Electronic Structure and Chemical Bonding of the First-, Second-, and Third-Row-Transition-Metal Monoborides: The Formation of Quadruple Bonds in RhB, RuB, and TcB
Abstract
:1. Introduction
2. Previous Studies on Transition-Metal Monoborides, MBs
2.1. First-Row-Transition-Metal MBs
2.2. Second-Row-Transition-Metal MBs
2.3. Third-Row-Transition-Metal MBs
MB | Methodology | Ref. | State | re | De a | D0 | ωe | ωexe | μ (μFF) |
---|---|---|---|---|---|---|---|---|---|
LaB | DFT: B3LYP/LANL2DZ | [48] | X5Σ− | 2.435 | 2.49 | 511 | 4.29 | ||
DFT/B3LYP/SDD | [48] | X3Π | 2.336 | 2.10 | 496 | 5.02 | |||
DMC(B3LYP)/CRENBS-ECPLaBurkatzki-PPB | [49] | S = 2 | 2.150 | 3.37 | 4.22 | ||||
DMC(B3PW91)/CRENBS-ECPLa Burk.-PPB | [49] | S = 2 | 2.145 | 3.81 | 4.19 | ||||
R2PI spectroscopy | [25] | 2.086(18) | |||||||
DFT: UB97-1/AVTZ-PPLa VTZB | [25] | X5Σ− | 2.372 | 2.57 | 2.54 | 521 | |||
Pauling method | [24] | 3.51 | |||||||
HfB | DFT: B3LYP/LANL2DZ | [48] | X4Σ– | 2.157 | 2.70 | 613 | 2.44 | ||
DFT/B3LYP/SDD | [48] | X4Σ– | 2.195 | 2.64 | 580 | 2.68 | |||
R2PI spectroscopy | [25] | 2.593(3) | |||||||
DFT: UB97-1/AVTZ-PPLa VTZB | [25] | X4Σ– | 2.128 | 2.64 | 2.60 | 584 | |||
c-CCSD(T)/wCV5Z-PPHf AV5ZB | [46] | X4Σ− | 2.144 | 2.841 | 2.840 | 607 | 2.8 | ||
MRCI/c-CCSD(T)/wCVQZ-PPHf AVQZB | [46] | X4Σ− | 2.174 | 610 | 3.0 | ||||
BP86/def2-QZVP | [46] | 3.182 | |||||||
BLYP/def2-QZVP | [46] | 2.803 | |||||||
BPE/def2-QZVP | [46] | 3.311 | |||||||
MN15-L/def2-QZVP | [46] | 3.071 | |||||||
LRC-ωPBEh/def2-QZVP | [46] | 2.174 | |||||||
DSD-PBEB95-D3BJ/def2-QZVP | [46] | 1.923 | |||||||
TaB | DFT: B3LYP/LANL2DZ | [48] | X3Σ+ | 2.001 | 2.49 | 721 | 2.68 | ||
DFT/B3LYP/SDD | [48] | X5Δ | 2.184 | 2.48 | 555 | 1.44 | |||
R2PI spectroscopy | [25] | 2.700(3) | |||||||
DFT: UB97-1/AVTZ-PPTa VTZB | [25] | X5Δ | 2.085 | 3.00 | 2.95 | 754 | |||
WB | DFT: B3LYP/LANL2DZ | [48] | X6Σ− | 2.161 | 2.74 | 526 | 2.61 | ||
DFT/B3LYP/SDD | [48] | X6Σ− | 1.990 | 2.88 | 725 | 2.67 | |||
R2PI spectroscopy | [25] | 2.730(4) | |||||||
DFT: UB97-1/AVTZ-PPW VTZB | [25] | X6Σ+ | 1.891 | 2.94 | 2.89 | 730 | |||
ReB | DFT: B3LYP/LANL2DZ | [48] | X3Σ− | 1.842 | 2.77 | 867 | 2.99 | ||
DFT: B3LYP/SDD | [48] | X5Σ− | 1.875 | 4.18 | 853 | 2.29 | |||
OsB | R2PI spectroscopy | [26] | GS | 4.378(3) | |||||
B3LYP/aug-cc-pVQZ-PP | [45] | X4Σ− | 1.770 | 938 | 2.24 | ||||
B3LYP/LANL2DZ | [48] | Χ4Δ | 1.813 | 3.99 | 955 | 2.17 | |||
IrB | LIF spectroscopy | [50] | Χ3Δ3 | 1.7675 | |||||
B2PLYP/AVQZ(-PP)M | [47] | Χ3Δ | 1.763 | ||||||
CCSD(T)/AVQZ(-PP) | [47] | Χ3Δ | 5.085 | ||||||
R2PI spectroscopy | [26] | GS | 4.928(10) | ||||||
Mass spectrometry | [36] | GS | 5.27(18) | ||||||
B3LYP/LANL2DZ | [48] | Χ3Δ | 1.806 | 4.86 | 936 | 1.72 | |||
PtB | R2PI spectroscopy | [26] | GS | 5.235(3) | |||||
Mass spectrometry | [51] | GS | 4.91(17) | ||||||
LIF spectroscopy | [52] | Χ2Σ+ | 1.741 | 903.6 | |||||
B3LYP/LANL2DZ | [48] | Χ2Σ+ | 1.809 | 5.43 | 906 | 1.18 | |||
B2PLYP/AVQZ(-PP) | [47] | Χ2Σ+ | 1.755 | ||||||
CCSD(T)/AVQZ(-PP) | [47] | Χ2Σ+ | 5.668 | ||||||
AuB | Mass spectrometry | [36] | GS | 3.50(16) | |||||
Knudsen cell experiment | [53] | GS | 3.773 | ||||||
B3LYP/LANL2DZ | [48] | Χ1Σ+ | 1.997 | 2.96 | 559 | 0.68 | |||
B2PLYP/AVQZ(-PP) | [47] | Χ1Σ+ | 1.906 | 710 | |||||
CCSD(T)/AVQZ(-PP) | [47] | Χ1Σ+ | 3.734 | ||||||
Nonrelativistic CASPT2/PolMe | [29] | Χ1Σ+ | 2.256 | 1.261 | 362 | 3.06 | |||
No-pair DK CASPT2/NpPolMe | [29] | Χ1Σ+ | 1.931 | 3.519 | 676 | 4.76 | |||
No-pair DK CCSD(T)-20/NpPolMe | [29] | Χ1Σ+ | 1.960 | 2.709 | 663 | 4.01 | |||
R2PI spectroscopy | [30] | Χ1Σ+ | 3.724(3) | ||||||
HgB | B3LYP/LANL2DZ | [48] | Χ2Σ+ | 4.381 | 0.002 | 19 | 0.27 |
3. Results and Discussion
3.1. Second-Row-Transition-Metal Borides
MB | State | re | De | ωe | μ | qM |
---|---|---|---|---|---|---|
B3LYP | ||||||
YB | X5Σ− | 2.231 | 3.261 (2.094) | 571.9 | 4.894 | +0.59 |
ZrB | X6Δ | 2.162 | 3.035 (2.787) | 604.2 | 3.550 | +0.30 |
NbB | X5Π a | 1.988 | 2.862 | 692.5 | 3.025 | +0.15 |
a3Σ+ | 1.870 | 2.755 (2.460) | 805.8 | 2.984 | +0.18 | |
MoB | X6Π | 1.973 | 2.247 | 654.9 | 2.221 | +0.00 |
