Discovering Potential Compounds for Venous Disease Treatment through Virtual Screening and Network Pharmacology Approach
Abstract
:1. Introduction
2. Results
2.1. Creation of a Reference Compounds Dataset
Reference Compounds | IUPAC Name | PubChem CID | Pharmacological Activity | K-Means Coefficient | References |
---|---|---|---|---|---|
Escin | (2S,3S,4S,5R,6R)-6-[[(4S,6bS,8R,9R)-9-acetyloxy-8-hydroxy-4,8a-bis(hydroxymethyl)-4,6a,6b,11,11,14b-hexamethyl-10-[(E)-2-methylbut-2-enoyl]oxy-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy]-4-hydroxy-3-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-5-[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxane-2-carboxylic acid | 6476031 | Anti-edematous, anti-inflammatory, and venotonic agent | 2.03 | [12] |
Crocin | bis[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-[[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl] (2E,4E,6E,8E,10E,12E,14E)-2,6,11,15-tetramethylhexadeca-2,4,6,8,10,12,14-heptaenedioate | 5281233 | Inhibitor inhibits STAT3 activation induced by IL-6 | 1.50 | [13] |
Echinomycin | N-[2,4,12,15,17,25-hexamethyl-27-methylsulfanyl-3,6,10,13,16,19,23,26-octaoxo-11,24-di(propan-2-yl)-20-(quinoxaline-2-carbonylamino)-9,22-dioxa-28-thia-2,5,12,15,18,25-hexazabicyclo[12.12.3]nonacosan-7-yl]quinoxaline-2-carboxamide | 3197 | Anti-cancer agent and inhibitor of HIF | 1.39 | [14] |
Cyclosporin A | (3S,6S,9S,12R,15S,18S,21S,24S,30S,33S)-30-ethyl-33-[(E,1R,2R)-1-hydroxy-2-methylhex-4-enyl]-1,4,7,10,12,15,19,25,28-nonamethyl-6,9,18,24-tetrakis(2-methylpropyl)-3,21-di(propan-2-yl)-1,4,7,10,13,16,19,22,25,28,31-undecazacyclotritriacontane-2,5,8,11,14,17,20,23,26,29,32-undecone | 5284373 | Immunosuppressant agent and inhibitor of TCR signaling via NFAT-independent | 1.20 | [15] |
Amphotericin B | (1R,3S,5R,6R,9R,11R,15S,16R,17R,18S,19E,21E,23E,25E,27E,29E,31E,33R,35S,36R,37S)-33-[(2R,3S,4S,5S,6R)-4-amino-3,5-dihydroxy-6-methyloxan-2-yl]oxy-1,3,5,6,9,11,17,37-octahydroxy-15,16,18-trimethyl-13-oxo-14,39-dioxabicyclo[33.3.1]nonatriaconta-19,21,23,25,27,29,31-heptaene-36-carboxylic acid | 5280965 | Antibiotic agent for the treatment of life-threatening fungal infections and modulator of the immune system | 0.97 | [16] |
Everolimus | (1R,9S,12S,15R,16E,18R,19R,21R,23S,24E,26E,28E,30S,32S,35R)-1,18-dihydroxy-12-[(2R)-1-[(1S,3R,4R)-4-(2-hydroxyethoxy)-3-methoxycyclohexyl]propan-2-yl]-19,30-dimethoxy-15,17,21,23,29,35-hexamethyl-11,36-dioxa-4-azatricyclo[30.3.1.04,9]hexatriaconta-16,24,26,28-tetraene-2,3,10,14,20-pentone | 6442177 | Anticancer agent and mTOR inhibitor | 0.99 | [17] |
Rapamycin | (1R,9S,12S,15R,16E,18R,19R,21R,23S,24E,26E,28E,30S,32S,35R)-1,18-dihydroxy-12-[(2R)-1-[(1S,3R,4R)-4-hydroxy-3-methoxycyclohexyl]propan-2-yl]-19,30-dimethoxy-15,17,21,23,29,35-hexamethyl-11,36-dioxa-4-azatricyclo[30.3.1.04,9]hexatriaconta-16,24,26,28-tetraene-2,3,10,14,20-pentone | 5284616 | Inhibitor of mTOR complex 1 (mTORC1), which phosphorylates substrates including S6 kinase 1 (S6K1), eIF4E-binding protein 1 (4E-BP1), transcription factor EB (TFEB), unc-51-like autophagy-activating kinase 1 (Ulk1), and growth factor receptor-bound protein 10 (GRB-10) | 0.91 | [18] |
Chetomin | 14-(hydroxymethyl)-3-[3-[[4-(hydroxymethyl)-5,7-dimethyl-6,8-dioxo-2,3-dithia-5,7-diazabicyclo[2.2.2]octan-1-yl]methyl]indol-1-yl]-18-methyl-15,16-dithia-10,12,18-triazapentacyclo[12.2.2.01,12.03,11.04,9]octadeca-4,6,8-triene-13,17-dione | 10417379 | Inhibitor of HIF-1α/p300 interaction, and antitumor agent | 1.16 | [19] |
Astragaloside IV | (2R,3R,4S,5S,6R)-2-[[(1S,3R,6S,8R,9S,11S,12S,14S,15R,16R)-14-hydroxy-15-[(2R,5S)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethyl-6-[(2S,3R,4S,5R)-3,4,5-trihydroxyoxan-2-yl]oxy-9-pentacyclo[9.7.0.01,3.03,8.012,16]octadecanyl]oxy]-6-(hydroxymethyl)oxane-3,4,5-triol | 13943297 | Anti-inflammatory agent and inhibitor of NF-kappaB activation and adhesion molecule expression | 1.29 | [20] |
20(R)-ginsenoside Rh2 | (2R,3R,4S,5S,6R)-2-[[(3S,5R,8R,9R,10R,12R,13R,14R,17S)-12-hydroxy-17-[(2R)-2-hydroxy-6-methylhept-5-en-2-yl]-4,4,8,10,14-pentamethyl-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl]oxy]-6-(hydroxymethyl)oxane-3,4,5-triol | 54580480 | Antitumoral agent | 0.63 | [21] |
Epigallocatechin 3-gallate | (2S,3S,4S,5R,6S)-6-[2,6-dihydroxy-4-[[(2R,3R)-5-hydroxy-7-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-2-(3,4,5-trihydroxyphenyl)-3,4-dihydro-2H-chromen-3-yl]oxycarbonyl]phenoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid | 102025303 | Anti-carcinogen, anti-tumorigenesis, anti-proliferation, anti-angiogenesis, and antioxidant agent, cell death inductor | 1.27 | [22] |
Troxerutin | 2-[3,4-bis(2-hydroxyethoxy)phenyl]-5-hydroxy-7-(2-hydroxyethoxy)-3-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-[[(2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxymethyl]oxan-2-yl]oxychromen-4-one | 5486699 | Radioprotective and antioxidant agent | 1.12 | [23] |
O-(beta-hydroxyethyl)-rutoside | 2-(3,4-dihydroxyphenyl)-5-hydroxy-7-(2-hydroxyethoxy)-3-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-[[(2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxymethyl]oxan-2-yl]oxychromen-4-one | 9852585 | An agent used as a treatment for disorders of the venous and microcirculatory systems | 0.95 | [24] |
