Illicium verum L. (Star Anise) Essential Oil: GC/MS Profile, Molecular Docking Study, In Silico ADME Profiling, Quorum Sensing, and Biofilm-Inhibiting Effect on Foodborne Bacteria
Abstract
:1. Introduction
2. Results
2.1. Chemical Composition of I. verum EO
2.2. Antibacterial Potential of I. verum EO and Trans-Anethole
2.3. Adhesive Properties of Bacterial Strains
2.4. Antibiofilm Formation Activities
2.5. Anti-Quorum Sensing Activities of the Tested Agents
2.5.1. Anti-Swarming Activity
2.5.2. Violacein Inhibition Assay
2.6. Druggability and Pharmacokinetic Properties of I. verum’s Main Compounds
2.7. Molecular Docking Study
3. Discussion
4. Materials and Methods
4.1. Chemical Composition Analyses
4.2. Disk Diffusion Test
4.3. Microdilution Assay
4.4. Adhesive Potentiality
4.5. Biofilm Formation Capacity on Abiotic Surfaces
4.6. Antibiofilm Activities
4.6.1. Biofilm Inhibition
4.6.2. Biofilm Eradication
4.7. Anti-Quorum Sensing Activity
4.8. Anti-Swarming Activity
4.9. ADMET Profile
4.10. Molecular Docking Study
4.11. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Serwecińska, L. Antimicrobials and Antibiotic-Resistant Bacteria: A Risk to the Environment and to Public Health. Water 2020, 12, 3313. [Google Scholar] [CrossRef]
- Llor, C.; Bjerrum, L. Antimicrobial resistance: Risk associated with antibiotic overuse and initiatives to reduce the problem. Ther. Adv. Drug. Saf. 2014, 5, 229–241. [Google Scholar] [CrossRef]
- Chouhan, S.; Sharma, K.; Guleria, S. Antimicrobial Activity of Some Essential Oils-Present Status and Future Perspectives. Medicines 2017, 4, 58. [Google Scholar] [CrossRef]
- Outemsaa, B.; Oubihi, A.; Jaber, H.; Haida, S.; Kenfaoui, I.; Ihamdan, R.; El Azhari, H.; Ouhssine, M. Chemical composition, antioxidant and antimicrobial activities of the essential oil of Illicium verum. E3S Web Conf. 2021, 319, 01052. [Google Scholar] [CrossRef]
- Chopra, I.; Hodgson, J.; Metcalf, B.; Poste, G. The search for antibacterial agents effective against bacteria resistant to multiple antibiotics. Antimicrob. Agents Chemother. 1997, 4, 497–503. [Google Scholar] [CrossRef]
- Vaou, N.; Stavropoulou, E.; Voidarou, C.; Tsigalou, C.; Bezirtzoglou, E. Towards Advances in Medicinal Plant Antimicrobial Activity: A Review Study on Challenges and Future Perspectives. Microorganisms 2021, 9, 2041. [Google Scholar] [CrossRef]
- Aminzare, M.; Hashemi, M.; Azar, H.H.; Hejazi, J. The use of herbal extracts and essential oils as a potential antimicrobial in meat and meat products; a review. J. Hum. Environ. Health Promot. 2016, 1, 63–74. [Google Scholar] [CrossRef]
- Al-Haidari, R.A.; Shaaban, M.I.; Ibrahim, S.R.M.; Mohamed, G.A. Anti-quorum sensing activity of some medicinal plants. Afr. J. Tradit. Complement. Altern. Med. 2016, 13, 67–71. [Google Scholar] [CrossRef]
- Jamal, M.; Ahmad, W.; Andleeb, S.; Jalil, F.; Imran, M.; Nawaz, M.A.; Hussain, T.; Ali, M.; Rafiq, M.; Kamil, M.A.; et al. Bacterial biofilm and associated infections. J. Chin. Med. Assoc. 2018, 81, 7–11. [Google Scholar] [CrossRef]
- Mseddi, K.; Alimi, F.; Noumi, E.; Veettil, V.N.; Deshpande, S.; Adnan, M.; Hamdi, A.; Elkahoui, S.; Alghamdi, A.; Kadri, A. Thymus musilii Velen. as a promising source of potent bioactive compounds with its pharmacological properties: In vitro and in silico analysis. Arab. J. Chem. 2020, 13, 6782–6801. [Google Scholar] [CrossRef]
- Tepe, B.; Daferera, D.; Sokmen, M.; Polissiou, M.; Sokmen, A. In vitro antimicrobial and antioxidant activities of the essential oils and various extracts of Thymus eigii M. Zohary et P.H. Davis. J. Agricul. Food Chem. 2004, 52, 1132–1137. [Google Scholar] [CrossRef]
