concerning the performance of analytical methods and interpretation of results (2002/657/EC). Off. J. Eur. Communities 2002, L221, 8–36. [Google Scholar]
Analyte | Parent Ion (m/z) | Daughter Ion (m/z) | Cone Voltage (V) | Collision Energy (eV) |
---|---|---|---|---|
TC | 445.1 | 410 *, 427 | 25 | 20, 14 |
OTC | 461.1 | 426 *, 442.9 | 20 | 20, 15 |
CTC | 479.1 | 443.9 *, 462 | 30 | 20, 18 |
DC | 445.2 | 428 *, 154.1 | 30 | 18, 24 |
Analyte | Calibration Equation | Linear Range (ng/mL) | Correlation Efficient (R2) | LOD (μg/kg) | LOQ (μg/kg) | Reproducibility of the Composites (Inter-Batch Precision, RSD (%)) |
---|---|---|---|---|---|---|
OTC | y = 6515.65x + 596.784 | 1.0~200 | 0.9991 | 0.7 | 2.0 | 5.71 |
TC | y = 7958.82x + 674.114 | 1.0~200 | 0.9992 | 0.7 | 2.0 | 6.02 |
CTC | y = 4449.41x − 533.554 | 1.0~200 | 0.9996 | 0.7 | 2.0 | 5.89 |
DC | y = 16990.5x + 5282.66 | 1.0~200 | 0.9997 | 0.7 | 2.0 | 6.32 |
Analyte | Spiked Level (μg/kg) | Grass Carp | Prawns | Sea Crab | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Accuracy (%) | Intra-Day RSD (%) | Inter-Day RSD (%) | Accuracy (%) | Intra-Day RSD (%) | Inter-Day RSD (%) | Accuracy (%) | Intra-Day RSD (%) | Inter-Day RSD (%) | ||
OTC | 2.0 | 80.7 | 5.61 | 7.62 | 81.8 | 7.24 | 6.93 | 81.1 | 7.34 | 7.23 |
10.0 | 82.5 | 4.73 | 5.33 | 89.0 | 6.51 | 4.74 | 85.7 | 6.61 | 9.04 | |
50.0 | 90.1 | 7.60 | 4.80 | 91.2 | 3.72 | 6.62 | 85.5 | 6.13 | 5.77 | |
TC | 2.0 | 81.3 | 6.28 | 7.88 | 88.7 | 7.33 | 4.82 | 86.6 | 4.72 | 7.13 |
10.0 | 79.2 | 6.91 | 6.87 | 81.5 | 5.91 | 4.31 | 82.7 | 7.31 | 8.51 | |
50.0 | 84.6 | 5.54 | 8.41 | 81.7 | 6.77 | 8.84 | 92.8 | 6.24 | 5.42 | |
CTC | 2.0 | 87.1 | 4.81 | 6.51 | 91.9 | 7.71 | 9.68 | 98.2 | 5.82 | 6.48 |
10.0 | 86.7 | 7.49 | 7.32 | 94.2 | 5.92 | 9.03 | 90.7 | 6.37 | 4.91 | |
50.0 | 90.2 | 6.62 | 6.71 | 90.4 | 6.31 | 7.51 | 97.7 | 8.01 | 4.20 | |
DC | 2.0 | 81.2 | 7.80 | 4.73 | 86.3 | 7.51 | 8.27 | 86.6 | 7.92 | 6.43 |
10.0 | 83.1 | 8.17 | 7.22 | 90.7 | 5.50 | 4.72 | 87.3 | 6.33 | 6.81 | |
50.0 | 96.2 | 7.72 | 4.93 | 90.2 | 6.72 | 3.91 | 93.6 | 8.01 | 8.63 |
Extraction Method | Adsorbent/ Column Type | Sample/ Analytes | LOD | LOQ | Intra-Day RSD (%) | Inter-Day RSD (%) | Ref. |
---|---|---|---|---|---|---|---|
SPE/ HPLC–DAD | MIP | Eggs and pork /CTC,OTC,TC,DC | 20–40 μg/kg | 50–80 μg/kg | <8.1 | / | [29] |
SPE/HPLC-DAD | Strata-XL | Pig and other meat /CTC,OTC,TC,DC | 5–10 μg/kg | 25.0 μg/kg | <15.7 | / | [30] |
HPLC-FL | MgCl2 | Fish muscle/ OTC,TC,CTC | / | 1.0–1.5 μg/kg | <9.0 | / | [31] |
DLLME/ HPLC–DAD | MgSO4, NaCl | Veef/ OTC,TC,CTC | 2.2–3.6 μg/kg | 7.4–11.5 μg/kg | 2–7 | / | [32] |
HPLC– DAD | / | Fish and shellfish/OTC,TC,CTC | 15–62 μg/kg | 125–175 μg/kg | <2 | / | [33] |