TcB | X3Σ− | 1.746 | 4.838 (3.894) | 848.3 | 3.767 | +0.00 |
a5Σ− | 1.829 | 3.582 | 796.3 | 1.785 | −0.13 | |
7Σ− | 2.080 | 1.382 | 516.0 | 2.240 | +0.23 | |
RuB | X2Δ | 1.700 | 5.210 (4.463) | 935.6 | 3.480 | −0.09 |
RhB | X1Σ+ | 1.679 | 5.491 (4.969) | 960.6 | 2.877 | −0.18 |
PdB | X2Σ+ | 1.777 | 3.781 | 759.7 | 1.281 | −0.26 |
AgB | X1Σ+ | 2.070 | 1.900 | 457.5 | 1.296 | −0.11 |
CdB | X2Π | 2.466 | 0.305 | 237.1 | 1.684 | +0.24 |
TPSSh | ||||||
YB | X5Σ− | 2.235 | 3.418 (2.475) | 574.1 | 4.893 | +0.60 |
ZrB | X6Δ | 2.166 | 3.247 (3.301) | 608.4 | 3.691 | +0.31 |
NbB | X5Π a | 1.992 | 3.010 | 690.6 | 3.229 | +0.17 |
MoB | X6Π | 1.982 | 2.338 | 646.0 | 2.416 | +0.02 |
TcB | X3Σ− | 1.765 | 5.210 (4.222) | 835.7 | 3.766 | +0.01 |
RuB | X2Δ | 1.711 | 5.518 (4.443) | 915.0 | 3.604 | −0.07 |
RhB | X1Σ+ | 1.685 | 5.412 (4.991) | 958.4 | 3.079 | −0.16 |
PdB | X2Σ+ | 1.781 | 4.020 | 768.8 | 1.543 | −0.24 |
AgB | X1Σ+ | 2.056 | 1.980 | 474.9 | 1.555 | −0.10 |
CdB | X2Π | 2.413 | 0.483 | 274.7 | 1.953 | +0.26 |
MN15 | ||||||
YB | X5Σ− | 2.210 | 3.649 (1.969) | 590.9 | 5.095 | +0.59 |
ZrB | X6Δ | 2.137 | 3.347 (2.651) | 624.7 | 3.670 | +0.29 |
NbB | X5Π a | 1.968 | 3.056 | 718.3 | 3.006 | +0.12 |
MoB | X6Π | 1.942 | 2.465 | 709.0 | 1.991 | −0.06 |
TcB | X3Σ− | 1.724 | 5.390 (4.899) | 915.1 | 3.589 | −0.06 |
RuB | X2Δ | 1.684 | 5.221 (5.169) | 986.9 | 3.375 | −0.14 |
RhB | X1Σ+ | 1.666 | 6.064 (5.895) | 1002.6 | 2.850 | −0.22 |
PdB | X2Σ+ | 1.762 | 4.056 | 783.4 | 1.084 | −0.30 |
AgB | X1Σ+ | 2.053 | 2.151 | 470.5 | 1.155 | −0.15 |
CdB | X2Π | 2.462 | 0.366 | 218.5 | 1.238 | +0.20 |
MRCISD | ||||||
NbB | X5Π | 2.017 | 2.799 b | 709.0 | 3.096 | +0.16 |
A5Φ | 2.018 | 2.715 b | 710.4 | 2.921 | +0.16 | |
MRCISD+Q | ||||||
X5Π | 2.018 | 2.901 b | 708.9 | |||
A5Φ | 2.019 | 2.808 b | 710.3 |
3.2. Third-Row-Transition-Metal Borides
Molecule | State | re (Å) | De | ωe | μ | qM |
---|---|---|---|---|---|---|
B3LYP | ||||||
LaB | Χ5Σ− | 2.384 | 2.874(2.528) | 512.7 | 4.03 | +0.55 |
a3Π | 2.263 | 2.080 | 478.5 | 6.08 | +0.74 | |
HfB | Χ4Σ− | 2.151 | 2.810 | 594.8 | 2.55 | +0.35 |
TaB | X5Δ | 1.974 | 3.495 | 739.6 | 3.58 | +0.22 |
a3Σ+ | 1.870 | 3.236 | 838.2 | 3.78 | +0.28 | |
WB | Χ6 Π | 1.955 | 2.907 a | 735.0 | 2.63 | +0.04 |
6Σ+ | 2.125 | 2.770 a | 548.2 | 2.86 | +0.10 | |
ReB | Χ5Σ− | 1.834 | 3.106 | 865.5 | 2.28 | −0.07 |
a3Σ− | 1.809 | 4.967(3.008) | 850.7 | 2.85 | −0.05 | |
OsB | Χ4Σ− | 1.772 | 4.482 | 935.1 | 2.18 | −0.13 |
IrB | Χ3Δ | 1.762 | 5.338 | 926.9 | 1.62 | −0.24 |
PtB | Χ2Σ+ | 1.759 | 5.377 | 905.2 | 1.08 | −0.32 |
AuB | Χ1Σ+ | 1.925 | 3.451 | 642.2 | 0.87 | −0.26 |
HgB | X2Π | 2.397 | 0.237 | 223.4 | 1.38 | +0.17 |
HgB | A2Σ+ | 4.029 | 0.003 | 31.7 | 0.35 | 0.00 |
TPSSh | ||||||
LaB | Χ5Σ− | 2.384 | 3.032(2.786) | 518.6 | 4.40 | +0.56 |
HfB | Χ4Σ− | 2.149 | 3.004 | 606.1 | 2.55 | +0.36 |
TaB | X5Δ | 1.979 | 3.585 | 733.5 | 3.65 | +0.23 |
WB | Χ6 Π | 1.963 | 2.938 a | 720.5 | 2.74 | +0.06 |
6Σ+ | 2.126 | 2.731 a | 549.5 | 2.99 | +0.12 | |
ReB | Χ5Σ− | 1.838 | 3.519 | 863.3 | 2.41 | −0.05 |
OsB | Χ4Σ− | 1.779 | 4.646 | 909.9 | 2.59 | −0.07 |
IrB | Χ3Δ | 1.765 | 5.300 | 928.1 | 1.81 | −0.22 |
PtB | Χ2Σ+ | 1.759 | 5.547 | 917.4 | 1.19 | −0.31 |
AuB | Χ1Σ+ | 1.921 | 3.604 | 657.6 | 1.04 | −0.25 |
HgB | X2Π | 2.341 | 0.395 | 266.5 | 1.62 | +0.19 |
HgB | A2Σ+ | 3.658 | 0.016 | 42.9 | 0.50 | −0.009 |
MN15 | ||||||
LaB | Χ5Σ− | 2.365 | 3.237(2.402) | 526.1 | 4.64 | +0.55 |
HfB | Χ4Σ− | 2.133 | 3.123 | 603.5 | 2.46 | +0.33 |
TaB | X5Δ | 1.957 | 3.560 | 767.0 | 3.42 | +0.19 |
WB | Χ6 Π | 1.932 | 3.031 a | 778.1 | 2.47 | 0.00 |
ReB | Χ5Σ− | 1.814 | 3.346 | 904.4 | 2.02 | −0.11 |
OsB | Χ4Σ− | 1.758 | 4.943 | 958.7 | 1.98 | −0.17 |
IrB | Χ3Δ | 1.750 | 5.633 | 944.7 | 1.46 | −0.27 |
PtB | Χ2Σ+ | 1.744 | 5.744 | 934.8 | 0.87 | −0.35 |
AuB | Χ1Σ+ | 1.902 | 3.933 | 673.9 | 0.69 | −0.30 |
HgB | X2Π | 2.337 | 0.364 | 234.4 | 1.12 | +0.14 |
HgB | A2Σ+ | 3.388 | 0.085 | 66.9 | 0.68 | −0.02 |
3.3. Comparison of MBs of All Three Rows and Bonding Analysis
MB | X | Configuration | Bond | In Situ M | In RM-B Infinity | XM | Τe b |
