The Development and Synthesis of a CdZnS @Metal–Organic Framework ZIF-8 for the Highly Efficient Photocatalytic Degradation of Organic Dyes
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization Analysis
2.2. Photocatalytic Performance Evaluation
2.3. CdZnS@ZIF-8 Photocatalytic Mechanism of Materials
3. Experimental Section
3.1. Preparation of ZIF-8
3.2. Preparation of CdZnS
3.3. Synthesis of CdZnS@ZIF-8
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jia, J.; Liu, Y.; Wu, D.; Yu, J.; Gao, T.; Li, F. Water-insoluble β-cyclodextrin-based nanocubes as cost-effective adsorbents for dyeing wastewater remediation with high selectivity. Chem. Eng. J. 2023, 457, 141331. [Google Scholar] [CrossRef]
- Khan, M.D.; Singh, A.; Khan, M.Z.; Tabraiz, S.; Sheikh, J. Current perspectives, recent advancements, and efficiencies of various dye-containing wastewater treatment technologies. J. Water Process Eng. 2023, 53, 103579. [Google Scholar] [CrossRef]
- Li, H.-W.; Zhang, J.-L.; Xue, R.; An, Z.-W.; Wu, W.; Liu, Y.; Hu, G.-H.; Zhao, H. Construction of self-healable and recyclable waterborne polyurethane-MOF membrane for adsorption of dye wastewater based on solvent etching deposition method. Sep. Purif. Technol. 2023, 320, 124145. [Google Scholar] [CrossRef]
- Solayman, H.M.; Hossen, M.A.; Abd Aziz, A.; Yahya, N.Y.; Leong, K.H.; Sim, L.C.; Monir, M.U.; Zoh, K.-D. Performance evaluation of dye wastewater treatment technologies: A review. J. Environ. Chem. Eng. 2023, 11, 109610. [Google Scholar] [CrossRef]
- Wang, Y.; Bao, S.; Liu, Y.; Yang, W.; Yu, Y.; Feng, M.; Li, K. Efficient photocatalytic reduction of Cr(VI) in aqueous solution over CoS2/g-C3N4-rGO nanocomposites under visible light. Appl. Surf. Sci. 2020, 510, 145495. [Google Scholar] [CrossRef]
- Nadeem, M.S.; Munawar, T.; Mukhtar, F.; Naveed ur Rahman, M.; Riaz, M.; Iqbal, F. Enhancement in the photocatalytic and antimicrobial properties of ZnO nanoparticles by structural variations and energy bandgap tuning through Fe and Co co-doping. Ceram. Int. 2021, 47, 11109–11121. [Google Scholar] [CrossRef]
- Ji, Z.; Yang, X.; Qi, X.; Zhang, H.; Zhang, Y.; Xia, X.; Pei, Y. Facile synthesis of waste-based CdS-loaded hierarchically porous geopolymer for adsorption-photocatalysis of organic contamination and its environmental risks. Chemosphere 2022, 308, 136144. [Google Scholar] [CrossRef]
- Liu, C.; Zhu, C.; Wang, H.; Xie, S.; Zhou, J.; Fang, H. Synergistic removal of organic pollutants by Co-doped MIL-53(Al) composite through the integrated adsorption/photocatalysis. J. Solid State Chem. 2022, 316, 123582. [Google Scholar] [CrossRef]
- Liu, K.; Chen, J.; Sun, F.; Liu, Y.; Tang, M.; Yang, Y. Historical development and prospect of intimately coupling photocatalysis and biological technology for pollutant treatment in sewage: A review. Sci. Total Environ. 2022, 835, 155482. [Google Scholar] [CrossRef]
- Wang, H.; Li, X.; Zhao, X.; Li, C.; Song, X.; Zhang, P.; Huo, P.; Li, X. A review on heterogeneous photocatalysis for environmental remediation: From semiconductors to modification strategies. Chin. J. Catal. 2022, 43, 178–214. [Google Scholar] [CrossRef]
