Health-Promoting Activities and Associated Mechanisms of Polygonati Rhizoma Polysaccharides
Abstract
:1. Introduction
2. Polysaccharide Phytosynthesis
3. Chemistry of Polygonati Rhizoma Polysaccharides
3.1. Summary of Extraction and Purification
3.2. Structure of Polygonati Rhizoma Polysaccharides
4. Applications for Health-Promoting Activities
4.1. Antioxidant and Anti-Aging Activities
4.2. Immunomodulatory Effects
4.3. Potential Antidiabetic/Antiobesity Effects
4.4. Bone Homeostasis Benefits
4.5. Antimicrobial Activity
4.6. Anti-Fatigue Activities and Anti-Depression Benefits
4.7. Other Health-Promoting Activities
5. Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Pharmacopoeia Commission of the People’s Republic of China. Pharmacopoeia of the People’s Republic of China (Part I); Chinese Medicine Science and Technology Publishing House: Beijing, China, 2020; pp. 319–320.
- He, Y.; Huang, L.; Jiang, P.; Xu, G.; Sun, T. Immunological regulation of the active fraction from Polygonatum sibiricum F. Delaroche based on improvement of intestinal microflora and activation of RAW264.7 cells. J. Ethnopharmacol. 2022, 293, 115240. [Google Scholar] [CrossRef]
- Ahn, M.J.; Kim, C.Y.; Yoon, K.D.; Min, Y.R.; Kim, J. Steroidal saponins from the rhizomes of Polygonatum sibiricum. J. Nat. Prod. 2006, 69, 360–364. [Google Scholar] [CrossRef]
- Commission of Chinese Medicine Dictionary. Chinese Medicine Dictionary (Part II), Version 2; Shanghai Science and Technology Publishing House: Shanghai, China, 2006; pp. 2828–2829. [Google Scholar]
- Commission of Chinese Pharmacopoeia. Pharmacopoeia of the People’s Republic of China: Volume 1; China Medico-Pharmaceutical Science & Technology Publishing House: Beijing, China, 2015; pp. 288, 857, 864.
- Liu, D.H.; Chen, Q.H.; Li, J.X.; Deng, X.Y.; Liu, D.H.; Miao, Y.H. First report of southern blight on Polygonatum sibiricum caused by Sclerotium delphinii in China. Plant Dis. 2021, 105, 2268–2740. [Google Scholar] [CrossRef]
- Han, C.; Zhu, Y.; Yang, Z.; Fu, S.; Liu, C. Protective effect of Polygonatum sibiricum against cadmium-induced testicular injury in mice through inhibiting oxidative stress and mitochondria-mediated apoptosis. J. Ethnopharmacol. 2020, 261, 113060. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, X.; Su, H.; Yin, S.; Han, C.; Hao, D.; Dong, X. The regulatory mechanism of chilling-induced dormancy transition from endo-dormancy to non-dormancy in Polygonatum kingianum Coll.et Hemsl rhizome bud. Plant Mol. Biol. 2019, 99, 205–217. [Google Scholar] [CrossRef] [PubMed]
- Ji, R.; Sheng, Y.; Chen, L.; Li, X.; Shao, J. Analysis of the genetic structure and morphology of Polygonatum cyrtonema in Anhui province, eastern China revealed three distinct genetic groups. Nord. J. Bot. 2020, 38, 1–10. [Google Scholar] [CrossRef]
- An, J.; Liu, J.Z.; Wu, C.F.; Li, J.; Dai, L.; Damme, E.V.; Balzarine, J.; Clercq, E.D.; Chen, F.; Bao, J.K. Anti-HIV I/II activity and molecular cloning of a novel mannose/sialic acid-binding lectin from rhizome of Polygonatum cyrtonema Hua. Acta Biochim. Biophys. Sin. 2006, 38, 70–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, X.; Ji, H.; Cheng, X.; Wang, D.; Li, T.; Ren, K.; Qu, S.; Pan, Y.; Liu, X. Characterization, classification, and authentication of Polygonatum sibiricum samples by volatile profiles and flavor properties. Molecules 2021, 27, 25. [Google Scholar] [CrossRef]
