Antioxidant Activity and GC-MS Profile of Cardamom (Elettaria cardamomum) Essential Oil Obtained by a Combined Extraction Method—Instant Controlled Pressure Drop Technology Coupled with Sonication
Abstract
:1. Introduction
2. Results and Discussion
2.1. Essential Oil Yield
2.2. Antioxidant Activity of CEO
2.2.1. DPPH Free Radical Scavenging Capacity
2.2.2. ABTS Trolox Equivalent Antioxidant Capacity Determination (TEAC)
2.3. Gas Chromatography Analysis (GC-MS) of CEO
2.4. Principal Component Analysis (PCA) of CEO Composition
2.5. Scanning Electron Microscopy (SEM)
3. Materials and Methods
3.1. Plant Material and Chemicals
3.2. Essential Oil Extraction
3.2.1. Instant Controlled Pressure Drop (DIC) Treatment
3.2.2. Ultrasound-Assisted Extraction for Cardamom Essential Oil
3.3. Scanning Electron Microscopy (SEM) of Cardamom Seeds
3.4. Compound Profile Analysis of Cardamom Essential Oils by Gas Chromatography Coupled to a Mass Spectrometer Detector (GC-MS)
3.5. Antioxidant Capacity
3.5.1. DPPH Free Radical Scavenging Capacity
3.5.2. Trolox Equivalent Antioxidant Capacity (TEAC)
3.6. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Zachariah, T.J. Chemistry of Cardamom. In Cardamom; Taylor & Francis Group, CRC Press: Boca Raton, FL, USA, 2002; pp. 85–106. [Google Scholar] [CrossRef]
- Noumi, E.; Snoussi, M.; Alreshidi, M.M.; Rekha, P.D.; Saptami, K.; Caputo, L.; de Martino, L.; Souza, L.F.; Msaada, K.; Mancini, E.; et al. Chemical and Biological Evaluation of Essential Oils from Cardamom Species. Molecules 2018, 23, 2818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guzmán, E.; Lucia, A. Essential Oils and Their Individual Components in Cosmetic Products. Cosmetics 2021, 8, 114. [Google Scholar] [CrossRef]
- Ashokkumar, K.; Murugan, M.; Dhanya, M.K.; Warkentin, T.D. Botany, Traditional Uses, Phytochemistry and Biological Activities of Cardamom [Elettaria cardamomum (L.) Maton]—A Critical Review. J. Ethnopharmacol. 2020, 246, 112244. [Google Scholar] [CrossRef] [PubMed]
- Teresa-Martínez, G.D.; Cardador-Martínez, A.; Téllez-Pérez, C.; Allaf, K.; Jiménez-Martínez, C.; Alonzo-Macías, M. Effect of the Instant Controlled Pressure Drop Technology in Cardamom (Elettaria cardamomum) Essential Oil Extraction and Antioxidant Activity. Molecules 2022, 27, 3433. [Google Scholar] [CrossRef] [PubMed]
- Ivanović, M.; Makoter, K.; Razboršek, M.I. Comparative Study of Chemical Composition and Antioxidant Activity of Essential Oils and Crude Extracts of Four Characteristic zingiberaceae Herbs. Plants 2021, 10, 501. [Google Scholar] [CrossRef]
- Al-Zereini, W.A.; Al-Trawneh, I.N.; Al-Qudah, M.A.; TumAllah, H.M.; al Rawashdeh, H.A.; Abudayeh, Z.H. Essential Oils from Elettaria cardamomum (L.) Maton Grains and Cinnamomum verum J. Presl Barks: Chemical Examination and Bioactivity Studies. J. Pharm. Pharm. Res. 2022, 10, 173–185. [Google Scholar] [CrossRef]