SPE/UHPLC– MS/MS | HLB | Swine muscle, swine liver, swine kidney, Chicken muscle, and bovine muscle/OTC,TC,CTC | 0.5–4.0 μg/kg | 2.0–10.0 μg/kg | <10 | <14 | [34] |
SPE/HPLC-MS/MS | MIP | Lobster, duck, honey, and eggs/ OTC,TC,CTC,DC | 0.1–0.3 μg/kg | 0.2–1.1 μg/kg | <4.6 | / | [35] |
SPLE/HPLC-MS/MS | Copper(II) isonicotinate | Fatty-food samples/ OTC,TC,CTC,DC | 0.2–3.3 μg/kg | / | 5.5–13.6 | / | [14] |
HPLC-MS/MS | / | Fish/OTC,TC,CTC | 10–16 μg/kg | 33–52 μg/kg | <8 | / | [36] |
SPE/HPLC-MS/MS | Phospholipid | Fish/ OTC,TC | 0.062–0.39 μg/kg | / | <20 | / | [37] |
MSPEDLLME/ HPLC–DAD | Fe3O4@ SiO2@ GO-β-CD | Water and milk/OTC,TC,DC | 1.8 μg/L | 6.1 μg/L | 0.1–6.9 | 7.9 | [26] |
MSPE/HPLC | Fe3O4/ aptamer | Water and honey/TC | 2.50 μg/L | 10.0 μg/L | 1.3 | 3.2 | [38] |
LLE-MSPE/ HPLC–UV | MNP-NH2 | Milk/OTC,TC,CTC,DC | 40 μg/L | 50 μg/L | 1.5 | / | [39] |
MSPE/HPLC– DAD | C-nanofiber-coated magnetic nanoparticles | Milk/TC | 3.52 μg/L | 9.83 μg/L | 3.8 | / | [27] |
MSPE/HPLC– DAD | Cs-k-Fe3O4 | Water/TC | 0.21μg/L | 0.63 μg/L | 0.6–2.7 | 0.97–2.0 | [25] |
TDESs/HPLC– UV | TDESs | Water, honey, and milk/TC | 1.0 μg/L | 3.3 μg/L | 2.8–4.1 | 3.6–5.2 | [40] |
MSPE/UHPLC– TUV | Fe3O4@SiO2@FeO | Water/TC | 0.027–0.107 μg/L | / | 0.1–1.9 | 1.0–3.8 | [21] |
MSPE/HPLC– DAD | rGO/Fe3O4 | Water/TC | 9.00 μg/L | 29.0 μg/L | 1.4 | 4.2 | [41] |
MSPE/UHPLC– MS/MS | Fe3O4@C–NFs | Aquatic products/ OTC,TC,CTC,DC | 0.70 μg/kg | 2.0 μg/kg | 3.3–7.6 | 6.2–9.7 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, P.; Bai, J.; He, P.; Zeng, J. One Pot Synthesis of Nanofiber-Coated Magnetic Composites as Magnetic Dispersive Solid-Phase Extraction Adsorbents for Rapid Determination of Tetracyclines in Aquatic Food Products. Molecules 2023, 28, 7421. https://doi.org/10.3390/molecules28217421
Li P, Bai J, He P, Zeng J. One Pot Synthesis of Nanofiber-Coated Magnetic Composites as Magnetic Dispersive Solid-Phase Extraction Adsorbents for Rapid Determination of Tetracyclines in Aquatic Food Products. Molecules. 2023; 28(21):7421. https://doi.org/10.3390/molecules28217421
Chicago/Turabian StyleLi, Peipei, Junlu Bai, Pengfei He, and Junjie Zeng. 2023. "One Pot Synthesis of Nanofiber-Coated Magnetic Composites as Magnetic Dispersive Solid-Phase Extraction Adsorbents for Rapid Determination of Tetracyclines in Aquatic Food Products" Molecules 28, no. 21: 7421. https://doi.org/10.3390/molecules28217421
APA StyleLi, P., Bai, J., He, P., & Zeng, J. (2023). One Pot Synthesis of Nanofiber-Coated Magnetic Composites as Magnetic Dispersive Solid-Phase Extraction Adsorbents for Rapid Determination of Tetracyclines in Aquatic Food Products. Molecules, 28(21), 7421. https://doi.org/10.3390/molecules28217421