---|---|---|---|---|---|---|---|
1st row | MB | M | |||||
ScB | X5Σ− | 1σ22σ13σ11π11π1 | σ1πx1πy1 | 4F[3d24s1] a | 4F[3d24s1] | 2D[3d14s2] | 1.428(1.427) |
TiB | X6Δ | 1σ22σ13σ11π11π11δ1 | σ1πx1πy1 | 5F[3d3(4F)4s1] a | 5F[3d3(4F)4s1] | a3F[3d24s2 ] | 0.813(0.806) |
VB | X7Σ+ | 1σ22σ13σ11π11π11δ11δ1 | σ1πx1πy1 | 6D[3d4(5D)4s1] a | 6D[3d4(5D)4s1] | a4F[3d34s2] | 0.262(0.245) |
CrB | X6Σ+ | 1σ22σ23σ11π11π11δ11δ1 | σ2πx1πy1 | 7S[3d5(6S)4s1] a | 7S[3d5(6S)4s1] | 7S[3d5(6S)4s1] | 0 |
MnB | X5Π | 1σ22σ23σ11π21π11δ11δ1 | σ2πx2πy1 | 6S[3d54s2] a | 6S[3d54s2] | a6S[3d54s2] | 0 |
FeB | Χ4Σ− | 1σ22σ23σ11π21π21δ11δ1 | σ2πx2πy2 | a5F[3d7(4F)4s1] a | a5D[3d64s2] | a5D[3d64s2] | 0.859(0.875) |
CoB | Χ3Δ | 1σ22σ23σ11π21π21δ21δ1 | σ2πx2πy2 | b4F[3d8(3F)4s1] a | a4F[3d74s2] | a4F[3d74s2] | 0.432(0.417) |
NiB | Χ2Σ+ | 1σ22σ23σ11π21π21δ21δ2 | σ2πx2πy2 | a3D[3d9(2D)4s1] a | a3F[3d8(3F)4s2] | a3F[3d8(3F)4s2] | 0.025(-0.030) |
CuB | Χ1Σ+ | 1σ22σ23σ21π21π21δ21δ2 | σ2πx2πy2 | 2S[3d10(1S)4s1] a | 2S[3d10(1S)4s1] | 2S[3d10(1S)4s1] | 0 |
2nd row | |||||||
ZnB | Χ2Π | 1σ22σ23σ21π21π22π11δ21δ2 | σ2π2 | 1S[3d104s2] | 1S[3d104s2] | 1S[3d104s2] | 0 |
YB | X5Σ− | 1σ22σ13σ11π11π1 | σ1πx1πy1 | 4F[4d25s1] | a4F[4d2(3F)5s] | a2D[4d5s2] | 1.356(1.359) |
ZrB | X6Δ | 1σ22σ13σ11π11π11δ1 | σ1πx1πy1 | 5F[4d3(4F)5s1] | a5F[4d3(4F)5s1] | a3F[4d25s2] | 0.604(0.588) |
NbB | 5Π/5Φ | 1σ22σ13σ11π21π11δ1 | σ1πx2πy1 | a6D[4d4(5D)5s1] | a6D[4d4(5D)5s1] | a6D[4d4(5D)5s1] | 0 |
3Σ+ | 1σ22σ13σ11π21π2 | σ1πx2πy2 | a4D[4d45s1] | a4F[4d35s3] | a6D[4d4(5D)5s1] | 1.043(1.049) | |
MoB | X6Π | 1σ22σ13σ11π21π11δ11δ1 | σ1πx2πy1 | a7S[4d5(6S)5s] | a7S[4d5(6S)5s] | a7S[4d5(6S)5s] | 0 |
TcB | X3Σ− | 1σ22σ21π21π21δ11δ1 | σ2σ2πx2πy2 | 4F[4d7] | 4D[4d6(5D)5s] | 6S[4d55s2] | 1.827(2.332) |
5Σ− | 1σ22σ13σ11π21π21δ11δ1 | σ1πx2πy2 | 6D[4d65s1] | 6S[4d55s2] | 6S[4d55s2] | 0.319(0.406) | |
7Σ− | 1σ22σ13σ11π21π12π11δ11δ1 | σ1π1 | 6D[4d65s1] | 6S[4d55s2] | 6S[4d55s2] | 0.319(0.406) | |
RuB | X2Δ | 1σ22σ21π21π21δ21δ1 | σ2σ2πx2πy2 | b3F[4d8] | a3F[4d7(a4F)5s] | a5F[4d7(a4F)5s] | 1.131(1.092) |
RhB | X1Σ+ | 1σ22σ21π21π21δ21δ2 | σ2σ2πx2πy2 | a2D[4d9] | a2D[4d9] | a4F[4d8(3F)5s] | 0.410(0.342) |
PdB | X2Σ+ | 1σ22σ23σ11π21π21δ21δ2 | σ2πx2πy2 | 1S[4d10] | 1S[4d10] | 1S[4d10] | 0 |
AgB | X1Σ+ | 1σ22σ23σ21π21π21δ21δ2 | σ2πx2πy2 | 2S[4d105s] | 2S[4d105s] | 2S[4d105s] | 0 |
CdB | X2Π | 1σ22σ23σ21π21π22π11δ21δ2 | σ2π2 | 1S[4d105s2] | 1S[4d105s2] | 1S[4d105s2] | 0 |
3rd row | |||||||
LaB | X5Σ− | 1σ22σ13σ11π11π1 | σ1πx1πy1 | 4F[5d2(3F)6s] | 4F[5d2(3F)6s] | 2D[5d6s2] | 0.331(0.355) |
3Π | 1σ22σ11π21π1 | σ1πx2πy1 | b4F[5d3] | 2D[5d6s2] | 2D[5d6s2] | 1.541(1.560) | |
HfB | X4Σ− | 1σ22σ23σ11π11π1 | σ1πx1πy1 | a3F[5d26s2] | a3F[5d26s2] | a3F[5d26s2] | 0 |
TaB | X5Δ | 1σ22σ13σ11π21π11δ1 | σ1πx2πy1 | a6D[5d46s1] | a4F[5d36s2] | a4F[5d36s2] | 1.210(1.038) |
3Σ+ | 1σ22σ13σ11π21π2 | σ1πx2πy2 | a4F[5d36s2] | a4F[5d36s2] | |||
WB | X6Π | 1σ22σ13σ11π21π11δ11δ1 | σ1πx2πy1 | 7S[5d56s1] | 5D[5d46s2] | 5D[5d46s2] | 0.366(−0.187) |
6Σ+ | 1σ22σ23σ11π11π11δ11δ1 | σ2πx1πy1 | 7S[5d56s1] | 5D[5d46s2] | 5D[5d46s2] | 0.366(−0.187) | |
ReB | X5Σ− | 1σ22σ13σ11π21π21δ11δ1 | σ1πx2πy2 | a6D[5d66s1] | a6S[5d56s2] | a6S[5d56s2] | 1.457(1.759) |
3Σ− | 1σ22σ21π21π21δ11δ1 | σ2πx2πy2 | a4P[5d56s2] | a4P[5d56s2] | a6S[5d56s2] | 1.436(1.603) | |
OsB | Χ4Σ− | 1σ22σ23σ11π21π21δ11δ1 | σ2πx2πy2 | a5F[5d7(4F)6s1] | a5D[5d66s2] | a5D[5d66s2] | 0.638(0.757) |
IrB | Χ3Δ | 1σ22σ23σ11π21π21δ21δ1 | σ2πx2πy2 | a4F[5d76s2] | a4F[5d76s2] | a4F[5d76s2] | 0 |
PtB | Χ2Σ+ | 1σ22σ23σ11π21π21δ21δ2 | σ2πx2πy2 | 3D[5d96s1] | 3D[5d96s1] | 3D[5d96s1] | 0 |
AuB | Χ1Σ+ | 1σ22σ23σ21π21π21δ21δ2 | σ2πx2πy2 | 2S[5d106s1] | 2S[5d106s1] | 2S[5d106s1] | 0 |
HgB | Χ2Π | 1σ22σ23σ21π21π22π11δ21δ2 | σ2π2 | 1S[5d106s2] | 1S[5d106s2] | 1S[5d106s2] | 0 |
Χ2Σ+ | 1σ22σ23σ24σ11π21π21δ21δ2 | (π2π2) | 1S[5d106s2] | 1S[5d106s2] | 1S[5d106s2] | 0 |
4. Computational Details
5. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Greenwood, N.N.; Earnshaw, A. Chemistry of the Elements, 2nd ed.; Butterworth-Heinemann: Oxford, UK, 1998. [Google Scholar]