Salvianolic acid B | (2R)-2-[(E)-3-[(2S,3S)-3-[(1R)-1-carboxy-2-(3,4-dihydroxyphenyl)ethoxy]carbonyl-2-(3,4-dihydroxyphenyl)-7-hydroxy-2,3-dihydro-1-benzofuran-4-yl]prop-2-enoyl]oxy-3-(3,4-dihydroxyphenyl)propanoic acid | 6451084 | Anti-inflammatory and antioxidant agent | 0.98 | [25] |
Keracyanin chloride | (2R,3R,4R,5R,6S)-2-[[(2R,3S,4S,5R,6S)-6-[2-(3,4-dihydroxyphenyl)-5,7-dihydroxychromenylium-3-yl]oxy-3,4,5-trihydroxyoxan-2-yl]methoxy]-6-methyloxane-3,4,5-triol chloride | 29231 | Anti-inflammatory and antioxidant agent | 0.85 | [26] |
Rutin | 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-[[(2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxymethyl]oxan-2-yl]oxychromen-4-one | 5280805 | Anticancer, antidiabetic, antimicrobial, anticoagulant, antioxidant, cytoprotective, vasoprotective, anticarcinogenic, neuroprotective and cardioprotective agent | 0.85 | [27] |
Hidrosmin | 5-(2-hydroxyethoxy)-2-(3-hydroxy-4-methoxyphenyl)-7-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-[[(2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxymethyl]oxan-2-yl]oxychromen-4-one | 3087722 | Venoactive agent and post-thrombotic syndrome protector | 0.88 | [28] |
Diosmin | 5-hydroxy-2-(3-hydroxy-4-methoxyphenyl)-7-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-[[(2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxymethyl]oxan-2-yl]oxychromen-4-one | 5281613 | Agent for treatment of chronic venous insufficiency and varicose veins, with antioxidant, anticancer activities | 0.82 | [29,30] |
Hesperidin | (2S)-5-hydroxy-2-(3-hydroxy-4-methoxyphenyl)-7-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-[[(2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxymethyl]oxan-2-yl]oxy-2,3-dihydrochromen-4-one | 53477767 | Antioxidant, neuroprotective, and anti-inflammatory agent | 0.82 | [31] |
Linarin | 5-hydroxy-2-(4-methoxyphenyl)-7-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-[[(2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxymethyl]oxan-2-yl]oxychromen-4-one | 5317025 | Antioxidant and anti-inflammatory agents | 0.76 | [32] |
Isorhoifolin | 5-hydroxy-2-(4-hydroxyphenyl)-7-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-[[(2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxymethyl]oxan-2-yl]oxychromen-4-one | 9851181 | Antioxidant agent | 0.75 | [33] |
Naringin | (2S)-7-[(2S,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxyoxan-2-yl]oxy-5-hydroxy-2-(4-hydroxyphenyl)-2,3-dihydrochromen-4-one | 442428 | Antioxidant, antitumor, antiviral, antibacterial, anti-inflammatory, anti-adipogenic, and cardioprotective agent | 0.72 | [34] |
Betanin | 1-[(2E)-2-(2,6-dicarboxy-2,3-dihydro-1H-pyridin-4-ylidene)ethylidene]-6-hydroxy-5-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-2,3-dihydroindol-1-ium-2-carboxylate | 12300103 | Antioxidant and anti-inflammatory agents | 0.46 | [35] |
2.2. Selection of Drug-like NPs and SMSs Based on QED
2.3. Selection of NPs and SMSs Structurally Similar to Reference Compounds
2.4. Network Analysis to Obtain the Best Molecules with Potential Usefulness in VD through Their Multi-Target Capacity
Compounds | IUPAC Name | Structure | Source | Pharmacological Activity | Number of Targets | References |
---|---|---|---|---|---|---|
N-Phenethylcinnamamide CID 795855 | (E)-3-phenyl-N-(2-phenylethyl)prop-2-enamide | Acmella radicans | Inhibitor agent of prostaglandin and leukotriene biosyntheses | 4 | [36,37] | |
3,4′-Dihydroxypropiophenone CID 638759 | 3-hydroxy-1-(4-hydroxyphenyl)propan-1-one | The roots of the Carissa edulis | AChE inhibitor, cytotoxic and antioxidant agent. | 7 | [38] | |
4′-Methoxyflavanone CID 102928 | 2-(4-methoxyphenyl)-2,3-dihydrochromen-4-one | Isolated from Isaria fumosorosea | Inhibitor agent of glycation and aldose reductase activity | 4 | [39] | |
7,4′-dimethoxy-5-hydroxy isoflavone CID 5386259 | 5-hydroxy-7-methoxy-3-(4-methoxyphenyl)chromen-4-one | Isolated from the roots of Lotus polyphyllos | Anticancer agent | 6 | [40,41] | |
7-hydroxyflavone CID 5281894 | 7-hydroxy-2-phenylchromen-4-one | Isolated from M. indica | Vasorelaxant and anti-inflammatory agent | 5 | [42,43,44] | |
Acacetin CID 5280442 | 5,7-dihydroxy-2-(4-methoxyphenyl)chromen-4-one | Robinia pseudoacacia | Antiviral agent | 19 | [45] | |
Asterric acid CID 3080568 | 2-hydroxy-6-(4-hydroxy-2-methoxy-6-methoxycarbonylphenoxy)-4-methylbenzoic acid | Aspergillus terreus | Antibiotic agent | 4 | [46] | |
Berberine chloride CID 12456 | 16,17-dimethoxy-5,7-dioxa-13-azoniapentacyclo[11.8.0.02,10.04,8.015,20]henicosa-1(13),2,4(8),9,14,16,18,20-octaene chloride | Rhizoma coptidis | Antibacterial and anti-inflammatory agents | 4 | [47] | |
Biochanin A CID 5280373 | 5,7-dihydroxy-3-(4-methoxyphenyl)chromen-4-one | Red clover, soy, alfalfa sprouts, peanuts, chickpea (Cicer arietinum), and other legumes | Antiviral agent | 9 | [48] | |
Capsaicin CID 1548943 | (E)-N-[(4-hydroxy-3-methoxyphenyl)methyl]-8-methylnon-6-enamide | Chili peppers | The agent involved in the treatment of obesity, diabetes, cardiovascular conditions, cancer, airway diseases, itch, gastric, and urological disorders | 4 | [49] | |