- Howes, M.J.; Kite, G.C.; Simmonds, M.S. Distinguishing chinese star anise from Japanese star anise using thermal desorption-gas chromatography-mass spectrometry. J. Agric. Food Chem. 2009, 57, 5783–5789. [Google Scholar] [CrossRef]
- Padmashree, A.; Roopa, N.; Semwal, A.D.; Sharma, G.K.; Agathian, G.; Bawa, A.S. Star Anise (Illicium verum) and Black Caraway (Carum nigrum) as Natural Antioxidants. Food Chem. 2007, 104, 59–66. [Google Scholar] [CrossRef]
- Kim, S.I.; Roh, J.Y.; Kim, D.H.; Lee, H.S.; Ahn, Y.J. Insecticidal activities of aromatic plant extracts and essential oils against Sitophilus oryzae and Callosobruchus Chinensis. J. Stored Prod. Res. 2003, 39, 293. [Google Scholar] [CrossRef]
- Singh, G.; Maurya, S.; de Lampasona, M.P.; Catalan, C. Chemical constituents, antimicrobial investigations and antioxidative potential of volatile oil and acetone extract of star anise fruits. J. Sci. Food Agric. 2006, 86, 111. [Google Scholar] [CrossRef]
- Nadkarni, K.M. The Indian Material Medica, 2nd ed.; Popular Prakashan: Mumbai, India, 2002; Volume 1, pp. 675–676. [Google Scholar]
- Lawless, J. The Encyclopaedia of Essential Oils; Thorsons: London, UK, 2002. [Google Scholar]
- Chouksey, D.; Sharma, P.; Pawar, R.S. Biological activities and chemical constituents of Illicium verum hook fruits (Chinese star anise). Der. Pharm. Sin. 2010, 1, 1–10. [Google Scholar]
- Shahrajabian, M.H.; Sun, W.; Cheng, Q. Chinese star anise and anise, magic herbs in traditional Chinese medicine and modern pharmaceutical science. Asian J. Med. Biol. Res. 2019, 5, 162–179. [Google Scholar] [CrossRef]
- Dzamic, A.; Sokovic, M.; Ristic, M.S.; Grijic-Jovanovic, S.; Vukojevic, J.; Marin, P.D. Chemical composition and antifungal activity of Illicium verum and Eugenia caryophyllata essential oils. Chem. Nat. Compd. 2009, 45, 259–261. [Google Scholar] [CrossRef]
- Yang, E.C.; Hsieh, Y.Y.; Chuang, L.Y. Comparison of the Phytochemical Composition and Antibacterial Activities of the Various Extracts from Leaves and Twigs of Illicium verum. Molecules 2021, 26, 3909. [Google Scholar] [CrossRef]
- Rahman, M.R.; Lou, Z.; Zhang, J.; Yu, F.; Timilsena, Y.P.; Zhang, C.; Zhang, Y.; Bakry, A.M. Star Anise (Illicium verum Hook. f.) as Quorum Sensing and Biofilm Formation Inhibitor on Foodborne Bacteria: Study in Milk. J. Food Prot. 2017, 80, 645–653. [Google Scholar] [CrossRef]
- Meng, X.Y.; Zhang, H.X.; Mezei, M.; Cui, M. Molecular docking: A powerful approach for structure-based drug discovery. Curr. Comput. Aided Drug Des. 2011, 7, 146–157. [Google Scholar] [CrossRef]
- Jorgensen, W.L. The many roles of computation in drug discovery. Science 2004, 303, 1813–1818. [Google Scholar] [CrossRef]
- Bajorath, J. Integration of virtual and high-throughput screening. Nature reviews. Drug Discov. 2002, 1, 882–894. [Google Scholar] [CrossRef]
- Haddaji, F.; Papetti, A.; Noumi, E.; Colombo, R.; Deshpande, S.; Aouadi, K.; Adnan, M.; Kadri, A.; Selmi, B.; Snoussi, M.; et al. Bioactivities and in silico study of Pergularia tomentosa L. phytochemicals as potent antimicrobial agents targeting type IIA topoisomerase, TyrRS, and Sap1 virulence proteins. Environ. Sci. Pollut. Res. Int. 2021, 28, 25349–25367. [Google Scholar] [CrossRef]
- Badraoui, R.; Saeed, M.; Bouali, N.; Hamadou, W.S.; Elkahoui, S.; Alam, M.J.; Siddiqui, A.J.; Adnan, M.; Saoudi, M.; Rebai, T. Expression Profiling of Selected Immune Genes and Trabecular Microarchitecture in Breast Cancer Skeletal Metastases Model: Effect of α-Tocopherol Acetate Supplementation. Calcif. Tissue Int. 2022, 110, 475–488. [Google Scholar] [CrossRef]