- Cheung, L.F.; Chen, T.-T.; Kocheril, G.S.; Chen, W.-J.; Czekner, J.; Wang, L.-S. Observation of Fourfold Boron-Metal Bonds in RhB(BO−) and RhB. J. Phys. Chem. Lett. 2020, 11, 659–663. [Google Scholar] [CrossRef] [PubMed]
- Shaik, S.; Danovich, D.; Wu, W.; Su, P.; Rzepa, H.S.; Hiberty, P.C. Quadruple Bonding in C2 and Analogous Eight-Valence Electron Species. Nat. Chem. 2012, 4, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Tzeli, D.; Karapetsas, I. Quadruple Bonding in the Ground and Low-Lying Excited States of the Diatomic Molecules TcN, RuC, RhB, and PdBe. J. Phys. Chem. A 2020, 124, 6667–6681. [Google Scholar] [CrossRef] [PubMed]
- Tzeli, D. Quadruple chemical bonding in the diatomic anions TcN¯, RuC¯, RhB¯, and PdBe¯. J. Comput. Chem. 2021, 42, 1126–1137. [Google Scholar] [CrossRef] [PubMed]
- Ganem, B.; Osby, J.O. Synthetically useful reactions with metal boride and aluminide catalysts. Chem. Rev. 1986, 86, 763–780. [Google Scholar] [CrossRef]
- Will, G. Electron deformation density in titanium diboride chemical bonding in TiB2. J. Solid State Chem. 2004, 177, 628–631. [Google Scholar] [CrossRef]
- Choi, H.J.; Roundy, D.; Sun, H.; Cohen, M.L.; Louie, S.G. The origin of the anomalous superconducting properties of MgB(2). Nature 2002, 418, 758–760. [Google Scholar] [CrossRef]
- Chung, H.; Weinberger, M.B.; Levine, J.B.; Kavner, A.; Yang, J.; Tolbert, S.H.; Kaner, R.B. Synthesis of Ultra-Incompressible Superhard Rhenium Diboride at Ambient Pressure. Science 2007, 316, 436–439. [Google Scholar] [CrossRef]
- Wdowik, U.D.; Twardowska, A.; Rajchel, B. Vibrational Spectroscopy of Binary Titanium Borides: First-Principles and Experimental Studies. Adv. Condens. Matter Phys. 2017, 18, 4207301. [Google Scholar] [CrossRef]
- Decker, B.F.; Kasper, J.S. The crystal structure of TiB. Acta Crystallogr. 1954, 7, 77–80. [Google Scholar] [CrossRef]
- Spear, K.E.; McDowell, P.; McMahon, F. Experimental evidence for the existence of the Ti3B4 phase. J. Am. Ceram. Soc. 1986, 69, C-4–C-5. [Google Scholar] [CrossRef]
- Viswanathan, E.; Sundareswari, M.; Jayalakshmi, D.S.; Manjula, M. Fermi surface and hardness enhancement study on ternary scandium and vanadium-based borides by first principles investigation. Comput. Mater. Sci. 2019, 157, 107–120. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, D.; Zhao, Y.; Li, W.; Gao, Y.; Duan, M.; Hou, H. Physical Properties and Electronic Structure of Cr2B Under Pressure. Phys. Status Solidi B 2020, 258, 2000212. [Google Scholar] [CrossRef]
- Gou, H.; Steinle-Neumann, G.; Bykova, E.; Nakajima, Y.; Miyajima, N.; Li, Y.; Ovsyannikov, S.V.; Dubrovinsky, L.S.; Dubrovinskaia, N. Stability of MnB2 with AlB2-type structure revealed by first-principles calculations and experiments. Appl. Phys. Lett. 2013, 102, 061906. [Google Scholar] [CrossRef]
- Panda, K.B.; Ravi Chandran, K.S. First principles determination of elastic constants and chemical bonding of titanium boride (TiB) on the basis of density functional theory. Acta Mater. 2006, 54, 1641–1657. [Google Scholar] [CrossRef]
- Li, P.; Zhou, R.; Cheng Zeng, X. Computational Analysis of Stable Hard Structures in the Ti-B System. Appl. Mater. Interfaces 2015, 7, 15607–15617. [Google Scholar] [CrossRef]
- Wang, M.; Liu, C.; Wen, M.; Li, Q.; Ma, Y. Investigations on structural determination of semi-transition-metal borides. Phys. Chem. Chem. Phys. 2017, 19, 31592–31598. [Google Scholar] [CrossRef]
- Tzeli, D.; Karapetsas, I.; Merriles, D.M.; Ewigleben, J.C.; Morse, M.D. The molybdenum-sulfur bond: Electronic structure of low-lying states of MoS. J. Phys. Chem. A 2022, 126, 1168–1181. [Google Scholar] [CrossRef]
- Mermigki, M.A.; Karapetsas, I.; Tzeli, D. Electronic structure of low-lying states of triatomic MoS2 molecule: The building block of 2D MoS2. Chem. Phys. Chem. 2023, 24, e202300365. [Google Scholar] [CrossRef]
- Tzeli, D.; Mavridis, A. Electronic structure and bonding of the 3D–transition metal borides, MB, M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, and Cu through all electron ab initio calculations. J. Chem. Phys. 2008, 128, 034309. [Google Scholar] [CrossRef]