- Wang, P.; Zhong, S.; Lin, M.; Lin, C.; Lin, T.; Gao, M.; Zhao, C.; Li, X.; Wu, X. Signally enhanced piezo-photocatalysis of Bi0.5Na0.5TiO3/MWCNTs composite for degradation of rhodamine B. Chemosphere 2022, 308, 136596. [Google Scholar] [CrossRef]
- Liu, M.; Gao, Y.; Wang, Y.; Li, Y.; Zou, D. Status and opportunities in the treatment of tetracyclines from aquatic environments by metal-organic frameworks (MOFs) and MOFs-based composites. Mater. Today Chem. 2022, 26, 101209. [Google Scholar] [CrossRef]
- Ma, M.; Lu, X.; Guo, Y.; Wang, L.; Liang, X. Combination of metal-organic frameworks (MOFs) and covalent organic frameworks (COFs): Recent advances in synthesis and analytical applications of MOF/COF composites. TrAC Trends Anal. Chem. 2022, 157, 116741. [Google Scholar] [CrossRef]
- Miao, Q.; Jiang, L.; Yang, J.; Hu, T.; Shan, S.; Su, H.; Wu, F. MOF/hydrogel composite-based adsorbents for water treatment: A review. J. Water Process Eng. 2022, 50, 103348. [Google Scholar] [CrossRef]
- Musarurwa, H.; Tavengwa, N.T. Smart metal-organic framework (MOF) composites and their applications in environmental remediation. Mater. Today Commun. 2022, 33, 104823. [Google Scholar] [CrossRef]
- Nozari, V.; Calahoo, C.; Tuffnell, J.M.; Keen, D.A.; Bennett, T.D.; Wondraczek, L. Ionic liquid facilitated melting of the metal-organic framework ZIF-8. Nat. Commun. 2021, 12, 5703. [Google Scholar] [CrossRef] [PubMed]
- Oladoye, P.O.; Adegboyega, S.A.; Giwa, A.-R.A. Remediation potentials of composite metal-organic frameworks (MOFs) for dyes as water contaminants: A comprehensive review of recent literatures. Environ. Nanotechnol. Monit. Manag. 2021, 16, 100568. [Google Scholar] [CrossRef]
- Tchinsa, A.; Hossain, M.F.; Wang, T.; Zhou, Y. Removal of organic pollutants from aqueous solution using metal organic frameworks (MOFs)-based adsorbents: A review. Chemosphere 2021, 284, 131393. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Sun, R.; Li, D.-C.; Dou, J.-M. A Review on Crystalline Porous MOFs Materials in Photocatalytic Transformations of Organic Compounds in Recent Three Years. Chin. J. Struct. Chem. 2022, 41, 2211071–2211083. [Google Scholar] [CrossRef]
- Zhang, W.; Taheri-Ledari, R.; Saeidirad, M.; Qazi, F.S.; Kashtiaray, A.; Ganjali, F.; Tian, Y.; Maleki, A. Regulation of Porosity in MOFs: A Review on Tunable Scaffolds and Related Effects and Advances in Different Applications. J. Environ. Chem. Eng. 2022, 10, 108836. [Google Scholar] [CrossRef]
- Amin, P.; Shojaei, A.; Hamzehlouyan, T. ZIF-8/Chitosan hybrid nanoparticles with tunable morphologies as superior adsorbents towards both anionic and cationic dyes for a broad range of acidic and basic environments. Microporous Mesoporous Mater. 2022, 343, 112149. [Google Scholar] [CrossRef]
- El Ouardi, M.; El aouni, A.; Ait Ahsaine, H.; Zbair, M.; BaQais, A.; Saadi, M. ZIF-8 metal organic framework composites as hydrogen evolution reaction photocatalyst: A review of the current state. Chemosphere 2022, 308, 136483. [Google Scholar] [CrossRef] [PubMed]
- Nazir, M.A.; Najam, T.; Shahzad, K.; Wattoo, M.A.; Hussain, T.; Tufail, M.K.; Shah, S.S.A.; ur Rehman, A. Heterointerface engineering of water stable ZIF-8@ZIF-67: Adsorption of rhodamine B from water. Surf. Interfaces 2022, 34, 102324. [Google Scholar] [CrossRef]