- Gatsing, D.; Tchakoute, V.; Ngamga, D.; Kuiate, J.R.; Tamokou, J.D.D.; Nji-Nkah, B.F.; Tchouanguep, F.M.; Fodouop, S.P.C. In vitro antibacterial activity of Crinum purpurascens Herb. leaf extract against the Salmonella species causing typhoid fever and its toxicological evaluation. Iran. J. Med. Sci. 2009, 34, 126–136. [Google Scholar]
- Moroh, J.L.; Bahi, C.; Dje, K.; Loukou, Y.G.; Guide Guina, F. Etude de l’activité antibactérienne de l’extrait acétatique de Morinda morindoides (Baker) Milne-Redheat (Rubiaceae) sur la croissance in vitro des souches d’Escherichia coli. Bull. Soc. R. Sci. Liege 2008, 77, 44–61. [Google Scholar]
- Huang, Y.; Zhao, J.; Zhou, L.; Wang, J.; Gong, Y.; Chen, X.; Guo, Z.; Wang, Q.; Jiang, W. Antifungal activity of the essential oil of Illicium verum fruit and its main component trans-anethole. Molecules 2010, 15, 7558–7569. [Google Scholar] [CrossRef]
- Hanif, M.A.; Al-Maskari, M.Y.; Al-Maskari, A.; Al-Shukaili, A.; Al-Maskari, A.Y.; Al-Sabahi, J.N. Essential oil composition, antimicrobial and antioxidant activities of unexplored Omani basil. J. Med. Plants Res. 2011, 5, 751–757. [Google Scholar]
- Shakya, A.K. Medicinal plants: Future source of new drugs. Int. J. Herb. Med. 2016, 4, 59–64. [Google Scholar]
- Soher, E.A.; Bassem, A.S.; Mohamed, S.S.; Amal, S.H. Assessment of antimycotoxigenic and antioxidant activity of star anise (Illicium verum) in vitro. J. Saudi Soci. Agr. Sci. 2016, 15, 20–27. [Google Scholar]
- Sharafan, M.; Jafernik, K.; Ekiert, H.; Kubica, P.; Kocjan, R.; Blicharska, E.; Szopa, A. Illicium verum (Star Anise) and Trans-Anethole as Valuable Raw Materials for Medicinal and Cosmetic Applications. Molecules 2022, 27, 650. [Google Scholar] [CrossRef]
- Balijepalli, M.K.; Buru, A.S.; Sakirolla, R.; Pichika, M.R. Cinnamomum genus: A review on its biological activities. Int. J. Pharm. Pharm. Sci. 2017, 9, 1–11. [Google Scholar] [CrossRef]
- Phu, H.H.; Pham Van, K.; Tran, T.H.; Pham, D.T.N. Extraction, Chemical Compositions and Biological Activities of Essential Oils of Cinnamomum verum Cultivated in Vietnam. Processes 2022, 10, 1713. [Google Scholar] [CrossRef]
- Patra, J.K.; Das, G.; Bose, S.; Banerjee, S.; Vishnuprasad, C.N.; del Pilar Rodriguez-Torres, M.; Shin, H.S. Star anise (Illicium verum): Chemical compounds, antiviral properties, and clinical relevance. Phyther. Res. 2020, 34, 1248–1267. [Google Scholar] [CrossRef]
- Wang, G.W.; Hu, W.T.; Huang, B.K.; Qin, L.P. Illicium verum: A review on its botany, traditional use, chemistry and pharmacology. J. Ethnopharmacol. 2011, 136, 10–20. [Google Scholar] [CrossRef]
- Freire, J.M.; Cardoso, M.G.; Batista, L.R.; Andrade, M.A. Essential oil of Origanum majorana L., Illicium verum Hook. f. and Cinnamomum zeylanicum Blume: Chemical and antimicrobial characterization. Rev. Bras. Plantas Med. 2011, 13, 209–214. [Google Scholar] [CrossRef]
- Shan, B.; Cai, Y.Z.; Brooks, J.D.; Corke, H. The in vitro antibacterial activity of dietary spice and medicinal herb extracts. Int. J. Food Microbiol. 2007, 117, 112–119. [Google Scholar] [CrossRef]
- Mohamed, S.S.H.; Hansi, P.D.; Kavitha, T. Antimicrobial activity and phytochemical analysis of selected Indian folk medicinal plants. Int. J. Pharmacol. Sci. Res. 2010, 1, 430–434. [Google Scholar]
- Ebani, V.V.; Nardoni, S.; Bertelloni, F.; Pistelli, L.; Mancianti, F. Antimicrobial Activity of Five Essential Oils against Bacteria and Fungi Responsible for Urinary Tract Infections. Molecules 2018, 23, 1668. [Google Scholar] [CrossRef]
- Salem, M.A.; El-Shiekh, R.A.; Hashem, R.A.; Hassan, M. In vivo antibacterial activity of Star Anise (Illicium verum Hook.) extract using murine MRSA skin infection model in relation to its metabolite profile. Infect. Drug Resist. 2021, 14, 33–48. [Google Scholar]