- Ashokkumar, K.; Vellaikumar, S.; Murugan, M.; Dhanya, M.K.; Ariharasutharsan, G.; Aiswarya, S.; Akilan, M.; Warkentin, T.D.; Karthikeyan, A. Essential Oil Profile Diversity in Cardamom Accessions From Southern India. Front. Sustain. Food Syst. 2021, 5, 137. [Google Scholar] [CrossRef]
- Jafarizadeh-Malmiri, H.; Anarjan, N.; Berenjian, A. Developing Three-Component Ginger-Cinnamon-Cardamom Composite Essential Oil Nanoemulsion as Natural Food Preservatives. Environ. Res. 2022, 204, 112133. [Google Scholar] [CrossRef]
- Joshi, R.; Sharma, P.; Sharma, V.; Prasad, R.; Sud, R.K.; Gulati, A. Analysis of the Essential Oil of Large Cardamom (Amomum subulatum Roxb.) Growing in Different Agro-Climatic Zones of Himachal Pradesh, India. J. Sci. Food Agric. 2013, 93, 1303–1309. [Google Scholar] [CrossRef]
- Mehyar, G.F.; Al-Isamil, K.M.; Al-Ghizzawi, H.M.; Holley, R.A. Stability of Cardamom (Elettaria cardamomum) Essential Oil in Microcapsules Made of Whey Protein Isolate, Guar Gum, and Carrageenan. J. Food Sci. 2014, 79, C1939–C1949. [Google Scholar] [CrossRef]
- Olivero-Verbel, J.; González-Cervera, T.; Güette-Fernandez, J.; Jaramillo-Colorado, B.; Stashenko, E. Chemical Composition and Antioxidant Activity of Essential Oils Isolated from Colombian Plants. Rev. Bras. De Farmacogn. 2010, 20, 568–574. [Google Scholar] [CrossRef] [Green Version]
- Mani, B.K.; Murthy, V.; Boland, M.; Yee, K. Analysis of Constituents in Different Fractions Collected during Distillation of Cardamom Oil for Flavour and Fragrance Applications. J. Appl. Pharm. Sci. 2017, 7, 177–183. [Google Scholar] [CrossRef] [Green Version]
- Luque De Castro, M.D.; Jiménez-Carmona, M.M.; Fernández-Pérez, V. Towards More Rational Techniques for the Isolation of Valuable Essential Oils from Plants. TrAC Trends Anal. Chem. 1999, 18, 708–716. [Google Scholar] [CrossRef]
- Allaf, T.; Tomao, V.; Besombes, C.; Chemat, F. Thermal and Mechanical Intensification of Essential Oil Extraction from Orange Peel via Instant Autovaporization. Chem. Eng. Process. Process Intensif. 2013, 72, 24–30. [Google Scholar] [CrossRef]
- Pech-Almeida, J.L.; Téllez-Pérez, C.; Alonzo-Macías, M.; Teresa-Martínez, G.D.; Allaf, K.; Allaf, T.; Cardador-Martínez, A. An Overview on Food Applications of the Instant Controlled Pressure-Drop Technology, an Innovative High Pressure-Short Time Process. Molecules 2021, 26, 6519. [Google Scholar] [CrossRef] [PubMed]
- Vilkhu, K.; Mawson, R.; Simons, L.; Bates, D. Applications and Opportunities for Ultrasound-Assisted Extraction in the Food Industry—A Review. Innov. Food Sci. Emerg. Technol. 2008, 9, 161–169. [Google Scholar] [CrossRef]