- Wu, Z. Density functional study of 3D-metal monoborides. J. Mol. Struct. Theochem. 2005, 728, 167–172. [Google Scholar]
- Černušák, I.; Dallos, M.; Lischka, H.; Müller, T.; Uhlár, M. On the ground and some low-lying excited states of ScB: A multiconfigurational study. J. Chem. Phys. 2007, 126, 214311. [Google Scholar] [CrossRef] [PubMed]
- Gingerich, K.A. Gaseous Metal Borides. I. Dissociation Energy of the Molecules ThB, ThP, and Th2, and Predicted Dissociation Energies of Selected Diatomic Transition-Metal Borides. High Temp. Sci. 1969, 1, 258–267. [Google Scholar]
- Merriles, D.M.; Nielson, C.; Tieu, E.; Morse, M.D. Chemical Bonding and Electronic Structure of the Early Transition Metal Borides: ScB, TiB, VB, YB, ZrB, NbB, LaB, HfB, TaB, and WB. J. Phys. Chem. A 2021, 125, 4420–4434. [Google Scholar] [CrossRef] [PubMed]
- Merriles, D.M.; Tieu, E.; Morse, M.D. Bond dissociation energies of FeB, CoB, NiB, RuB, RhB, OsB, IrB, and PtB. J. Chem. Phys. 2019, 151, 044302. [Google Scholar] [CrossRef] [PubMed]
- Ng, Y.W.; Pang, H.F.; Cheung, A.S.-C. Electronic transitions of cobalt monoborides. J. Chem. Phys. 2011, 135, 204308. [Google Scholar] [CrossRef]
- Balfour, W.J.; Chowdhury, P.K.; Li, R. Ni+B2H6: Spectroscopic observations on NiB and NiH. Chem. Phys. Lett. 2008, 463, 25–28. [Google Scholar] [CrossRef]
- Barysz, M.; Urban, M. Molecular Properties of Boron–Coinage Metal Dimers: BCu, BAg, Bau. Adv. Quantum Chem. 1997, 28, 257. [Google Scholar]
- Merriles, D.M.; Morse, M.D. CrN, CuB, and AuB: A Tale of Two Dissociation Limits. J. Phys. Chem. Lett. 2023, 14, 7361–7367. [Google Scholar] [CrossRef]
- Dore, J.M.; Adam, A.G.; Tokaryk, D.W.; Linton, C. Hyperfine analysis of the (2, 0) [18.3]3–X3Δ3 transition of cobalt monoborides. J. Mol. Spectrosc. 2019, 360, 44–48. [Google Scholar] [CrossRef]
- Zhen, J.F.; Wang, L.; Qin, C.B.; Zhang, Q.; Chen, Y. Laser-induced Fluorescence and Dispersed Fluorescence Spectroscopy of NiB: Identification of a New 2Π State in 19000–22100 cm−1. Chin. J. Chem. Phys. 2010, 23, 626–629. [Google Scholar] [CrossRef]
- Goudreau, E.S.; Adam, A.G.; Tokaryk, D.W.; Linton, C. High resolution laser spectroscopy of the [20.6]0.5–X2Σ+ transition of nickel monoboride, NiB. J. Mol. Spectrosc. 2015, 314, 13–18. [Google Scholar] [CrossRef]
- Kharat, B.; Deshmukh, S.B.; Chaudhari, A. 4d Transition Metal Monoxides, Monocarbides, Monoborides, Mononitrides, and Monofluorides: A Quantum Chemical Study. J. Quantum Chem. 2009, 109, 1103–1115. [Google Scholar] [CrossRef]
- Borin, A.C.; Gobbo, J.P. Electronic Structure of the Ground and Low-Lying Electronic States of MoB and MoB+. Int. J. Quantum Chem. 2011, 111, 3362–3370. [Google Scholar] [CrossRef]
- Auwera-Mahieu, A.V.; Peeters, R.; McIntyre, N.S.; Drowa, J. Mass Spectrometric Determination of Dissociation Energies of the Borides and Silicides of some Transition Metals. Trans. Faraday Soc. 1970, 66, 809–816. [Google Scholar] [CrossRef]
- Wang, N.; Ng, Y.W.; Cheung, A.S.-C. Laser induced fluorescence spectroscopy of ruthenium monoborides. Chem. Phys. Lett. 2012, 547, 21–23. [Google Scholar] [CrossRef]
- Chowdhury, P.K.; Balfour, W.J. A spectroscopic characterization of the electronic ground state of rhodium monoborides. J. Chem. Phys. 2006, 124, 216101. [Google Scholar] [CrossRef]
- Gobbo, J.P.; Borin, A.C. The nature of the [20.0] 1Sigma+ electronic state of RhB: A multiconfigurational study. J. Chem. Phys. 2007, 126, 011102. [Google Scholar] [CrossRef]
- Chowdhury, P.K.; Balfour, W.J. A spectroscopic study of the rhodium monoboride molecule. Mol. Phys. 2007, 105, 1619–1624. [Google Scholar] [CrossRef]
- Borin, A.C.; Gobbo, J.P. Low-Lying Singlet and Triplet Electronic States of RhB. J. Phys. Chem. A 2008, 112, 4394–4398. [Google Scholar] [CrossRef]
- Schoendorff, G.; Ruedenberg, K.; Gordon, M.S. Multiple Bonding in Rhodium Monoboride. Quasi-atomic Analyses of the Ground and Low-Lying Excited States. J. Phys. Chem. A 2021, 125, 4836–4846. [Google Scholar] [CrossRef] [PubMed]