- De, M.; De, A.K.; Sen, P.; Banerjee, A.B. Antimicrobial properties of star anise (Illicium verum Hook f). Phytother. Res. 2002, 16, 94–95. [Google Scholar]
- Bauer, W.D.; Teplitski, M. Can plants manipulate bacterial quorum sensing? Aust. J. Plant. Physiol. 2001, 28, 913–921. [Google Scholar]
- Mohammadi Pelarti, S.; Karimi Zarehshuran, L.; Babaeekhou, L.; Ghane, M. Antibacterial, anti-biofilm and anti-quorum sensing activities of Artemisia dracunculus essential oil (EO): A study against Salmonella enterica serovar Typhimurium and Staphylococcus aureus. Arch. Microbiol. 2021, 203, 1529–1537. [Google Scholar]
- Zala, A.R.; Dhanji, P.R.; Iqrar, A.; Haruny, P.; Premlata, K. Synthesis, characterization, molecular dynamic simulation, and biological assessment of cinnamates linked to imidazole/benzimidazole as a CYP51 inhibitor. J. Biomol. Struct. Dyn. 2023, 1–17. [Google Scholar]
- Noumi, E.; Ahmad, I.; Bouali, N.; Patel, H.; Ghannay, S.; ALrashidi, A.A.; Snoussi, M. Thymus musilii Velen. Methanolic Extract: In Vitro and In Silico Screening of Its Antimicrobial, Antioxidant, Anti-Quorum Sensing, Antibiofilm, and Anticancer Activities. Life 2023, 13, 62. [Google Scholar]
- Noumi, E.; Ahmad, I.; Adnan, M.; Merghni, A.; Patel, H.; Haddaji, N.; Bouali, N.; Alabbosh, K.F.; Ghannay, S.; Aouadi, K.; et al. GC/MS Profiling, Antibacterial, Anti-Quorum Sensing, and Antibiofilm Properties of Anethum graveolens L. Essential Oil: Molecular Docking Study and in silico ADME Profiling. Plants 2023, 12, 1997. [Google Scholar] [CrossRef]
- Snoussi, M.; Ahmad, I.; Aljohani, A.M.A.; Patel, H.; Abdulhakeem, M.A.; Alhazmi, Y.S.; Tepe, B.; Adnan, M.; Siddiqui, A.J.; Sarikurkcu, C.; et al. Phytochemical Analysis, Antioxidant, and Antimicrobial Activities of Ducrosia flabellifolia: A Combined Experimental and Computational Approaches. Antioxidants 2022, 11, 2174. [Google Scholar]
- Tivari, S.R.; Kokate, S.V.; Gayke, M.S.; Ahmad, I.; Patel, H.; Kumar, S.G.; Jadeja, Y.S. A Series of Dipeptide Derivatives Containing (S)-5-Oxo-pyrrolidine-2-carboxilic Acid Conjugates: Design, Solid-Phase Peptide Synthesis, in vitro Biological Evolution, and Molecular Docking Studies. Chem. Sel. 2022, 7, e202203462. [Google Scholar]
- Zala, A.R.; Tiwari, R.; Naik, H.N.; Ahmad, I.; Patel, H.; Jauhari, S.; Kumari, P. Design and synthesis of pyrrolo[2,3-d]pyrimidine linked hybrids as α-amylase inhibitors: Molecular docking, MD simulation, ADMET and antidiabetic screening. Mol. Divers. 2023, 1–15. [Google Scholar] [CrossRef]
- Owen, A.E.; Chima, C.M.; Ahmad, I.; Emori, W.; Agwamba, E.C.; Cheng, C.R.; Benjamin, I.; Patel, H.; Ahuekwe, E.F.; Ojong, M.A.; et al. Antibacterial Potential of Trihydroxycyclohexa-2,4-Diene-1-Carboxylic Acid: Insight from DFT, Molecular Docking, and Molecular Dynamic Simulation. Polycycl. Aromat. Compd. 2023, 1–24. [Google Scholar] [CrossRef]
- Noumi, E.; Merghni, A.; Alreshidi, M.; Haddad, O.; Akmadar, G.; De Martino, L.; Mastouri, M.; Ceylan, O.; Snoussi, M.; Al-Sieni, A.; et al. Chromobacterium violaceum and Pseudomonas aeruginosa PAO1: Models for Evaluating Anti-Quorum Sensing Activity of Melaleuca alternifolia Essential Odail and Its Main Component Terpinen-4-ol. Molecules 2018, 23, 2672. [Google Scholar]
- Bazaid, A.S.; Aldarhami, A.; Patel, M.; Adnan, M.; Hamdi, A.; Snoussi, M.; Qanash, H.; Imam, M.; Monjed, M.K.; Khateb, A.M. The Antimicrobial Effects of Saudi Sumra Honey against Drug Resistant Pathogens: Phytochemical Analysis, Antibiofilm, Anti-Quorum Sensing, and Antioxidant Activities. Pharmaceuticals 2022, 15, 1212. [Google Scholar]
- Ghannay, S.; Aouadi, K.; Kadri, A.; Snoussi, M. In Vitro and In Silico Screening of Anti-Vibrio spp., Antibiofilm, Antioxidant and Anti-Quorum Sensing Activities of Cuminum cyminum L. Volatile Oil. Plants 2022, 11, 2236. [Google Scholar] [CrossRef]