- Stratakos, A.C.; Koidis, A. Methods for Extracting Essential Oils. In Essential Oils in Food Preservation, Flavor and Safety; Academic Press: Cambridge, MA, USA, 2016; pp. 31–38. [Google Scholar] [CrossRef]
- Chen, G.; Sun, F.; Wang, S.; Wang, W.; Dong, J.; Gao, F. Enhanced Extraction of Essential Oil from Cinnamomum cassia Bark by Ultrasound Assisted Hydrodistillation. Chin. J. Chem. Eng. 2021, 36, 38–46. [Google Scholar] [CrossRef]
- Chen, F.; Liu, S.; Zhao, Z.; Gao, W.; Ma, Y.; Wang, X.; Yan, S.; Luo, D. Ultrasound Pre-Treatment Combined with Microwave-Assisted Hydrodistillation of Essential Oils from Perilla frutescens (L.) Britt. Leaves and Its Chemical Composition and Biological Activity. Ind. Crops. Prod. 2020, 143, 111908. [Google Scholar] [CrossRef]
- Solanki, K.P.; Desai, M.A.; Parikh, J.K. Sono Hydrodistillation for Isolation of Citronella Oil: A Symbiotic Effect of Sonication and Hydrodistillation towards Energy Efficiency and Environment Friendliness. Ultrason. Sonochem. 2018, 49, 145–153. [Google Scholar] [CrossRef]
- Morsy, N.F.S. A Short Extraction Time of High-Quality Hydrodistilled Cardamom (Elettaria cardamomum L. Maton) Essential Oil Using Ultrasound as a Pre-treatment. Ind. Crops. Prod. 2015, 65, 287–292. [Google Scholar] [CrossRef]
- Savan, E.K.; Küçükbay, F.Z. Essential Oil Composition of Elettaria cardamomum Maton. J. Appl. Biol. Sci. 2013, 7, 42–45. [Google Scholar]
- Handayani, W.; Yasman; Yunilawati, R.; Fauzia, V.; Imawan, C. Coriandrum sativum l. (Apiaceae) and Elettaria cardamomum (l.) Maton (zingiberaceae) for Antioxidant and Antimicrobial Protection. J. Phys. Conf. Ser. 2019, 1317, 012092. [Google Scholar] [CrossRef] [Green Version]
- Amma, K.P.P.; Sasidharan, I.; Sreekumar, M.M.; Sumathykutty, M.A.; Arumughan, C. Total Antioxidant Capacity and Change in Phytochemicals of Four Major Varieties of Cardamom Oils During Decortication. Int. J. Food Prop. 2015, 18, 1317–1325. [Google Scholar] [CrossRef]
- Namir, M.; Elzahar, K.; Ramadan, M.F.; Allaf, K. Cactus Pear Peel Snacks Prepared by Instant Pressure Drop Texturing: Effect of Process Variables on Bioactive Compounds and Functional Properties. J. Food Meas. Charact. 2016, 11, 388–400. [Google Scholar] [CrossRef]
- Mkaouar, S.; Krichen, F.; Bahloul, N.; Allaf, K.; Kechaou, N. Enhancement of Bioactive Compounds and Antioxidant Activities of Olive (Olea europaea L.) Leaf Extract by Instant Controlled Pressure Drop. Food Bioprocess Technol. 2018, 11, 1222–1229. [Google Scholar] [CrossRef]
- Wang, H.F.; Yih, K.H.; Yang, C.H.; Huang, K.F. Antioxidant Activity and Major Chemical Component Analyses of Twenty-Six Commercially Available Essential Oils. J. Food Drug. Anal. 2017, 25, 881–889. [Google Scholar] [CrossRef] [Green Version]