- Tian, H.; Fan, H.; Li, M.; Ma, L. Zeolitic Imidazolate Framework Coated ZnO Nanorods as Molecular Sieving to Improve Selectivity of Formaldehyde Gas Sensor. ACS Sens. 2016, 1, 243–250. [Google Scholar] [CrossRef]
- Zhan, G.; Zeng, H.C. Hydrogen spillover through Matryoshka-type (ZIFs@)n−1ZIFs nanocubes. Nat. Commun. 2018, 9, 3778. [Google Scholar] [CrossRef] [PubMed]
- Almanassra, I.W.; Jaber, L.; Chatla, A.; Abushawish, A.; Shanableh, A.; Ali Atieh, M. Unveiling the relationship between MOF porosity, particle size, and polyethersulfone membranes properties for efficient decontamination of dye and organic matter. Chem. Eng. J. 2023, 471, 144616. [Google Scholar] [CrossRef]
- He, H.; Feng, D.; Zhang, X.; Feng, Y. Transport properties of ZIF-8 nanocrystals for hydrogen adsorption: Molecular dynamics study. J. Energy Storage 2023, 72, 108270. [Google Scholar] [CrossRef]
- Nadeem, M.S.; Munawar, T.; Mukhtar, F.; Batool, S.; Hasan, M.; Akbar, U.A.; Hakeem, A.S.; Iqbal, F. Energy-levels well-matched direct Z-scheme ZnNiNdO/CdS heterojunction for elimination of diverse pollutants from wastewater and microbial disinfection. Environ. Sci. Pollut. Res. Int. 2022, 29, 50317–50334. [Google Scholar] [CrossRef]
- Bai, J.; Xie, Z.; Han, G.; Diao, G. Double-shelled CeO2 coupled CdZnS nanoparticles as an efficient heterojunction visible light photocatalyst for hydrogen evolution. J. Alloys Compd. 2022, 919, 165758. [Google Scholar] [CrossRef]
- Wang, G.; Quan, Y.; Yang, K.; Jin, Z. EDA-assisted synthesis of multifunctional snowflake-Cu2S/CdZnS S-scheme heterojunction for improved the photocatalytic hydrogen evolution. J. Mater. Sci. Technol. 2022, 121, 28–39. [Google Scholar] [CrossRef]
- Li, W.; Wu, X.; Liu, H.; Chen, J.; Tang, W.; Chen, Y. Hierarchical hollow ZnO cubes constructed using self-sacrificial ZIF-8 frameworks and their enhanced benzene gas-sensing properties. New J. Chem. 2015, 39, 7060–7065. [Google Scholar] [CrossRef]
- Gao, J.; Lu, Z.; Jin, C.; Yu, X.; Jiang, H.; Wang, L.; Sun, L.; Wang, W.; Liu, Q. Integrated p-n/Schottky-junctions for a high near-infrared photocatalytic H2 production upon CdZnS/CoP/CoO ternary hybrids with steering charge transfer. Fuel 2023, 333, 126331. [Google Scholar] [CrossRef]
- Fatima, H.; Azhar, M.R.; Zhong, Y.; Arafat, Y.; Khiadani, M.; Shao, Z. Rational design of ZnO-zeolite imidazole hybrid nanoparticles with reduced charge recombination for enhanced photocatalysis. J. Colloid Interface Sci. 2022, 614, 538–546. [Google Scholar] [CrossRef]
- Nadeem, M.S.; Munawar, T.; Mukhtar, F.; Rabbani, A.W.; ur Rehman, N.; Mahmood, K.; Iqbal, F. Facile synthesis of PANI and rGO supported Y/Pr co-doped ZnO: Boosted solar light-driven photocatalysis. Appl. Phys. A 2023, 129, 450. [Google Scholar] [CrossRef]
- Ma, C.; Zhao, B.; Dai, Q.; Fan, B.; Shao, G.; Zhang, R. Porous structure to improve microwave absorption properties of lamellar ZnO. Adv. Powder Technol. 2017, 28, 438–442. [Google Scholar] [CrossRef]
- Tran, V.A.; Kadam, A.N.; Lee, S.-W. Adsorption-assisted photocatalytic degradation of methyl orange dye by zeolite-imidazole-framework-derived nanoparticles. J. Alloys Compd. 2020, 835, 155414. [Google Scholar] [CrossRef]
- Butova, V.V.; Budnyk, A.P.; Bulanova, E.A.; Lamberti, C.; Soldatov, A.V. Hydrothermal synthesis of high surface area ZIF-8 with minimal use of TEA. Solid State Sci. 2017, 69, 13–21. [Google Scholar] [CrossRef]