- Touati, A.; Achour, W.; Abbassi, M.S.; Ben Hassen, A. Detection of ica genes and slime production in a collection of Staphylococcus epidermidis strains from catheter-related infections in neutropenic patients. Pathol. Biol. 2007, 55, 277–282. [Google Scholar]
- Ellafi, A.; Farhat, R.; Snoussi, M.; Noumi, E.; Anouar, E.H.; Ali, R.B.; El May, M.V.; Sayadi, S.; Aouadi, K.; Kadri, A.; et al. Phytochemical profiling, antimicrobial, antibiofilm, insecticidal, and anti-leishmanial properties of aqueous extract from Juglans regia L. root bark: In vitro and in silico approaches. Int. J. Food Prop. 2023, 26, 1079–1097. [Google Scholar] [CrossRef]
- Bazaid, A.S.; Alsolami, A.; Patel, M.; Khateb, A.M.; Aldarhami, A.; Snoussi, M.; Almusheet, S.M.; Qanash, H. Antibiofilm, Antimicrobial, Anti-Quorum Sensing, and Antioxidant Activities of Saudi Sidr Honey: In Vitro and Molecular Docking Studies. Pharmaceutics 2023, 15, 2177. [Google Scholar]
- Mathew, B.; Ravichandran, V.; Raghuraman, S.; Rangarajan, T.M.; Abdelgawad, M.A.; Ahmad, I.; Patel, H.M.; Kim, H. Two dimensional-QSAR and molecular dynamics studies of a selected class of aldoxime- and hydroxy-functionalized chalcones as monoamine oxidase-B inhibitors. J. Biomol. Struc. Dynamics. 2022, 41, 1–11. [Google Scholar]
- Halder, S.K.; Ahmad, I.; Shathi, J.F.; Mim, M.M.; Hassan, M.R.; Jewel, M.J.I.; Dey, P.; Islam, M.S.; Patel, H.; Morshed, M.R.; et al. A Comprehensive Study to Unleash the Putative Inhibitors of Serotype2 of Dengue Virus: Insights from an In Silico Structure-Based Drug Discovery. Mol. Biotech. 2022, 28, 1–14. [Google Scholar]
- Ghannay, S.; Aouadi, K.; Kadri, A.; Snoussi, M. GC-MS Profiling, Vibriocidal, Antioxidant, Antibiofilm, and Anti-Quorum Sensing Properties of Carum carvi L. Essential Oil: In Vitro and In Silico Approaches. Plants 2022, 11, 1072. [Google Scholar]
- Kikiowo, B.; Ahmad, I.; Alade, A.A.; Ijatuyi, T.T.; Iwaloye, O.; Patel, H.M. Molecular dynamics simulation and pharmacokinetics studies of ombuin and quercetin against human pancreatic α-amylase. J. Biomol. Stru. Dyn. 2022, 41, 10388–10395. [Google Scholar] [CrossRef]
- Haque, M.A.; Hossain, M.S.; Ahmad, I.; Akbor, M.A.; Rahman, A.; Manir, M.S.; Patel, H.M.; Cho, K.M. Unveiling chlorpyrifos mineralizing and tomato plant-growth activities of Enterobacter sp. strain HSTU-ASh6 using biochemical tests, field experiments, genomics, and in silico analyses. Front. Microbiol. 2022, 13, 1060554. [Google Scholar] [CrossRef]
- Tivari, S.R.; Kokate, S.V.; Sobhia, E.M.; Kumar, S.G.; Shelar, U.B.; Jadeja, Y.S. A Series of Novel Bioactive Cyclic Peptides: Synthesis by Head-to-Tail Cyclization Approach, Antimicrobial Activity and Molecular Docking Studies; European Chemical Society Publishing: Brussels, Belgium, 2022. [Google Scholar]
- Akintunde, J.K.; Akomolafe, V.O.; Taiwo, O.A.; Ahmad, I.; Patel, H.; Osifeso, A.; Ojo, O.A. Antihypertensive activity of Roasted cashew nut in mixed petroleum fractions-induced hypertension: An in vivo and in silico approaches. Heliyon 2022, 8, e12339. [Google Scholar] [CrossRef]
- Ahmed Atto Al-Shuaeeb, R.; Abd El-Mageed, H.; Ahmed, S.; Mohamed, H.S.; Hamza, Z.S.; Rafi, M.O.; Ahmad, I.; Patel, H. In silico investigation and potential therapeutic approaches of isoquinoline alkaloids for neurodegenerative diseases: Computer-aided drug design perspective. J. Biomol. Struct. Dyn. 2023, 15, 1–13. [Google Scholar] [CrossRef]