Cardamonin CID 641785 | (E)-1-(2,4-dihydroxy-6-methoxyphenyl)-3-phenylprop-2-en-1-one | Alpinia blepharocalyx, Alpinia gagnepainii, Alpinia conchigera, Alpinia hainanensis, Alpinia malaccensis, Alpinia mutica, Alpinia pricei, Alpinia rafflesiana, Alpinia speciosa, Amomum subulatum, Artemisia absinthium, Boesenbergia pandurata, Boesenbergia rotunda, Carya cathayensis, Cedrelopsis grevei, Combretum apiculatum, Comptonia peregrina, Desmos cochinchinensis, Elettaria cardamomum, Helichrysum forskahlii, Kaempferia parviflora, Morella pensylvanica, Piper dilatatum, Piper hispidum, Polygonum ferrugineum, Polygonum lapathifolium, Polygonum persicaria, Populus fremontii, Populus × euramericana, a hybrid between Populus deltoides and Populus nigra, Syzygium samarangense, Vitex leptobotrys, and Woodsia scopulina. | Anti-inflammatory, antineoplastic, and antioxidant agent | 4 | [50] | |
Chrysin CID 5281607 | 5,7-dihydroxy-2-phenylchromen-4-one | Isolated from Pyrus pashia fruit | Vasorelaxant agent | 18 | [42,51] | |
Formononetin CID 5280378 | 7-hydroxy-3-(4-methoxyphenyl)chromen-4-one | Red clover | Anti-cancer agent | 4 | [52] | |
Haplamine CID 648601 | 9-methoxy-2,2-dimethyl-6H-pyrano[3,2-c]quinolin-5-one | Isolated from Haplophyllum perforatu | Anti-cancer agent | 9 | [53] | |
Naringenin CID 439246 | (2S)-5,7-dihydroxy-2-(4-hydroxyphenyl)-2,3-dihydrochromen-4-one | Citrus fruits, bergamot, tomatoes, and other fruits | Anti-Hepatitis C virus, antiaging, anti-Alzheimer, antiasthma, anticancer, anti-Chikungunya virus, anticonvulsant, anti-dengue virus, antidiabetic, anti-Edwardsiellosis, anti-hyperlipidemic, anti-inflammatory, antimicrobial, antioxidant, antiplatelet, anti-stroke damage, cardioprotective, chronic kidney disease, expectorant, eye-protective, fertility, immunomodulatory, laxative, hepatoprotective, pregnancy, radioprotective, and weight-loss agent | 4 | [34] | |
Papaverine hydrochloride CID 6084 | 1-[(3,4-dimethoxyphenyl)methyl]-6,7-dimethoxyisoquinoline;hydrochloride | Papaver somniferum (Opium poppy) | Vasodilator agent | 4 | [54] | |
Phloretin CID 4788 | 3-(4-hydroxyphenyl)-1-(2,4,6-trihydroxyphenyl)propan-1-one | Apple | Antioxidative, anti-inflammatory, anti-microbial, anti-allergic, anticarcinogenic, anti-thrombotic, and hepatoprotective agent | 4 | [55] | |
Sulfuretin CID 5281295 | (2Z)-2-[(3,4-dihydroxyphenyl)methylidene]-6-hydroxy-1-benzofuran-3-one | The stem bark of Albizzia julibrissin and heartwood of Rhus verniciflua | Adipogenesis inhibitor | 7 | [56] |
2.5. Selection of Berberine for Experimental Validation
2.6. Effects of Ligation of the Veins on the Venous Pressure of the Left Hind Limb
2.7. Effects of Berberine, and β-Escin on MAP, HR, and VP of the Anesthetized Rat
3. Discussion
4. Materials and Methods
4.1. In Silico Phase
4.1.1. Creation of a Reference Compound Dataset
Collection of Useful Compounds in VD
Selection of Reference Compounds from the Dataset Based on Hierarchical Analysis and Chemical Space Analysis
4.1.2. Drug-Likeness of NPs and SMSs from BIOFACQUIM, Inflamnat, NuBBE, and AC Discovery Databases Was Determined Using the QED Index
Data Collection of NPs and SMSs
Determination of the Drug-Likeness of NP and SMSs
Filtering of the NP and SMS Dataset
4.1.3. The Selection of Compounds with Potential Usefulness in VD Based on Comparison of the Fingerprints of the Drug-like NPs, SMSs, and Reference Compounds
Fingerprints of Drug-like NPs, SMSs, and Reference Compounds
4.1.4. Selection of the Best Compounds with Potential Usefulness in VD through Their Multi-Target Capacity
Target Search of the Compounds Obtained Using Fingerprint Analysis
Compound–Target Network Generation
Selection of the NPs and SMSs through Their Availability, Accessibility(cost), and Ease of Administration
4.2. Experimental Phase
4.2.1. Materials
4.2.2. Animals
4.2.3. Register of PAM, HR, and VP in Anesthetized Rats
4.2.4. Dose–Response Curves of the Cardiovascular System to Berberine, and β-Escin
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Kurz, X.; Kahn, S.R.; Abenhaim, L.; Clement, D.; Norgren, L.; Baccaglini, U.; Berard, A.; Cooke, J.P.; Cornu-Thenard, A.; Depairon, M.; et al. Chronic venous disorders of the leg: Epidemiology, outcomes, diagnosis and management. Summary of an evidence-based report of the VEINES task force. Venous Insufficiency Epidemiologic and Economic Studies. Int. Angiol. J. Int. Union. Angiol. 1999, 18, 83–102. [Google Scholar]
- Kim, Y.; Png, C.Y.M.; Sumpio, B.J.; DeCarlo, C.S.; Dua, A. Defining the human and health care costs of chronic venous insufficiency. Semin. Vasc. Surg. 2021, 34, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Javier, J.J.; Ortiz, P. Treatment of chronic venous insufficiency in Latin America. J. Vasc. Surg. Venous Lymphat. Disord. 2020, 8, 667–675. [Google Scholar] [CrossRef] [PubMed]
- Gobierno de México. Anuario de Morbilidad 1984–2022. Incidencia de Enfermedad por Grupo de Edad y Entidad Federativa. Available online: https://epidemiologia.salud.gob.mx/anuario/html/incidencia_enfermedad.html (accessed on 11 June 2023).