- Knight, L.B., Jr.; Babb, R.; Hill, D.W.; McKinley, A.J. Laser vaporization generation of the diatomic radicals PdB, 105PdB, PdAl, and 105PdAl: Electron spin resonance investigation in neon matrices at 4 K. J. Chern. Phys. 1992, 97, 2987. [Google Scholar] [CrossRef]
- Ng, Y.W.; Pang, H.F.; Qian, Y.; Cheung, A.S.-C. Electronic Transition of Palladium Monoboride. J. Phys. Chem. A 2012, 116, 11568–11572. [Google Scholar] [CrossRef] [PubMed]
- Merriles, D.M.; Morse, M.D. Ionization energies and cationic bond dissociation energies of RuB, RhB, OsB, IrB, and PtB. J. Chem. Phys. 2022, 157, 074303. [Google Scholar] [CrossRef] [PubMed]
- Ariyarathna, I.R.; Duan, C.; Kulik, H.J. Understanding the chemical bonding of ground and excited states of HfO and HfB with correlated wavefunction theory and density functional approximations. J. Chem. Phys. 2022, 156, 184113. [Google Scholar] [CrossRef]
- Cheung, L.F.; Kocheril, G.S.; Czekner, J.; Wang, L.S. The nature of the chemical bonding in 5d transition-metal diatomic borides MB (M = Ir, Pt, Au). J. Chem. Phys. 2020, 152, 174301. [Google Scholar] [CrossRef]
- Kalamse, V.; Gaikwad, S.; Chaudhari, A. Computational study of 5d transition metal mononitrides and monoborides using density functional method. Bull. Mater. Sci. 2010, 33, 233–238. [Google Scholar] [CrossRef]
- Elkahwagy, N.; Ismail, A.; Maize, S.M.A.; Mahmoud, K.R. Diffusion Monte Carlo calculations on LaB molecule. Chin. Phys. B 2018, 27, 093102. [Google Scholar] [CrossRef]
- Ye, J.; Pang, H.F.; Wong, A.M.-Y.; Leung, J.W.-H.; Cheung, A.S.-C. Laser spectroscopy of iridium monoborides. J. Chem. Phys. 2008, 128, 154321. [Google Scholar] [CrossRef]
- McIntyre, N.S.; Auwera-Mahieu, A.V.; Drowart, J. Mass spectrometric determination of the dissociation energies of gaseous RuC, IrC and PtB. Trans. Faraday Soc. 1968, 64, 3006–3010. [Google Scholar] [CrossRef]
- Ng, Y.W.; Wong, Y.S.; Pang, H.F.; Cheung, A.S.C. Electronic transitions of platinum monoborides. J. Chem. Phys. 2012, 137, 124302. [Google Scholar] [CrossRef]
- Gingerich, K.A. Gaseous Metal Borides. III. The Dissociation Energy and Heat of Formation of Gold Monoboride. J. Chem. Phys. 1971, 54, 2646–2650. [Google Scholar] [CrossRef]
- Pang, H.F.; Ng, Y.W.; Xia, Y.; Cheung, A.S.C. Electronic transitions of iridium monoborides. Chem. Phys. Lett. 2011, 501, 257–262. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Yu, H.S.; He, X.; Li, S.L.; Truhlar, D.G. MN15: A Kohn-Sham Global-Hybrid Exchange-Correlation Density Functional with Broad Accuracy for Multi-Reference and Single-Reference Systems and Noncovalent Interactions. Chem. Sci. 2016, 7, 5032–5051. [Google Scholar] [CrossRef] [PubMed]
- Tao, J.; Perdew, J.P.; Staroverov, V.N.; Scuseria, G.E. Climbing the Density Functional Ladder: Nonempirical Meta-Generalized Gradient Approximation Designed for Molecules and Solids. Phys. Rev. Lett. 2003, 91, 146401. [Google Scholar] [CrossRef] [PubMed]
- Peterson, K.A.; Figgen, D.; Dolg, M.; Stoll, H. Energy-consistent relativistic pseudopotentials and correlation consistent basis sets for the 4d elements Y-Pd. J. Chem. Phys. 2007, 126, 124101. [Google Scholar] [CrossRef]
- Peterson, K.A.; Puzzarini, C. Systematically convergent basis sets for transition metals. II. Pseudopotential-based correlation consistent basis sets for the group 11 (Cu, Ag, Au) and 12 (Zn, Cd, Hg) elements. Theor. Chem. Acc. 2005, 114, 283–296. [Google Scholar] [CrossRef]
- Figgen, D.; Peterson, K.A.; Dolg, M.; Stoll, H. Energy-consistent pseudopotentials and correlation consistent basis sets for the 5d elements Hf–Pt. J. Chem. Phys. 2009, 130, 164108. [Google Scholar] [CrossRef]
- Peterson, K.A.; Dunning, T.H. Accurate correlation consistent basis sets for molecular core–valence correlation effects: The second row atoms Al–Ar, and the first row atoms B–Ne revisited. J. Chem. Phys. 2002, 117, 10548–10560. [Google Scholar] [CrossRef]
- Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef]
- Chi, C.; Wang, J.-Q.; Hu, H.-S.; Zhang, Y.-Y.; Li, W.-L.; Meng, L.; Luo, M.; Zhou, M.; Li, J. Quadruple bonding between iron and boron in the BFe(CO)3− complex. Nat. Commun. 2019, 10, 4713. [Google Scholar] [CrossRef]