- Snoussi, M.; Redissi, A.; Mosbah, A.; De Feo, V.; Adnan, M.; Aouadi, K.; Alreshidi, M.; Patel, M.; Kadri, A.; Noumi, E. Emetine, a potent alkaloid for the treatment of SARS-CoV-2 targeting papain-like protease and non-structural proteins: Pharmacokinetics, molecular docking and dynamic studies. J. Biomol. Struct. Dyn. 2022, 40, 10122–10135. [Google Scholar] [CrossRef]
No. | Compound | Percentage | Ki a | Ki b |
---|---|---|---|---|
1 | α-pinene | 0.71 | 924 | 939 |
2 | β-pinene | 0.10 | 983 | 979 |
3 | δ-2-carene | 0.30 | 994 | 1002 |
4 | α-Phelandrene | 0.46 | 1000 | 1002 |
5 | δ-3-carene | 0.15 | 1007 | 1011 |
6 | ρ-cymene | 0.12 | 1015 | 1024 |
7 | Limonene | 3.19 | 1020 | 1029 |
8 | 1,8-cineole | 0.34 | 1022 | 1031 |
9 | (E)-β-ocimene | 0.10 | 1050 | 1050 |
10 | Terpinolene | 0.13 | 1080 | 1088 |
11 | Linalool | 0.29 | 1093 | 1096 |
12 | Isopulegol (neoiso) | 0.22 | 1170 | 1171 |
13 | α-terpineol | 0.28 | 1183 | 1188 |
14 | Methyl chavicol | 0.37 | 1191 | 1196 |
15 | Z-anethole | 0.21 | 1246 | 1252 |
16 | ρ-anisaldehyde | 0.33 | 1250 | 1250 |
17 | (E)-anethole | 83.68 | 1288 | 1284 |
18 | Cyclosativene | 0.11 | 1369 | 1371 |
19 | Anisyl methyl ketone | 0.15 | 1378 | 1382 |
20 | Longifolene | 0.10 | 1408 | 107 |
21 | α-gurjunene | 0.20 | 1412 | 1409 |
22 | cis-thujopsene | 0.23 | 1429 | 1431 |
23 | β-himachalene | 0.14 | 1501 | 1501 |
24 | β-germacreme | 0.08 | 1556 | 1561 |
Strains | I. verum EO | MBC/MIC Ratio | Trans-Anethole | MBC/MIC Ratio | ||||
---|---|---|---|---|---|---|---|---|
IZ ± SD (mm) | MIC (mg/mL) | MBC (mg/mL) | IZ ± SD (mm) | MIC (mg/mL) | MBC (mg/mL) | |||
Listeria monocytogenes CECT 933 | 9.33 ± 0.57 | 0.048 | >50 | >4; Bacteriostatic | 11.66 ± 0.57 | 0.048 | 50 | >4; Bacteriostatic |
Vibrio vulnificus CECT 529 | 8 ± 0.1 | 0.048 | >50 | >4; Bacteriostatic | 6 ± 0.1 | 0.048 | >50 | >4; Bacteriostatic |
Shigella flexeneri CECT 4804 | 8 ± 0.1 | 0.097 | >50 | >4; Bacteriostatic | 6 ± 0.1 | 0.048 | >50 | >4; Bacteriostatic |
Bacillus subtilis CIP 5265 | 10 ± 0.1 | 0.048 | >50 | >4; Bacteriostatic | 6 ± 0.1 | 0.048 | 50 | >4; Bacteriostatic |
Salmonella enterica CECT 443 | 10.33 ± 0.57 | 0.048 | >50 | >4; Bacteriostatic | 6 ± 0.1 | 0.048 | >50 | >4; Bacteriostatic |
Escherichia coli ATCC 35218 | 12 ± 1 | 0.048 | >50 | >4; Bacteriostatic | 9 ± 0.1 | 0.048 | 50 | >4; Bacteriostatic |
Pseudomonas aeruginosa PAO1 | 7.33 ± 0.57 | 0.048 | 25 | >4; Bacteriostatic | 6 ± 0.1 | 0.048 | >50 | >4; Bacteriostatic |
Staphylococcus aureus ATCC 6538 | 13.66 ± 0.57 | 0.048 | >50 | >4; Bacteriostatic | 8.33 ± 0.57 | 0.048 | >50 | >4; Bacteriostatic |
Strains | Slime Production on CRA | Adhesion to Polystyrene | ||
---|---|---|---|---|
Color | S+/S− | OD570 ± SD | Biofilm Production | |
S. aureus ATCC 6538 | Black | S+ | 1.36 ± 0.2 | High producer |
L. monocytogenes CECT 933 | Red with black center | S+ | 0.19 ± 0.07 | Moderate producer |
V. vulnificus CECT 529 | Red with black center | S+ | 0.13 ± 0.02 | Moderate producer |
B. subtilis CIP 5265 | Bordeaux red | S− | 0.12 ± 0.01 | Moderate producer |
E. coli ATCC 35218 | Red with black center | S+ | 0.17 ± 0.03 | Moderate producer |
S. flexeneri CECT 4804 | Red with black center | S+ | 0.10 ± 0.01 | Moderate producer |
S. enterica CECT 443 | Bordeaux red | S− | 0.15 ± 0.01 | Moderate producer |
P. aeruginosa PAO1 | Bordeaux red | S− | 0.42 ± 0.26 | Moderate producer |
Tested Agent | Concentrations | % Anti-Swarming Activity |
---|---|---|
50 µg/mL | 15.5 ± 1.3 | |
Illicium verum | 75 µg/mL | 19.7 ± 2.6 |
100 µg/mL | 38 ± 0.9 | |
50 µg/mL | 20.83 ± 4.17 | |
Trans-anethole | 75 µg/mL | 25.61 ± 1.2 |
100 µg/mL | 33.33 ± 0 |
Concentration | % of Violacein Inhibition | |
---|---|---|
I. verum EO | Trans-Anethole | |
MIC | 76.18 ± 1.1 | 48.78 ± 1.1 |
MIC/2 | 67.61 ± 1 | 31.35 ± 1.1 |
MIC/4 | 46.77 ± 1.3 | 19.12 ± 1.3 |
MIC/8 | 23.6 ± 1 | 11.67 ± 1 |