- WHO. Anatomical Therapeutic Chemical (ATC) System Classification. Available online: http://www.whocc.no/atc_ddd_index/?code=C05 (accessed on 10 November 2023).
- Martinez-Zapata, M.J.; Vernooij, R.W.; Simancas-Racines, D.; Uriona Tuma, S.M.; Stein, A.T.; Moreno Carriles, R.M.M.; Vargas, E.; Bonfill Cosp, X. Phlebotonics for venous insufficiency. Cochrane Database Syst. Rev. 2020, 11, Cd003229. [Google Scholar] [CrossRef] [PubMed]
- Tsouderos, Y. Venous tone: Are the phlebotonic properties predictive of a therapeutic benefit? A comprehensive view of our experience with Daflon 500 mg. Z. Fur Kardiol. 1991, 80 (Suppl. S7), 95–101. [Google Scholar]
- Behar, A.; Nathan, P.; Lavieuville, M.; Allaert, F.A. Effect of veinotonyl 75 on the capillary permeability test using technetium albumin in cyclic orthostatic edemas. Phlebologie 1993, 46, 721–731. [Google Scholar]
- Prieto-Martínez, F.D.; López-López, E.; Eurídice Juárez-Mercado, K.; Medina-Franco, J.L. Chapter 2—Computational Drug Design Methods—Current and Future Perspectives. In In Silico Drug Design; Roy, K., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 19–44. [Google Scholar]
- Barrera-Vázquez, O.S.; Magos-Guerrero, G.A.; Escobar-Ramírez, J.L.; Gomez-Verjan, J.C. Natural Products as a Major Source of Candidates for Potential Senolytic Compounds obtained by in silico Screening. Med. Chem. 2023, 19, 653–668. [Google Scholar] [CrossRef]
- Cazaubon, M.; Benigni, J.P.; Steinbruch, M.; Jabbour, V.; Gouhier-Kodas, C. Is There a Difference in the Clinical Efficacy of Diosmin and Micronized Purified Flavonoid Fraction for the Treatment of Chronic Venous Disorders? Review of Available Evidence. Vasc. Health Risk Manag. 2021, 17, 591–600. [Google Scholar] [CrossRef]
- Gallelli, L. Escin: A review of its anti-edematous, anti-inflammatory, and venotonic properties. Drug Des. Devel Ther. 2019, 13, 3425–3437. [Google Scholar] [CrossRef]
- Sumaiya, S.; Naved, T.; Sharma, A.; Sarwat, M. Chapter 1—Amelioration of Liver Ailments by Saffron (Crocus sativus) and Its Secondary Metabolites. In Saffron; Sarwat, M., Sumaiya, S., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 1–20. [Google Scholar]
- Riboldi, E.; Sica, A. Chapter 4—Modulation of Innate Immunity by Hypoxia. In The Innate Immune Response to Noninfectious Stressors; Amadori, M., Ed.; Academic Press: Cambridge, MA, USA, 2016; pp. 81–106. [Google Scholar]
- Otsuka, S.; Melis, N.; Dutta, D.; Weigert, R.; Ashwell, J.D. Immunosuppressive activity of cyclosporin A in vivo via NFAT-independent inhibition of TCR signaling. J. Immunol. 2020, 204, 161.113. [Google Scholar] [CrossRef]
- Mesa-Arango, A.C.; Scorzoni, L.; Zaragoza, O. It only takes one to do many jobs: Amphotericin B as antifungal and immunomodulatory drug. Front. Microbiol. 2012, 3, 286. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.-C.; Liao, H.F.; Yu, C.C.; Lin, Y.C. Anticancer activity of the mTOR inhibitor (everolimus) and dual mTORC1/mTORC2 Inhibitor (AZD2014) on mouse lymphocytic leukemia both in vitro and in vivo. Ann. Oncol. 2016, 27, vi8. [Google Scholar] [CrossRef]
- Lamming, D.W. Inhibition of the Mechanistic Target of Rapamycin (mTOR)-Rapamycin and Beyond. Cold Spring Harb. Perspect. Med. 2016, 6, a025924. [Google Scholar] [CrossRef] [PubMed]
- Viziteu, E.; Grandmougin, C.; Goldschmidt, H.; Seckinger, A.; Hose, D.; Klein, B.; Moreaux, J. Chetomin, targeting HIF-1α/p300 complex, exhibits antitumour activity in multiple myeloma. Br. J. Cancer 2016, 114, 519–523. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.J.; Hufnagl, P.; Binder, B.R.; Wojta, J. Antiinflammatory activity of astragaloside IV is mediated by inhibition of NF-kappaB activation and adhesion molecule expression. Thromb. Haemost. 2003, 90, 904–914. [Google Scholar] [CrossRef]
- Lv, Q.; Rong, N.; Liu, L.J.; Xu, X.L.; Liu, J.T.; Jin, F.X.; Wang, C.M. Antitumoral Activity of (20R)- and (20S)-Ginsenoside Rh2 on Transplanted Hepatocellular Carcinoma in Mice. Planta Medica 2016, 82, 705–711. [Google Scholar] [CrossRef]
- Min, K.J.; Kwon, T.K. Anticancer effects and molecular mechanisms of epigallocatechin-3-gallate. Integr. Med. Res. 2014, 3, 16–24. [Google Scholar] [CrossRef]
- Panat, N.A.; Singh, B.G.; Maurya, D.K.; Sandur, S.K.; Ghaskadbi, S.S. Troxerutin, a natural flavonoid binds to DNA minor groove and enhances cancer cell killing in response to radiation. Chem. Biol. Interact. 2016, 251, 34–44. [Google Scholar] [CrossRef]
- Rehn, D.; Hennings, G.; Nocker, W.; Diebschlag, W. Time course of the anti-oedematous effect of O-(beta-hydroxyethyl)-rutosides in healthy volunteers. Eur. J. Clin. Pharmacol. 1991, 40, 625–627. [Google Scholar] [CrossRef]
- Wang, S.X.; Hu, L.M.; Gao, X.M.; Guo, H.; Fan, G.W. Anti-inflammatory activity of salvianolic acid B in microglia contributes to its neuroprotective effect. Neurochem. Res. 2010, 35, 1029–1037. [Google Scholar] [CrossRef]
- Blando, F.; Calabriso, N.; Berland, H.; Maiorano, G.; Gerardi, C.; Carluccio, M.A.; Andersen, Ø.M. Radical Scavenging and Anti-Inflammatory Activities of Representative Anthocyanin Groupings from Pigment-Rich Fruits and Vegetables. Int. J. Mol. Sci. 2018, 19, 169. [Google Scholar] [CrossRef] [PubMed]
- Ganeshpurkar, A.; Saluja, A.K. The Pharmacological Potential of Rutin. Saudi Pharm. J. 2017, 25, 149–164. [Google Scholar] [CrossRef] [PubMed]
- Monreal, M.; Callejas, J.M.; Martorell, A.; Sahuquillo, J.C.; Contel, E. Prevention of Post-Thrombotic Syndrome with Hidrosmina: A Prospective Pilot Study. Phlebology 1997, 12, 21–24. [Google Scholar] [CrossRef]