- Jena, S.; Ray, A.; Sahoo, A.; Champati, B.B.; Padhiari, B.M.; Dash, B.; Nayak, S.; Panda, P.C. Chemical Composition and Antioxidant Activities of Essential Oil from Leaf and Stem of Elettaria cardamomum from Eastern India. J. Essent. Oil-Bear. Plants 2021, 24, 538–546. [Google Scholar] [CrossRef]
- Tabaszewska, M.; Antoniewska, A.; Rutkowska, J.; Skoczylas, Ł.; Słupski, J.; Skoczeń-Słupska, R. Bioactive Components, Volatile Profile and In Vitro Antioxidative Properties of Taxus Baccata L. Red Arils. Molecules 2021, 26, 4474. [Google Scholar] [CrossRef]
- Mahanta, B.P.; Bora, P.K.; Kemprai, P.; Borah, G.; Lal, M.; Haldar, S. Thermolabile Essential Oils, Aromas and Flavours: Degradation Pathways, Effect of Thermal Processing and Alteration of Sensory Quality. Food Res. Int. 2021, 145, 110404. [Google Scholar] [CrossRef]
- Petruccelli, R.; Tarfaoui, K.; Brhadda, N.; Ziri, R.; Oubihi, A.; Imtara, H.; Haida, S.; Al kamaly, O.M.; Saleh, A.; Khalid Parvez, M.; et al. Chemical Profile, Antibacterial and Antioxidant Potential of Zingiber officinale Roscoe and Elettaria cardamomum (L.) Maton Essential Oils and Extracts. Plants 2022, 11, 1487. [Google Scholar] [CrossRef]
- Chen, S.X.; Xiang, J.Y.; Han, J.X.; Yang, F.; Li, H.Z.; Chen, H.; Xu, M. Essential Oils from Spices Inhibit Cholinesterase Activity and Improve Behavioral Disorder in AlCl3 Induced Dementia. Chem. Biodivers. 2022, 19, e202100443. [Google Scholar] [CrossRef] [PubMed]
- Krishi Vidyapeeth, M.; Syed, I.H.; Sawate, I.A.; Correspondence Sontakke, I. Studies on Extraction of Essential Oils from Spices (Cardamom and Cinnamon). Int. J. Chem. Stud. 2018, 6, 2787–2789. [Google Scholar]
- Sereshti, H.; Rohanifar, A.; Bakhtiari, S.; Samadi, S. Bifunctional Ultrasound-Assisted Extraction and Determination of Elettaria cardamomum Maton Essential Oil. J. Chromatogr. A 2012, 1238, 46–53. [Google Scholar] [CrossRef]
- Reghunath, B.R.; Bajaj, Y.P.S. Micropropagation of Cardamom (Elettaria cardamomum Maton). Biotechnol. Agric. For. 1992, 19, 175–198. [Google Scholar] [CrossRef]
- Baby, K.C.; Ranganathan, T.V. Effect of Enzyme Pre-Treatment on Extraction Yield and Quality of Cardamom (Elettaria cardamomum Maton.) Volatile Oil. Ind. Crops. Prod. 2016, 89, 200–206. [Google Scholar] [CrossRef]
- Seth, A.; Shah, B. History, Definition and Scope of Pharmacognosy. Pharmacogn. Phytochem. 2009, 1, 3–9. [Google Scholar]
- Wallis, T.E. Textbook of Pharmacognosy, 5th ed.; Cbs Publishing: Delhi, India, 1971; Volume 60, ISBN 979-8123908860. [Google Scholar]
- Shorstkii, I.A.; Zherlicin, A.G.; Li, P. Impact of Pulsed Electric Field and Pulsed Microwave Treatment on Morphological and Structural Characteristics of Sunflower Seed. OCL 2019, 26, 47. [Google Scholar] [CrossRef] [Green Version]
- Fukumoto, L.R.; Mazza, G. Assessing Antioxidant and Prooxidant Activities of Phenolic Compounds. J. Agric. Food Chem. 2000, 48, 3597–3604. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