- Gong, Y.; Li, D.; Luo, C.; Fu, Q.; Pan, C. Highly porous graphitic biomass carbon as advanced electrode materials for supercapacitors. Green Chem. 2017, 19, 4132–4140. [Google Scholar] [CrossRef]
- Liu, B.; Qin, J.; Yang, H.; Hu, X.; Zhao, W.; Zhang, Z. MoS2 nano-flowers stacked by ultrathin sheets coupling with oxygen self-doped porous biochar for efficient photocatalytic N2 fixation. ChemCatChem 2020, 12, 5221–5228. [Google Scholar] [CrossRef]
- Monash, P.; Pugazhenthi, G. Investigation of equilibrium and kinetic parameters of methylene blue adsorption onto MCM-41. Korean J. Chem. Eng. 2010, 27, 1184–1191. [Google Scholar] [CrossRef]
- Feng, C.; Chen, Z.; Jing, J.; Sun, M.; Tian, J.; Lu, G.; Ma, L.; Li, X.; Hou, J. Significantly enhanced photocatalytic hydrogen production performance of g-C3N4/CNTs/CdZnS with carbon nanotubes as the electron mediators. J. Mater. Sci. Technol. 2021, 80, 75–83. [Google Scholar] [CrossRef]
- Yu, K.; Zhang, T.; Wang, Y.; Wu, J.; Huang, H.; Yin, K.; Liao, F.; Liu, Y.; Kang, Z. Anchoring Co3O4 on CdZnS to accelerate hole migration for highly stable photocatalytic overall water splitting. Appl. Catal. B Environ. 2023, 324, 122228. [Google Scholar] [CrossRef]
- Cao, Z.; Yin, Q.; Zhang, Y.; Li, Y.; Yu, C.; Zhang, M.; Fan, B.; Shao, G.; Wang, H.; Xu, H.; et al. Heterostructure composites of TiO2 and CdZnS nanoparticles decorated on Ti3C2Tx nanosheets and their enhanced photocatalytic performance by microwave hydrothermal method. J. Alloys Compd. 2022, 918, 165681. [Google Scholar] [CrossRef]
- Zhang, B.; Hu, X.; Liu, E.; Fan, J. Novel S-scheme 2D/2D BiOBr/g-C3N4 heterojunctions with enhanced photocatalytic activity. Chin. J. Catal. 2021, 42, 1519–1529. [Google Scholar] [CrossRef]
- Buasakun, J.; Srilaoong, P.; Chaloeipote, G.; Rattanakram, R.; Wongchoosuk, C.; Duangthongyou, T. Synergistic effect of ZnO/ZIF8 heterostructure material in photodegradation of methylene blue and volatile organic compounds with sensor operating at room temperature. J. Solid State Chem. 2020, 289, 121494. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, L.; Cao, J.; Zhang, W.; Jiang, T.; Pan, G.; Wu, Y. The Development and Synthesis of a CdZnS @Metal–Organic Framework ZIF-8 for the Highly Efficient Photocatalytic Degradation of Organic Dyes. Molecules 2023, 28, 7904. https://doi.org/10.3390/molecules28237904
Hong L, Cao J, Zhang W, Jiang T, Pan G, Wu Y. The Development and Synthesis of a CdZnS @Metal–Organic Framework ZIF-8 for the Highly Efficient Photocatalytic Degradation of Organic Dyes. Molecules. 2023; 28(23):7904. https://doi.org/10.3390/molecules28237904
Chicago/Turabian StyleHong, Liu, Jiaming Cao, Wenlong Zhang, Tao Jiang, Guohao Pan, and Yun Wu. 2023. "The Development and Synthesis of a CdZnS @Metal–Organic Framework ZIF-8 for the Highly Efficient Photocatalytic Degradation of Organic Dyes" Molecules 28, no. 23: 7904. https://doi.org/10.3390/molecules28237904
APA StyleHong, L., Cao, J., Zhang, W., Jiang, T., Pan, G., & Wu, Y. (2023). The Development and Synthesis of a CdZnS @Metal–Organic Framework ZIF-8 for the Highly Efficient Photocatalytic Degradation of Organic Dyes. Molecules, 28(23), 7904. https://doi.org/10.3390/molecules28237904