- Naso, L.; Martínez, V.R.; Lezama, L.; Salado, C.; Valcarcel, M.; Ferrer, E.G.; Williams, P.A.M. Antioxidant, anticancer activities and mechanistic studies of the flavone glycoside diosmin and its oxidovanadium(IV) complex. Interactions with bovine serum albumin. Bioorganic Med. Chem. 2016, 24, 4108–4119. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Zhang, R.; Shi, W.; Li, L.; Liu, H.; Chen, Z.; Wu, L. Metabolism and pharmacological activities of the natural health-benefiting compound diosmin. Food Funct. 2020, 11, 8472–8492. [Google Scholar] [CrossRef]
- Hajialyani, M.; Hosein Farzaei, M.; Echeverría, J.; Nabavi, S.M.; Uriarte, E.; Sobarzo-Sánchez, E. Hesperidin as a Neuroprotective Agent: A Review of Animal and Clinical Evidence. Molecules 2019, 24, 648. [Google Scholar] [CrossRef]
- Kim, B.; Lee, J.H.; Seo, M.J.; Eom, S.H.; Kim, W. Linarin down-regulates phagocytosis, pro-inflammatory cytokine production, and activation marker expression in RAW264.7 macrophages. Food Sci. Biotechnol. 2016, 25, 1437–1442. [Google Scholar] [CrossRef]
- Sroka, Z.; Fecka, I.; Cisowski, W. Antiradical and anti-H2O2 properties of polyphenolic compounds from an aqueous peppermint extract. Z. Fur Naturforschung. C J. Biosci. 2005, 60, 826–832. [Google Scholar] [CrossRef]
- Salehi, B.; Fokou, P.V.T.; Sharifi-Rad, M.; Zucca, P.; Pezzani, R.; Martins, N.; Sharifi-Rad, J. The Therapeutic Potential of Naringenin: A Review of Clinical Trials. Pharmaceuticals 2019, 12, 11. [Google Scholar] [CrossRef]
- Ahmadi, H.; Nayeri, Z.; Minuchehr, Z.; Sabouni, F.; Mohammadi, M. Betanin purification from red beetroots and evaluation of its anti-oxidant and anti-inflammatory activity on LPS-activated microglial cells. PLoS ONE 2020, 15, e0233088. [Google Scholar] [CrossRef]
- Cortez-Espinosa, N.; Aviña-Verduzco, J.A.; Ramírez-Chávez, E.; Molina-Torres, J.; Ríos-Chávez, P. Valine and phenylalanine as precursors in the biosynthesis of alkamides in Acmella radicans. Nat. Prod. Commun. 2011, 6, 857–861. [Google Scholar] [CrossRef]
- Tseng, C.F.; Iwakami, S.; Mikajiri, A.; Shibuya, M.; Hanaoka, F.; Ebizuka, Y.; Padmawinata, K.; Sankawa, U. Inhibition of in vitro prostaglandin and leukotriene biosyntheses by cinnamoyl-beta-phenethylamine and N-acyldopamine derivatives. Chem. Pharm. Bull. 1992, 40, 396–400. [Google Scholar] [CrossRef] [PubMed]
- Achenbach, H.; Waibel, R.; Addae-Mensah, I. Lignans and other constituents from Carissa edulis. Phytochemistry 1983, 22, 749–753. [Google Scholar] [CrossRef]
- Patil, K.K.; Gacche, R.N. Inhibition of glycation and aldose reductase activity using dietary flavonoids: A lens organ culture studies. Int. J. Biol. Macromol. 2017, 98, 730–738. [Google Scholar] [CrossRef] [PubMed]
- Tamaki, H.; Satoh, H.; Hori, S.; Ohtani, H.; Sawada, Y. Inhibitory effects of herbal extracts on breast cancer resistance protein (BCRP) and structure-inhibitory potency relationship of isoflavonoids. Drug Metab. Pharmacokinet. 2010, 25, 170–179. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Kader, M.S.; Amer, M.E.; Tang, S.; Kingston, D.G. Two new isoflavone derivatives from the roots of an Egyptian collection of Lotus polyphyllos. Nat. Prod. Res. 2006, 20, 922–926. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Kaur, M.; Silakari, O. Flavones: An important scaffold for medicinal chemistry. Eur. J. Med. Chem. 2014, 84, 206–239. [Google Scholar] [CrossRef]
- Sengupta, B.; Sahihi, M.; Dehkhodaei, M.; Kelly, D.; Arany, I. Differential roles of 3-Hydroxyflavone and 7-Hydroxyflavone against nicotine-induced oxidative stress in rat renal proximal tubule cells. PLoS ONE 2017, 12, e0179777. [Google Scholar] [CrossRef]
- Vinutha, K.; Pavan, G.; Pattar, S.; Kumari, N.S.; Vidya, S.M. Aqueous extract from Madhuca indica bark protects cells from oxidative stress caused by electron beam radiation: In vitro, in vivo and in silico approach. Heliyon 2019, 5, e01749. [Google Scholar] [CrossRef]
- Adhikari, B.; Marasini, B.P.; Rayamajhee, B.; Bhattarai, B.R.; Lamichhane, G.; Khadayat, K.; Adhikari, A.; Khanal, S.; Parajuli, N. Potential roles of medicinal plants for the treatment of viral diseases focusing on COVID-19: A review. Phytother. Res. PTR 2021, 35, 1298–1312. [Google Scholar] [CrossRef]
- Lee, H.J.; Lee, J.H.; Hwang, B.Y.; Kim, H.S.; Lee, J.J. Fungal metabolites, asterric acid derivatives inhibit vascular endothelial growth factor (VEGF)-induced tube formation of HUVECs. J. Antibiot. 2002, 55, 552–556. [Google Scholar] [CrossRef] [PubMed]
- Ai, X.; Yu, P.; Peng, L.; Luo, L.; Liu, J.; Li, S.; Lai, X.; Luan, F.; Meng, X. Berberine: A Review of its Pharmacokinetics Properties and Therapeutic Potentials in Diverse Vascular Diseases. Front. Pharmacol. 2021, 12, 762654. [Google Scholar] [CrossRef]
- Gour, A.; Manhas, D.; Bag, S.; Gorain, B.; Nandi, U. Flavonoids as potential phytotherapeutics to combat cytokine storm in SARS-CoV-2. Phytother. Res. 2021, 35, 4258–4283. [Google Scholar] [CrossRef] [PubMed]
- Fattori, V.; Hohmann, M.S.; Rossaneis, A.C.; Pinho-Ribeiro, F.A.; Verri, W.A. Capsaicin: Current Understanding of Its Mechanisms and Therapy of Pain and Other Pre-Clinical and Clinical Uses. Molecules 2016, 21, 844. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, L.M.; Valente, I.M.; Rodrigues, J.A. An overview on cardamonin. J. Med. Food 2014, 17, 633–640. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Kumari, A.; Gulati, A.; Krishnamurthy, S.; Hemalatha, S. Chrysin isolated from Pyrus pashia fruit ameliorates convulsions in experimental animals. Nutr. Neurosci. 2019, 22, 569–577. [Google Scholar] [CrossRef] [PubMed]