- Sevy, A.; Huffaker, R.F.; Morse, M.D. Bond Dissociation Energies of Tungsten Molecules: WC, WSi, WS, WSe, and WCl. J. Phys. Chem. A 2017, 121, 9446–9457. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef] [PubMed]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 16, Revision C.01; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Werner, H.-J.; Knowles, P.J.; Manby, F.R.; Black, J.A.; Doll, K.; Heßelmann, A.; Kats, D.; Köhn, A.; Korona, T.; Kreplin, D.A.; et al. MOLPRO version 2022. Chem. Phys. 2020, 152, 144107. [Google Scholar]
MB | Methodology | Ref. | State | re | De a | D0 | ωe | ωexe | μ (μFF) |
---|---|---|---|---|---|---|---|---|---|
ScB | icMRCISD/cc-pV5Z | [21] | X5Σ– | 2.128 | 3.257 | 3.220 | 584.5 | 3.8 | 4.02(4.16) |
icMRCI+Q/cc-pV5Z | [21] | 2.132 | 3.287 | 3.251 | 579 | 3.8 | (4.23) | ||
icMRCISD+DKH+Q/cc-pV5Z | [21] | 2.094 | 3.309 | 3.271 | 603 | 2.6 | (4.13) | ||
B3LYP/6-311++G(3df) | [22] | X5Σ– | 2.084 | 1.90 a | 612 | 3.95 | |||
MRCI+Q | [23] | 1.787 a | |||||||
Pauling method | [24] | 2.8 a | |||||||
R2PI spectroscopy | [25] | 1.72(6) a | |||||||
TiB | icMRCISD/cc-pV5Z | [21] | X6Δ | 2.077 | 2.723 | 2.687 | 587.6 | 3.5 | 3.13(3.42) |
icMRCI+Q/cc-pV5Z | [21] | 2.080 | 2.797 | 2.761 | 583 | 3.5 | (3.51) | ||
B3LYP/6-311++G(3df) | [22] | X6Δ | 2.039 | 2.40 | 2.362 | 621 | 3.26 | ||
Pauling method | [24] | <3.1 | |||||||
R2PI spectroscopy | [25] | 1.956(16) | |||||||
VB | icMRCISD/cc-pV5Z | [21] | X7Σ+ | 2.039 | 2.268 | 2.231 | 589.9 | 3.75 | 2.73(3.20) |
icMRCI+Q/cc-pV5Z | [21] | 2.043 | 2.381 | 2.344 | 585 | 3.8 | (3.30) | ||
B3LYP/6-311++G(3df) | [22] | X7Σ+ | 2.011 | 2.17 | 2.132 a | 615 | 2.82 | ||
R2PI spectroscopy | [25] | 2.150(16) a | |||||||
CrB | icMRCISD/cc-pV5Z | [21] | X6Σ+ | 2.166 | 1.141 | 420 | 18.5 | 2.05 | |
icMRCI+Q/cc-pV5Z | [21] | X6Σ+ | 2.183 | 1.353 | 405 | 20 | 1.43 | ||
B3LYP/6-311++G(3df) | [22] | X6Σ+ | 2.187 | 415 | 2.41 | ||||
MnB | icMRCISD/cc-pV5Z | [21] | X5Π | 2.190 | 0.846 | 0.821 | 391.9 | 3.79 | 2.21(2.45) |
icMRCI+Q/cc-pV5Z | [21] | 2.183 | 0.854 | 0.831 | 383 | 3.9 | (2.39) | ||
B3LYP/6-311++G(3df) | [22] | 1.828 | 1.27 | 1.232 | 621 | 2.47 | |||
FeB | R2PI spectroscopy | [26] | GS | 2.43(2) | |||||
B3LYP/aug-6-311++G(3df) | [22] | Χ4Σ− | 1.695 | 2.22 | 743 | 2.27 | |||
icMRCISD/cc-pV5Z | [21] | Χ4Σ− | 1.743 | 2.303 | 642.7 | 12.50 | 1.67(2.13) | ||
icMRCI+Q/cc-pV5Z | [21] | Χ4Σ− | 1.747 | 2.346 | 645 | 13.20 | (2.20) | ||
CoB | R2PI spectroscopy | [26] | GS | 2.954(3) | |||||
LIF spectroscopy | [27] | Χ3Δ3 | 1.705 | ||||||
B3LYP/aug-6-311++G(3df) | [22] | Χ3Δ | 1.676 | 2.62 | 783 | 1.89 | |||
icMRCISD/cc-pV5Z | [21] | Χ3Δ | 1.696 | 2.736 | 756.9 | 6.14 | 1.03(1.83) | ||
icMRCI+Q/cc-pV5Z | [21] | Χ3Δ | 1.700 | 2.849 | 757 | 6.10 | (1.98) | ||
NiB | R2PI spectroscopy | [26] | GS | 3.431(4) | |||||
LIF spectroscopy | [28] | Χ2Σ+ | 1.698 | 778 | 4.90 | ||||
B3LYP/aug-6-311++G(3df) | [22] | Χ2Σ+ | 1.676 | 2.83 | 793 | 1.66 | |||
icMRCISD/cc-pV5Z | [21] | Χ2Σ+ | 1.676 | 3.239 | 805.1 | 3.93 | 0.80(2.16) | ||
icMRCI+Q/cc-pV5Z | [21] | Χ2Σ+ | 1.681 | 3.434 | 803 | 3.98 | (2.41) | ||
CuB | icMRCISD/cc-pV5Z | [21] | Χ1Σ+ | 1.934 | 1.839 | 496.9 | 5.54 | 1.21(1.71) | |
icMRCI+Q/cc-pV5Z | [21] | Χ1Σ+ | 1.922 | 2.129 | 553 | 4.80 | (1.62) | ||
Nonrelativistic CASPT2/PolMe | [29] | Χ1Σ+ | 1.910 | 2.806 | 518 | 4.25 | |||
No-pair DK CASPT2/NpPolMe | [29] | Χ1Σ+ | 1.865 | 2.354 | 563 | 4.34 | |||
No-pair DK CCSD(T)-20/NpPolMe | [29] | Χ1Σ+ | 1.909 | 1.522 | 555.0 | 4.33 | |||
R2PI spectroscopy | [30] | Χ1Σ+ | 2.26(15) | ||||||
B3LYP/aug-6-311++G(3df) | [22] | Χ1Σ+ | 1.952 | 2.12 | 513 | 1.61 | |||
ZnB | B3LYP/aug-6-311++G(3df) | [22] | Χ2Π | 2.274 | 0.370 | 286 | 1.70 | ||
B3LYP/aug-cc-pVQZ(-PP) | b | Χ2Π | 2.258 | 0.373 | 0.329 | 282.5 | 1.65 | ||
TPSSh/aug-cc-pVQZ(-PP) | b | Χ2Π | 2.217 | 0.573 | 0.529 | 322.7 | 1.84 | ||
MN15/aug-cc-pVQZ(-PP) | b | Χ2Π | 2.330 | 0.374 | 0.317 | 234.1 | 1.32 |
MB | Methodology | Ref. | State | re | De a | D0 | ωe | ωexe | μ (μFF) |
---|---|---|---|---|---|---|---|---|---|