MIC/16 | 17.33 ± 1.2 | 8.87 ± 1.2 |
MIC/32 | 3.67 ± 1.4 | 1.1 ± 0.67 |
Entry | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Physicochemical Properties | ||||||||||||
Molecular weight (g/mol) | 136.23 | 136.23 | 136.23 | 136.23 | 136.23 | 134.22 | 136.23 | 154.25 | 136.23 | 136.23 | 154.25 | 154.25 |
Num. heavy atoms | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 11 | 10 | 10 | 11 | 11 |
Num. arom. heavy atoms | 0 | 0 | 0 | 0 | 0 | 6 | 0 | 0 | 0 | 0 | 0 | 0 |
Fraction Csp3 | 0.80 | 0.80 | 0.80 | 0.60 | 0.80 | 0.40 | 0.60 | 1.00 | 0.40 | 0.60 | 0.60 | 0.80 |
Num. rotatable bonds | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 3 | 0 | 4 | 1 |
Num. H-bond acceptors | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 |
Num. H-bond donors | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
Molar refractivity | 45.22 | 45.22 | 45.22 | 47.12 | 45.22 | 45.99 | 47.12 | 47.12 | 48.76 | 47.12 | 50.44 | 48.76 |
TPSA (Å2) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 9.23 | 0 | 0 | 20.23 | 20.23 |
Consensus log Po/w | 3.44 | 3.42 | 3.12 | 2.97 | 3.42 | 3.5 | 3.37 | 2.67 | 3.4 | 3.4 | 2.66 | 2.42 |
Lipinski rules | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Bioavailability score | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 |
Pharmacokinetics | ||||||||||||
GI absorption | Low | Low | Low | Low | Low | Low | Low | High | Low | Low | High | High |
BBB permeant | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
P-gp substrate | No | No | No | No | No | No | No | No | No | No | No | No |
CYP1A2 inhibitor | No | No | No | No | No | No | No | No | No | No | No | No |
CYP2C19 inhibitor | No | No | No | No | No | No | No | No | No | No | No | No |
CYP2C9 inhibitor | Yes | Yes | No | No | Yes | No | Yes | No | No | Yes | No | No |
CYP2D6 inhibitor | No | No | No | No | No | Yes | No | No | No | No | No | No |
CYP3A4 inhibitor | No | No | No | No | No | No | No | No | No | No | No | No |
Log Kp (cm/s) | −3.95 | −4.18 | −5.11 | −4.85 | −4.02 | −4.21 | −3.89 | −5.30 | −4.11 | −3.96 | −5.13 | −5.15 |
Entry | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |
Physicochemical Properties | ||||||||||||
Molecular weight (g/mol) | 154.25 | 296.4 | 148.2 | 136.15 | 148.2 | 204.35 | 164.20 | 204.35 | 204.35 | 204.35 | 204.35 | 204.35 |
Num. heavy atoms | 11 | 22 | 11 | 10 | 11 | 15 | 12 | 15 | 15 | 15 | 15 | 15 |
Num. arom. heavy atoms | 0 | 12 | 6 | 6 | 6 | 0 | 6 | 0 | 0 | 0 | 0 | 0 |
Fraction Csp3 | 0.80 | 0.20 | 0.20 | 0.12 | 0.20 | 1.00 | 0.30 | 0.87 | 0.87 | 0.87 | 0.73 | 0.60 |
Num. rotatable bonds | 1 | 5 | 2 | 2 | 2 | 1 | 3 | 0 | 0 | 0 | 0 | 0 |
Num. H-bond acceptors | 1 | 2 | 1 | 2 | 1 | 0 | 2 | 0 | 0 | 0 | 0 | 0 |
Num. H-bond donors | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Molar refractivity | 48.80 | 94.58 | 47.83 | 38.32 | 47.83 | 65.24 | 47.71 | 66.88 | 67.14 | 66.62 | 68.78 | 70.68 |
TPSA (Å2) | 20.23 | 29.46 | 9.23 | 26.3 | 9.23 | 0 | 26.30 | 0 | 0 | 0 | 0 | 0 |
Consensus log Po/w | 2.58 | 4.53 | 2.79 | 1.61 | 2.79 | 4.32 | 1.94 | 4.5 | 4.27 | 4.48 | 4.20 | 4.60 |
Lipinski rules | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Bioavailability score | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 |
Pharmacokinetics | ||||||||||||
GI absorption | High | High | High | High | High | Low | High | Low | Low | Low | Low | Low |
BBB permeant | Yes | Yes | Yes | Yes | Yes | Yes | Yes | No | No | No | No | No |
P-gp substrate | No | No | No | No | No | No | No | No | No | No | No | No |
CYP1A2 inhibitor | No | Yes | Yes | Yes | Yes | Yes | Yes | No | No | No | No | No |
CYP2C19 inhibitor | No | Yes | No | No | No | Yes | No | Yes | Yes | Yes | No | No |