- Tay, K.C.; Tan, L.T.; Chan, C.K.; Hong, S.L.; Chan, K.G.; Yap, W.H.; Pusparajah, P.; Lee, L.H.; Goh, B.H. Formononetin: A Review of Its Anticancer Potentials and Mechanisms. Front. Pharmacol. 2019, 10, 820. [Google Scholar] [CrossRef]
- Ea, S.; Giacometti, S.; Ciccolini, J.; Akhmedjanova, V.; Aubert, C. Cytotoxic effects of haplamine and its major metabolites on human cancer cell lines. Planta Medica 2008, 74, 1265–1268. [Google Scholar] [CrossRef]
- Lawrence, P.F. Chapter 78—Pharmacologic Adjuncts to Endovascular Procedures. In Endovascular Surgery, 4th ed.; Moore, W.S., Ahn, S.S., Eds.; W.B. Saunders: Philadelphia, PA, USA, 2011; pp. 807–813. [Google Scholar]
- Mariadoss, A.V.A.; Vinyagam, R.; Rajamanickam, V.; Sankaran, V.; Venkatesan, S.; David, E. Pharmacological Aspects and Potential Use of Phloretin: A Systemic Review. Mini Rev. Med. Chem. 2019, 19, 1060–1067. [Google Scholar] [CrossRef]
- Roh, K.; Kim, S.; Kang, H.; Ku, J.M.; Park, K.W.; Lee, S. Sulfuretin has therapeutic activity against acquired lymphedema by reducing adipogenesis. Pharmacol. Res. 2017, 121, 230–239. [Google Scholar] [CrossRef]
- Pascarella, L.; Schmid-Schönbein, G.W.; Bergan, J. An animal model of venous hypertension: The role of inflammation in venous valve failure. J. Vasc. Surg. 2005, 41, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Jones, G.T.; Grant, M.W.; Thomson, I.A.; Hill, B.G.; van Rij, A.M. Characterization of a porcine model of chronic superficial varicose veins. J. Vasc. Surg. 2009, 49, 1554–1561. [Google Scholar] [CrossRef] [PubMed]
- das Graças, C.d.S.M.; Cyrino, F.Z.; de Carvalho, J.J.; Blanc-Guillemaud, V.; Bouskela, E. Protective Effects of Micronized Purified Flavonoid Fraction (MPFF) on a Novel Experimental Model of Chronic Venous Hypertension. Eur. J. Vasc. Endovasc. Surg. Off. J. Eur. Soc. Vasc. Surg. 2018, 55, 694–702. [Google Scholar] [CrossRef] [PubMed]
- Prieto-Martínez, F.D.; Norinder, U.; Medina-Franco, J.L. Cheminformatics Explorations of Natural Products. Prog. Chem. Org. Nat. Prod. 2019, 110, 1–35. [Google Scholar] [CrossRef]
- Atta, H.M. Varicose veins: Role of mechanotransduction of venous hypertension. Int. J. Vasc. Med. 2012, 2012, 538627. [Google Scholar] [CrossRef]
- Grant, Y.; Onida, S.; Davies, A. Genetics in chronic venous disease. Phlebology 2017, 32, 3–5. [Google Scholar] [CrossRef]
- Serra, R.; Ssempijja, L.; Provenzano, M.; Andreucci, M. Genetic biomarkers in chronic venous disease. Biomark. Med. 2020, 14, 75–80. [Google Scholar] [CrossRef]
- Ligi, D.; Croce, L.; Mannello, F. Chronic Venous Disorders: The Dangerous, the Good, and the Diverse. Int. J. Mol. Sci. 2018, 19, 2544. [Google Scholar] [CrossRef]
- Castro-Ferreira, R.; Cardoso, R.; Leite-Moreira, A.; Mansilha, A. The Role of Endothelial Dysfunction and Inflammation in Chronic Venous Disease. Ann. Vasc. Surg. 2018, 46, 380–393. [Google Scholar] [CrossRef]
- Mansilha, A.; Sousa, J. Pathophysiological Mechanisms of Chronic Venous Disease and Implications for Venoactive Drug Therapy. Int. J. Mol. Sci. 2018, 19, 1669. [Google Scholar] [CrossRef]
- Filis, K.; Kavantzas, N.; Isopoulos, T.; Antonakis, P.; Sigalas, P.; Vavouranakis, E.; Sigala, F. Increased vein wall apoptosis in varicose vein disease is related to venous hypertension. Eur. J. Vasc. Endovasc. Surg. 2011, 41, 533–539. [Google Scholar] [CrossRef] [PubMed]
- Mikuła-Pietrasik, J.; Uruski, P.; Aniukiewicz, K.; Sosińska, P.; Krasiński, Z.; Tykarski, A.; Książek, K. Serum from Varicose Patients Induces Senescence-Related Dysfunction of Vascular Endothelium Generating Local and Systemic Proinflammatory Conditions. Oxid. Med. Cell Longev. 2016, 2016, 2069290. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Genilloud, O.; Peláez, F. Terrestrial Microorganisms–Filamentous Bacteria. In Comprehensive Natural Products II; Liu, H.-W., Mander, L., Eds.; Elsevier: Oxford, UK, 2010; pp. 109–140. [Google Scholar]
- Moreira, D.M.; da Silva, R.L.; Vieira, J.L.; Fattah, T.; Lueneberg, M.E.; Gottschall, C.A. Role of vascular inflammation in coronary artery disease: Potential of anti-inflammatory drugs in the prevention of atherothrombosis. Inflammation and anti-inflammatory drugs in coronary artery disease. Am. J. Cardiovasc. Drugs Drugs Devices Other Interv. 2015, 15, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Fujita, T.; Yoshimoto, T.; Kajiya, M.; Ouhara, K.; Matsuda, S.; Takemura, T.; Akutagawa, K.; Takeda, K.; Mizuno, N.; Kurihara, H. Regulation of defensive function on gingival epithelial cells can prevent periodontal disease. Jpn. Dent. Sci. Rev. 2018, 54, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Vitiello, D.; Neagoe, P.E.; Sirois, M.G.; White, M. Effect of everolimus on the immunomodulation of the human neutrophil inflammatory response and activation. Cell Mol. Immunol. 2015, 12, 40–52. [Google Scholar] [CrossRef] [PubMed]
- Choi, W.Y.; Lim, H.W.; Lim, C.J. Anti-inflammatory, antioxidative and matrix metalloproteinase inhibitory properties of 20(R)-ginsenoside Rh2 in cultured macrophages and keratinocytes. J. Pharm. Pharmacol. 2013, 65, 310–316. [Google Scholar] [CrossRef]
- Belcaro, G.; Rosaria Cesarone, M.; Ledda, A.; Cacchio, M.; Ruffini, I.; Ricci, A.; Ippolito, E.; Di Renzo, A.; Dugall, M.; Corsi, M.; et al. O-(beta-hydroxyethyl)-rutosides systemic and local treatment in chronic venous disease and microangiopathy: An independent prospective comparative study. Angiology 2008, 59 (Suppl. S1), 7s–13s. [Google Scholar] [CrossRef]