YB | R2PI spectroscopy | [25] | 2.057(3) | ||||||
DFT: B97-1/AVTZ-PPY/VTZB | [25] | X5Σ− | 2.306 | (1.99) | 1.96 | 517 | |||
DFT: B3LYP/LANL2DZ | [34] | S = 2 | 2.254 | 2.17 | 582.4 | 4.65 | |||
Pauling method | [24] | 2.99 | |||||||
ZrB | R2PI spectroscopy | [25] | 2.573(5) | ||||||
DFT: B97-1/AVTZ-PPZr/VTZB | [25] | X6Δ | 2.159 | (2.65) | 2.61 | ||||
DFT: B3LYP/LANL2DZ | [34] | S = 2.5 | 2.189 | 3.92 | 610.2 | 3.48 | |||
NbB | R2PI spectroscopy | [25] | 2.989(12) | ||||||
DFT: B97-1/AVTZ-PPNb/VTZB | [25] | 5Π/5Φ | 1.988 | (3.11) | 3.07 | 698 | |||
DFT: B3LYP/LANL2DZ | [34] | S = 1 | 1.996 | 3.40 | 662.7 | 3.84 | |||
MRCISD+Q/aug-cc-pVQZ(-PP) | b | X5Π | 2.018 | 2.901 | 708.9 | 3.10 | |||
MRCISD+Q/aug-cc-pVQZ(-PP) | b | A5Φ | 2.019 | 2.808 | 710.3 | 2.92 | |||
MoB | CASPT2/CASSCF/ANO-RCC-4ζ | [35] | X6Π | 1.968 | 2.18 | 664 | 2.7 | ||
DFT: B3LYP/LANL2DZ | [34] | S = 0.5 | 1.817 | 6.40 | 826 | 4.05 | |||
TcB | DFT: B97-1/(A)TcVTZB-(PP)Tc | [25] | X5Σ− | 3.31 | |||||
RuB | R2PI spectroscopy | [26] | 4.815(3) | ||||||
Knudsen effusion | [36] | X2Σ | 1.75 | 4.59(22) | |||||
LIF spectroscopy | [37] | 2Δ5/2 | 1.7099 | ||||||
DFT: B3LYP/LANL2DZ | [34] | S = 0.5 | 1.761 | 6.48 | 910.8 | 3.49 | |||
RhB | R2PI spectroscopy | [26] | 5.252(3) | ||||||
Knudsen effusion | [36] | X1Σ | 1.75 | 4.89(22) | 915 | ||||
LIF spectroscopy | [38] | X1Σ+ | 1.691(2) | ||||||
MS-CASPT2/ANO-RCC-4ζ | [39] | X1Σ+ | 1.698 | 4.42 | |||||
LIF spectroscopy | [40] | X1Σ+ | 1.691(2) | ||||||
MS-CASPT2/ANO-RCC-4ζ | [41] | X1Σ+ | 1.694 | (5.7) | 5.6 | 924 | 4.54 | ||
MRCISD+Q/AV5Z-PPRh AV5ZB | [4] | X1Σ+ | 1.6873 | 5.473 | 5.414 | 938.3 | 4.32 | (3.160) | |
RCCSD(T)/AV5Z-PPRh AV5ZB | [4] | X1Σ+ | 1.6872 | 5.490 | 5.431 | 942.1 | 3.78 | (2.865) | |
ADF/PBE/TZ2P | [2] | X1Σ+ | 5.27 | ||||||
DFT: TPSSh/AVQZ-PPRh AVQZB | [2] | X1Σ+ | 1.685 | ||||||
CCSD(T)/AVQZ-PPRh AVQZB | [2] | X1Σ+ | 1.689 | ||||||
MRCI/AVQZ-PPRh AVQZB | [2] | X1Σ+ | 1.687 | ||||||
MCSCF/Sapporo-(DKH)Rh-TZP | [42] | X1Σ+ | 1.701 | 5.165 | |||||
DFT: B3LYP/LANL2DZ | [34] | S = 0 | 1.745 | 4.96 | 932.7 | 2.84 | |||
PdB | ESR spectroscopy | [43] | X2Σ | ||||||
UHF/STO-3G* | [43] | 1.608 | |||||||
LIF spectroscopy | [44] | X2Σ+ | 1.7278 | 650 | |||||
Knudsen effusion | [36] | X2Σ | 2.00 | 3.37(22) | |||||
DFT: B3LYP/LANL2DZ | [34] | S = 0.5 | 1.856 | 3.33 | 725.6 | 1.44 | |||
AgB | Nonrelativistic CASPT2/PolMe | [29] | X1Σ+ | 2.258 | 1.248 | 1.23 | 341 | 2.32 | ? |
No-pair DK CASPT2/NpPolMe | [29] | X1Σ+ | 2.098 | 1.684 | 1.66 | 425 | 3.41 | ? | |
No-pair DK CCSD(T)-20/NpPolMe | [29] | X1Σ+ | 2.115 | 0.910 | 0.883 | 440 | 3.26 | ? | |
DFT: B3LYP/LANL2DZ | [34] | S = 0 | 2.187 | 1.60 | 415.6 | 1.41 | |||
CdB | DFT: B3LYP/LANL2DZ | [34] | S = 0.5 | 2.668 | 0.22 | 198.3 | 1.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demetriou, C.; Tzeliou, C.E.; Androutsopoulos, A.; Tzeli, D. Electronic Structure and Chemical Bonding of the First-, Second-, and Third-Row-Transition-Metal Monoborides: The Formation of Quadruple Bonds in RhB, RuB, and TcB. Molecules 2023, 28, 8016. https://doi.org/10.3390/molecules28248016
Demetriou C, Tzeliou CE, Androutsopoulos A, Tzeli D. Electronic Structure and Chemical Bonding of the First-, Second-, and Third-Row-Transition-Metal Monoborides: The Formation of Quadruple Bonds in RhB, RuB, and TcB. Molecules. 2023; 28(24):8016. https://doi.org/10.3390/molecules28248016
Chicago/Turabian StyleDemetriou, Constantinos, Christina Eleftheria Tzeliou, Alexandros Androutsopoulos, and Demeter Tzeli. 2023. "Electronic Structure and Chemical Bonding of the First-, Second-, and Third-Row-Transition-Metal Monoborides: The Formation of Quadruple Bonds in RhB, RuB, and TcB" Molecules 28, no. 24: 8016. https://doi.org/10.3390/molecules28248016
APA StyleDemetriou, C., Tzeliou, C. E., Androutsopoulos, A., & Tzeli, D. (2023). Electronic Structure and Chemical Bonding of the First-, Second-, and Third-Row-Transition-Metal Monoborides: The Formation of Quadruple Bonds in RhB, RuB, and TcB. Molecules, 28(24), 8016. https://doi.org/10.3390/molecules28248016