CYP2C9 inhibitor | No | Yes | No | No | No | Yes | No | Yes | Yes | Yes | Yes | Yes |
CYP2D6 inhibitor | No | Yes | No | No | No | No | No | No | No | No | No | No |
CYP3A4 inhibitor | No | No | No | No | No | No | No | No | No | No | No | No |
Log Kp (cm/s) | −4.83 | −3.87 | −4.86 | −5.88 | −4.86 | −4.09 | −6.16 | −3.94 | −4.64 | −4.17 | −4.75 | −3.45 |
Sr. No. | Compound | 1HD2 | 1JIJ | 2XCT | 2UV0 | 3IX3 |
---|---|---|---|---|---|---|
1 | α-pinene | −3.86 | −4.526 | −5.707 | −6.614 | −6.585 |
2 | β-pinene | −3.597 | −4.499 | −5.512 | −6.574 | −6.546 |
3 | δ-2-carene | −3.86 | −4.526 | −6.193 | −6.614 | −6.585 |
4 | α-phelandrene | −4.118 | −4.788 | −6.372 | −6.688 | −6.69 |
5 | δ-3-carene | −3.814 | −4.591 | −6.193 | −6.97 | −6.75 |
6 | ρ-cymene | −3.336 | −4.481 | −6.204 | −6.727 | −6.774 |
7 | Limonene | −3.032 | −3.521 | −5.525 | −6.153 | −5.874 |
8 | 1,8-cineole | −3.696 | −4.724 | −5.026 | −6.355 | −5.949 |
9 | (E)-β-ocimene | −1.902 | −1.927 | −3.782 | −3.89 | −2.913 |
10 | Terpinolene | −3.551 | −5.061 | −6.241 | −6.695 | −6.592 |
11 | Linalool | −2.829 | −3.051 | −4.889 | −4.752 | −3.896 |
12 | Isopulegol (neoiso) | −3.385 | −4.508 | −6.512 | −6.47 | −6.223 |
13 | α-terpineol | −4.46 | −4.811 | −6.551 | −5.536 | −6.092 |
14 | Methyl chavicol | −4.02 | −4.575 | −5.947 | −6.147 | −5.861 |
15 | Z-anethole | −3.444 | −4.022 | −5.89 | −5.916 | −5.999 |
16 | ρ-anisaldehyde | −4.602 | −5.644 | −5.573 | −5.724 | −5.635 |
17 | (E)-anethole | −3.037 | −3.973 | −5.921 | −4.504 | −5.529 |
18 | Cyclosativene | −3.512 | −5.147 | −6.145 | −6.204 | −6.237 |
19 | Anisyl methyl ketone | −4.308 | −5.484 | −7.215 | −7.277 | −7.303 |
20 | Longifolene | −3.698 | −3.686 | −5.396 | −6.657 | −5.623 |
21 | α-gurjunene | −3.871 | −4.436 | −4.321 | −5.232 | −6.542 |
22 | cis-thujopsene | −3.639 | −4.264 | −5.472 | −5.727 | −5.662 |
23 | β-himachalene | −3.673 | −5.073 | −6.429 | −6.303 | −6.834 |
24 | β-germacreme | −3.536 | −3.566 | −5.908 | −6.715 | −5.915 |
- | Co-crystal inhibitor | −7.245 | −7.973 | −8.521 | −6.929 | −6.057 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noumi, E.; Ahmad, I.; Adnan, M.; Patel, H.; Merghni, A.; Haddaji, N.; Bouali, N.; Alabbosh, K.F.; Kadri, A.; Caputo, L.; et al. Illicium verum L. (Star Anise) Essential Oil: GC/MS Profile, Molecular Docking Study, In Silico ADME Profiling, Quorum Sensing, and Biofilm-Inhibiting Effect on Foodborne Bacteria. Molecules 2023, 28, 7691. https://doi.org/10.3390/molecules28237691
Noumi E, Ahmad I, Adnan M, Patel H, Merghni A, Haddaji N, Bouali N, Alabbosh KF, Kadri A, Caputo L, et al. Illicium verum L. (Star Anise) Essential Oil: GC/MS Profile, Molecular Docking Study, In Silico ADME Profiling, Quorum Sensing, and Biofilm-Inhibiting Effect on Foodborne Bacteria. Molecules. 2023; 28(23):7691. https://doi.org/10.3390/molecules28237691
Chicago/Turabian StyleNoumi, Emira, Iqrar Ahmad, Mohd Adnan, Harun Patel, Abderrahmen Merghni, Najla Haddaji, Nouha Bouali, Khulood Fahad Alabbosh, Adel Kadri, Lucia Caputo, and et al. 2023. "Illicium verum L. (Star Anise) Essential Oil: GC/MS Profile, Molecular Docking Study, In Silico ADME Profiling, Quorum Sensing, and Biofilm-Inhibiting Effect on Foodborne Bacteria" Molecules 28, no. 23: 7691. https://doi.org/10.3390/molecules28237691
APA StyleNoumi, E., Ahmad, I., Adnan, M., Patel, H., Merghni, A., Haddaji, N., Bouali, N., Alabbosh, K. F., Kadri, A., Caputo, L., Polito, F., Snoussi, M., & Feo, V. D. (2023). Illicium verum L. (Star Anise) Essential Oil: GC/MS Profile, Molecular Docking Study, In Silico ADME Profiling, Quorum Sensing, and Biofilm-Inhibiting Effect on Foodborne Bacteria. Molecules, 28(23), 7691. https://doi.org/10.3390/molecules28237691