- Wu, Y.; Xu, S.; Tian, X.Y. The Effect of Salvianolic Acid on Vascular Protection and Possible Mechanisms. Oxid. Med. Cell Longev. 2020, 2020, 5472096. [Google Scholar] [CrossRef]
- Lichota, A.; Gwozdzinski, L.; Gwozdzinski, K. Therapeutic potential of natural compounds in inflammation and chronic venous insufficiency. Eur. J. Med. Chem. 2019, 176, 68–91. [Google Scholar] [CrossRef]
- Bickerton, G.R.; Paolini, G.V.; Besnard, J.; Muresan, S.; Hopkins, A.L. Quantifying the chemical beauty of drugs. Nat. Chem. 2012, 4, 90–98. [Google Scholar] [CrossRef]
- Voicu, A.; Duteanu, N.; Voicu, M.; Vlad, D.; Dumitrascu, V. The rcdk and cluster R packages applied to drug candidate selection. J. Cheminform 2020, 12, 3. [Google Scholar] [CrossRef] [PubMed]
- Talevi, A. Multi-target pharmacology: Possibilities and limitations of the “skeleton key approach” from a medicinal chemist perspective. Front. Pharmacol. 2015, 6, 205. [Google Scholar] [CrossRef] [PubMed]
- Oklei, D. Systemic phlebotropic drugs in pharmacotherapy of chronic venous insufficiency of the lower extremities. Vìsnik Farm. 2015, 4, 74–77. [Google Scholar] [CrossRef]
- Le Dévéhat, C.; Khodabandehlou, T.; Vimeux, M.; Kempf, C. Evaluation of haemorheological and microcirculatory disturbances in chronic venous insufficiency: Activity of Daflon 500 mg. Int. J. Microcirc. Clin. Exp. 1997, 17 (Suppl. S1), 27–33. [Google Scholar] [CrossRef] [PubMed]
- Ramelet, A.-A. Chapter 14—Venoactive Drugs. In Sclerotherapy, 5th ed.; Goldman, M.P., Guex, J.-J., Weiss, R.A., Eds.; W.B. Saunders: Edinburgh, UK, 2011; pp. 369–377. [Google Scholar]
- May, J.M.; Harrison, F.E. Role of vitamin C in the function of the vascular endothelium. Antioxid. Redox Signal. 2013, 19, 2068–2083. [Google Scholar] [CrossRef] [PubMed]
- Berthet, P.; Farine, J.C.; Barras, J.P. Calcium dobesilate: Pharmacological profile related to its use in diabetic retinopathy. Int. J. Clin. Pract. 1999, 53, 631–636. [Google Scholar] [CrossRef] [PubMed]
- Dardi, P.; Dos Reis Costa, D.E.F.; Assunção, H.C.R.; Rossoni, L.V. Venous endothelial function in cardiovascular disease. Biosci. Rep. 2022, 42, BSR20220285. [Google Scholar] [CrossRef] [PubMed]
- Xia, M.L.; Zhou, X.M.; Yao, H.; Jiang, H.D.; Bruce, I.C.; Wei, E.Q.; Xia, Q. Rutin-induced endothelium-dependent vasorelaxation in rat aortic Rings and the underlying mechanism. In Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, 17–18 January 2006; Volume 2005, pp. 5595–5597. [Google Scholar] [CrossRef]
- Zhang, M.; Feng, L.; Li, J.; Chen, L. Therapeutic Potential and Mechanisms of Berberine in Cardiovascular Disease. Curr. Pharmacol. Rep. 2016, 2, 281–292. [Google Scholar] [CrossRef]
- Oshiro, C.; Thorn, C.F.; Roden, D.M.; Klein, T.E.; Altman, R.B. KCNH2 pharmacogenomics summary. Pharmacogenetics Genom. 2010, 20, 775–777. [Google Scholar] [CrossRef]
- Kang, R.; Tang, D. Chapter 14—Ferroptosis, free radicals, and cancer. In Cancer, 2nd ed.; Preedy, V.R., Patel, V.B., Eds.; Academic Press: San Diego, CA, USA, 2021; pp. 149–158. [Google Scholar]
- Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; et al. PubChem 2019 update: Improved access to chemical data. Nucleic Acids Res. 2019, 47, D1102–D1109. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [PubMed]
- Sander, T.; Freyss, J.; von Korff, M.; Rufener, C. DataWarrior: An open-source program for chemistry aware data visualization and analysis. J. Chem. Inf. Model. 2015, 55, 460–473. [Google Scholar] [CrossRef] [PubMed]
- Gu, Z.; Eils, R.; Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 2016, 32, 2847–2849. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.; Gui, Y.; Chen, L.; Yuan, G.; Lu, H.Z.; Xu, X. Use of natural products as chemical library for drug discovery and network pharmacology. PLoS ONE 2013, 8, e62839. [Google Scholar] [CrossRef] [PubMed]
- O’Hagan, S.; Kell, D.B. Structural Similarities between Some Common Fluorophores Used in Biology, Marketed Drugs, Endogenous Metabolites, and Natural Products. Mar. Drugs 2020, 18, 582. [Google Scholar] [CrossRef] [PubMed]
- Oselusi, S.O.; Egieyeh, S.A.; Christoffels, A. Cheminformatic Profiling and Hit Prioritization of Natural Products with Activities against Methicillin-Resistant Staphylococcus aureus (MRSA). Molecules 2021, 26, 3674. [Google Scholar] [CrossRef] [PubMed]
- Wenderski, T.A.; Stratton, C.F.; Bauer, R.A.; Kopp, F.; Tan, D.S. Principal component analysis as a tool for library design: A case study investigating natural products, brand-name drugs, natural product-like libraries, and drug-like libraries. Methods Mol. Biol. 2015, 1263, 225–242. [Google Scholar] [CrossRef]
- Fernández-de Gortari, E.; García-Jacas, C.R.; Martinez-Mayorga, K.; Medina-Franco, J.L. Database fingerprint (DFP): An approach to represent molecular databases. J. Cheminform. 2017, 9, 9. [Google Scholar] [CrossRef]
- Capecchi, A.; Probst, D.; Reymond, J.-L. One molecular fingerprint to rule them all: Drugs, biomolecules, and the metabolome. J. Cheminform. 2020, 12, 43. [Google Scholar] [CrossRef]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- NOM-062-ZOO-1999; Especificaciones técnicas para la producción, cuidado y uso de los animales de laboratorio. Official Mexican Standards: Mexico City, Mexico, 1999. Available online: https://www.gob.mx/cms/uploads/attachment/file/203498/NOM-062-ZOO-1999_220801.pdf (accessed on 20 June 2023).