Treatment Conditions | Responses Variables | |||||
---|---|---|---|---|---|---|
Treatment | SSPT 1 (°C) | TPT 2 (s) | Recovery (g) | Yield % (w/w) | DPPH % Discoloration | TEAC (uMTE/g) |
Control (Only UAE) | NA | NA | 0.7799 | 15.596 | 57.75 | 0.60 |
DIC 1 and UAE | 140 | 30 | 0.9423 | 18.846 | 67.39 | 0.81 |
DIC 2 and UAE | 165 | 30 | 1.0518 | 21.036 | 79.48 | 0.88 |
DIC 3 and UAE | 140 | 45 | 1.0941 | 21.882 | 71.35 | 0.94 |
DIC 4 and UAE | 140 | 30 | 0.8633 | 17.266 | 71.19 | 0.95 |
DIC 5 and UAE | 158 | 41 | 1.1263 | 22.526 | 62.44 | 1.00 |
DIC 6 and UAE | 158 | 19 | 0.7139 | 14.278 | 71.35 | 0.75 |
DIC 7 and UAE | 140 | 30 | 1.0847 | 21.694 | 62.01 | 1.60 |
DIC 8 and UAE | 122 | 19 | 0.9915 | 19.83 | 59.42 | 0.91 |
DIC 9 and UAE | 122 | 41 | 0.8099 | 16.198 | 70.63 | 0.90 |
DIC 10 and UAE | 140 | 30 | 0.7991 | 15.982 | 44.38 | 2.99 |
DIC 11 and UAE | 115 | 30 | 1.0201 | 20.402 | 64.50 | 1.22 |
DIC 12 and UAE | 140 | 15 | 0.7877 | 15.754 | 57.00 | 2.01 |
DIC 13 and UAE | 140 | 30 | 0.8721 | 17.442 | 56.34 | 2.24 |
ID | Compound | CAS Number | Classification |
---|---|---|---|
TEOH | α-Terpineol | 98-55-5 | Monoterpenoid alcohol |
OD | 2,6-Octadien-1-ol, 3,7-dimethyl-, (Z)- | 106-25-2 | Monoterpenoid alcohol |
GEOH | Geraniol | 106-24-1 | Monoterpenoid alcohol |
LAC | Linalyl acetate | 115-95-7 | Monoterpenoid |
TAC | α-Terpinyl acetate | 80-26-2 | Menthane Monoterpenoid |
HMMC | S-(+)-5-(1-Hydroxy-1-methylethyl)-2-methyl-2-cyclohexen-1-one | 60593-11-5 | Monoterpenoid |
HMAC1 | 2-((1R,4R)-4-Hydroxy-4-methylcyclohex-2-enyl)propan-2-yl acetate | 121958-61-0 | Monoterpenoid |
HMAC2 | 2-((1R,4R)-4-Hydroxy-4-methylcyclohex-2-enyl)propan-2-yl acetate | 121958-61-0 | Monoterpenoid |
SAC | Sobrerol 8-acetate | 93133-02-9 | Terpenoid |
DOH | 1,6,10-Dodecatrien-3-ol, 3,7,11-trimethyl-, (E)- | 40716-66-3 | Sesquiterpene alcohol |
3-TT | (3E,7E)-4,8,12-Trimethyltrideca-1,3,7,11-tetraene | 62235-06-7 | Sesquiterpene |
DOHT | 1,6,10-Dodecatrien-3-ol, 3,7,11-trimethyl-, (E)- | 40716-66-3 | Farnesane sesquiterpenoid |
2-OTAC | 2-Oxabicyclo [2.2.2]octan-6-ol, 1,3,3-trimethyl-, acetate | 57709-95-2 | Terpenoid |
HC | exo-2-Hydroxycineole | 92999-78-5 | Oxane |
ACA | 8-Acetoxycarvotanacetone | 87578-93-6 | Menthane monoterpenoid |
DOT | 2,6,10-Dodecatrien-1-ol, 3,7,11-trimethyl- | 4602-84-0 | Sesquiterpene alcohol |
DAT | 2,6,10-Dodecatrienal, 3,7,11-trimethyl-, (E, E)- | 502-67-0 | Sesquiterpenoid |
HEXAD | n-Hexadecanoic acid | 57-10-3 | Fatty acid |
OCAD | 9,12-Octadecadienoic acid (Z,Z)- | 60-33-3 | Polyunsaturated fatty acid |
OCAD-E | 9-Octadecenoic acid, (E)- | 112-79-8 | Polyunsaturated fatty acid |
OLAD | Oleic Acid | 112-80-1 | Monounsaturated fatty acid |
OA | Octadecanoic acid | 57-11-4 | Saturated fatty acid |