- NOM-087-SEMARNAT-SSA1-2002; Protección Ambiental-Salud Ambiental Residuos Peligrosos Biológico-Infecciosos-Clasificación y Especificaciones de Manejo. Official Mexican Standards: Mexico City, Mexico, 2002. Available online: https://www.cndh.org.mx/sites/default/files/doc/Programas/VIH/Leyes%20y%20normas%20y%20reglamentos/Norma%20Oficial%20Mexicana/NOM-087-SEMARNAT-SSA1-2002%20Proteccion%20ambiental-salud.pdf (accessed on 11 June 2023).
- Council, N.R. Committee for the Update of the Guide for the Care and Use of Laboratory Animals. In Guide for the Care and Use of Laboratory Animals, 8th ed.; National Academies Press (US): Washington, DC, USA, 2011. [Google Scholar]
- Kochi, T.; Imai, Y.; Takeda, A.; Watanabe, Y.; Mori, S.; Tachi, M.; Kodama, T. Characterization of the arterial anatomy of the murine hindlimb: Functional role in the design and understanding of ischemia models. PLoS ONE 2013, 8, e84047. [Google Scholar] [CrossRef] [PubMed]
- Lalka, S.G.; Unthank, J.L.; Nixon, J.C. Elevated cutaneous leukocyte concentration in a rodent model of acute venous hypertension. J. Surg. Res. 1998, 74, 59–63. [Google Scholar] [CrossRef] [PubMed]
- Hahn, T.L.; Whitfield, R.; Salter, J.; Granger, D.N.; Unthank, J.L.; Lalka, S.G. Evaluation of the role of intercellular adhesion molecule 1 in a rodent model of chronic venous hypertension. J. Surg. Res. 2000, 88, 150–154. [Google Scholar] [CrossRef] [PubMed]
Reference Compounds | No. of Compounds with Structural Similarity | Silhouette Coefficient (Sc) |
---|---|---|
Escin | 468 | 0.5 |
Crocin | 468 | 0.5 |
Echinomycin | 764 | 0.35 |
Cyclosporin A | 468 | 0.5 |
Amphotericin B | 468 | 0.5 |
Everolimus | 468 | 0.5 |
Rapamycin | 468 | 0.5 |
Chetomin | 764 | 0.35 |
Astragaloside IV | 418 | 0.5 |
20(R)-ginsenoside Rh2 | 418 | 0.5 |
Epigallocatechin 3-gallate | 614 | 0.23 |
Troxerutin | 614 | 0.23 |
O-(beta-hydroxyethyl)-rutoside | 614 | 0.23 |
Salvianolic acid B | 614 | 0.23 |
Keracyanin chloride | 764 | 0.35 |
Rutin | 614 | 0.23 |
Hidrosmin | 614 | 0.23 |
Diosmin | 614 | 0.23 |
Hesperidin | 614 | 0.23 |
Linarin | 614 | 0.23 |
Isorhoifolin | 614 | 0.23 |
Naringin | 614 | 0.23 |
Betanin | 468 | 0.5 |
Compounds Type | No. of Compounds Obtained for Fingerprint Analysis (Total n = 1846) | No. of Compounds with Targets (Total n = 229) | No. of Compounds that Interact with the VD Network |
---|---|---|---|
NPs | 1293 | 203 | 84 |
SMSs | 552 | 26 | 0 |
Limbs | Treatment | |||
---|---|---|---|---|
Berberine | β-Escin | |||
MAP (mm Hg) | HR (Beats/min) | MAP (mm Hg) | HR (Beats/min) | |
LHLB | 120.8 ± 6.0 | 414.8 ± 13.4 | 101.6 ± 14.9 | 361.3 ± 29.3 |
LHLA | 121.9 ± 6.47 | 410.0 ± 16.3 | 95.4 ± 4.2 | 363.8 ± 32.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barrera-Vázquez, O.S.; Escobar-Ramírez, J.L.; Santiago-Mejía, J.; Carrasco-Ortega, O.F.; Magos-Guerrero, G.A. Discovering Potential Compounds for Venous Disease Treatment through Virtual Screening and Network Pharmacology Approach. Molecules 2023, 28, 7937. https://doi.org/10.3390/molecules28247937
Barrera-Vázquez OS, Escobar-Ramírez JL, Santiago-Mejía J, Carrasco-Ortega OF, Magos-Guerrero GA. Discovering Potential Compounds for Venous Disease Treatment through Virtual Screening and Network Pharmacology Approach. Molecules. 2023; 28(24):7937. https://doi.org/10.3390/molecules28247937
Chicago/Turabian StyleBarrera-Vázquez, Oscar Salvador, Juan Luis Escobar-Ramírez, Jacinto Santiago-Mejía, Omar Francisco Carrasco-Ortega, and Gil Alfonso Magos-Guerrero. 2023. "Discovering Potential Compounds for Venous Disease Treatment through Virtual Screening and Network Pharmacology Approach" Molecules 28, no. 24: 7937. https://doi.org/10.3390/molecules28247937
APA StyleBarrera-Vázquez, O. S., Escobar-Ramírez, J. L., Santiago-Mejía, J., Carrasco-Ortega, O. F., & Magos-Guerrero, G. A. (2023). Discovering Potential Compounds for Venous Disease Treatment through Virtual Screening and Network Pharmacology Approach. Molecules, 28(24), 7937. https://doi.org/10.3390/molecules28247937