P-HNP | p-Hydroxynorephedrine | 552-85-2 | Phenylethylamine |
Z-DDP | (Z)-3,7-Dimethylocta-2,6-dien-1-yl palmitate | 122569-17-9 | Saturated fatty acid |
GO | Geranyl oleate | 81601-03-8 | Polyunsaturated fatty acid |
PA | Photocitral A | 55253-28-6 | Monoterpenoid |
SOH | ç-Sitosterol | 83-47-6 | Phytosterols |
SIT | ç-Sitostenone | 84924-96-9 | Ketone |
Sample | Saturated Steam Processing Temperature (°C) | Saturated Steam Processing Time (s) | Saturated Steam Processing Pressure (MPa) |
---|---|---|---|
DIC 1 | 140 | 30 | 0.36 |
DIC 2 | 165 | 30 | 0.70 |
DIC 3 | 140 | 45 | 0.36 |
DIC 4 | 140 | 30 | 0.36 |
DIC 5 | 158 | 41 | 0.58 |
DIC 6 | 158 | 19 | 0.58 |
DIC 7 | 140 | 30 | 0.36 |
DIC 8 | 122 | 19 | 0.21 |
DIC 9 | 122 | 41 | 0.21 |
DIC 10 | 140 | 30 | 0.36 |
DIC 11 | 115 | 30 | 0.17 |
DIC 12 | 140 | 15 | 0.36 |
DIC13 | 140 | 30 | 0.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castillo, N.E.T.; Teresa-Martínez, G.D.; Alonzo-Macías, M.; Téllez-Pérez, C.; Rodríguez-Rodríguez, J.; Sosa-Hernández, J.E.; Parra-Saldívar, R.; Melchor-Martínez, E.M.; Cardador-Martínez, A. Antioxidant Activity and GC-MS Profile of Cardamom (Elettaria cardamomum) Essential Oil Obtained by a Combined Extraction Method—Instant Controlled Pressure Drop Technology Coupled with Sonication. Molecules 2023, 28, 1093. https://doi.org/10.3390/molecules28031093
Castillo NET, Teresa-Martínez GD, Alonzo-Macías M, Téllez-Pérez C, Rodríguez-Rodríguez J, Sosa-Hernández JE, Parra-Saldívar R, Melchor-Martínez EM, Cardador-Martínez A. Antioxidant Activity and GC-MS Profile of Cardamom (Elettaria cardamomum) Essential Oil Obtained by a Combined Extraction Method—Instant Controlled Pressure Drop Technology Coupled with Sonication. Molecules. 2023; 28(3):1093. https://doi.org/10.3390/molecules28031093
Chicago/Turabian StyleCastillo, Nora E. Torres, Giselle D. Teresa-Martínez, Maritza Alonzo-Macías, Carmen Téllez-Pérez, José Rodríguez-Rodríguez, Juan Eduardo Sosa-Hernández, Roberto Parra-Saldívar, Elda M. Melchor-Martínez, and Anaberta Cardador-Martínez. 2023. "Antioxidant Activity and GC-MS Profile of Cardamom (Elettaria cardamomum) Essential Oil Obtained by a Combined Extraction Method—Instant Controlled Pressure Drop Technology Coupled with Sonication" Molecules 28, no. 3: 1093. https://doi.org/10.3390/molecules28031093
APA StyleCastillo, N. E. T., Teresa-Martínez, G. D., Alonzo-Macías, M., Téllez-Pérez, C., Rodríguez-Rodríguez, J., Sosa-Hernández, J. E., Parra-Saldívar, R., Melchor-Martínez, E. M., & Cardador-Martínez, A. (2023). Antioxidant Activity and GC-MS Profile of Cardamom (Elettaria cardamomum) Essential Oil Obtained by a Combined Extraction Method—Instant Controlled Pressure Drop Technology Coupled with Sonication. Molecules, 28(3), 1093. https://doi.org/10.3390/molecules28031093