- Yang, X.X.; Wei, J.D.; Mu, J.K.; Liu, X.; Dong, J.C.; Zeng, L.X.; Gu, W.; Li, J.P.; Yu, J. Integrated metabolomic profiling for analysis of antilipidemic effects of Polygonatum kingianum extract on dyslipidemia in rats. World J. Gastroenterol. 2018, 24, 5505–5524. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Chen, Z.; Nie, X.; Wang, D.; Zhang, Q.; Peng, T.; Zhang, C.; Wu, D.; Zhang, J. Recent advances in polysaccharides from edible and medicinal Polygonati Rhizoma: From bench to market. Int. J. Biol. Macromol. 2022, 195, 102–116. [Google Scholar] [CrossRef]
- Zhu, S.; Liu, P.; Wu, W.; Li, D.; Shang, E.X.; Guo, S.; Qian, D.; Yan, H.; Wang, W.; Duan, J.A. Multi-constituents variation in medicinal crops processing: Investigation of nine cycles of steam-sun drying as the processing method for the rhizome of Polygonatum cyrtonema. J. Pharm. Biomed. Anal. 2022, 209, 114497. [Google Scholar] [CrossRef] [PubMed]
- Horng, C.T.; Huang, J.K.; Wang, H.Y.; Huang, C.C.; Chen, F.A. Antioxidant and antifatigue activities of Polygonatum alte-lobatum Hayata rhizomes in rats. Nutrients 2014, 6, 5327–5337. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.J.; Huang, N.W.; Huang, J.P.; Wang, L.L.; Wu, L.L.; Wang, Q.; Zhao, H. Effects of the steaming process on the structural properties and immunological activities of polysaccharides from Polygonatum cyrtonema. J. Funct. Foods 2022, 88, 104866. [Google Scholar] [CrossRef]
- Chen, Z.; Zhu, B.; Chen, Z.; Cao, W.; Wang, J.; Li, S.; Zhao, J. Effects of steam on polysaccharides from Polygonatum cyrtonema based on saccharide mapping analysis and pharmacological activity assays. Chin. Med.-UK 2022, 17, 97. [Google Scholar] [CrossRef]
- Kun, H.S.; Jae, C.D.; Sam, S.K. Isolation of adenosine from the rhizomes of Polygonatum sibidcum. Arch. Pharm. Res. 1991, 14, 193–194. [Google Scholar] [CrossRef]
- Zeng, G.F.; Zhang, Z.Y.; Lu, L.; Xiao, D.Q.; Xiong, C.X.; Zhao, Y.X.; Zong, S.H. Protective effects of Polygonatum sibiricum polysaccharide on ovariectomy- induced bone loss in rats. J. Ethnopharmacol. 2011, 136, 224–229. [Google Scholar] [CrossRef]
- Liu, L.; Dong, Q.; Dong, X.T.; Fang, J.N.; Ding, K. Structural investigation of two neutral polysaccharides isolated from rhizome of Polygonatum sibiricum. Carbohyd. Polym. 2007, 70, 304–309. [Google Scholar] [CrossRef]
- Luo, M.; Hu, Z.; Zhong, Z.; Liu, L.; Lin, C.; He, Q. Chemical structures and pharmacological properties of typical bioflavonoids in Polygonati Rhizoma (PGR). J. Environ. Public Health 2022, 2022, 4649614. [Google Scholar] [CrossRef]
- Sun, L.R.; Li, X.; Wang, S.X. Two new alkaloids from the rhizome of Polygonatum sibiricum. J. Asian Nat. Prod. Res. 2005, 7, 127–130. [Google Scholar] [CrossRef]
- Yu, H.S.; Ma, B.P.; Song, X.B.; Kang, L.P.; Zhang, T.; Fu, J.; Zhao, Y.; Xiong, C.Q.; Tan, D.W.; Zhang, L.J.; et al. Two new steroidal saponins from the processed Polygonatum kingianum. Helv. Chim. Acta 2010, 93, 1086–1092. [Google Scholar] [CrossRef]
- Zhang, J.; Ma, B.P.; Kang, L.P.; Yu, H.S.; Yang, Y.; Yan, X.Z.; Dong, F.T. Furostanol saponins from the fresh rhizomes of Polygonatum kingianum. Chem. Pharm. Bull. 2006, 54, 931–935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, X.Y.; Li, J. Chemical constituents of the genus Polygonatum and their role in medicinal treatment. Nat. Prod. Commun. 2015, 10, 683–688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, C.; Yu, Y.; Guo, P.; Huo, J.; Tang, S. Chemical constituents of Polygonatum sibiricum. Chem. Nat. Comp. 2019, 55, 331–333. [Google Scholar] [CrossRef]
- Gu, M.; Zhang, Y.; Fan, S.J.; Ding, X.B.; Ji, G.; Huang, C. Extracts of Rhizoma Polygonati Odorati prevent high-fat diet-induced metabolic disorders in C57BL/6 mice. PLoS ONE 2013, 8, 81724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, L.Z.; Zhang, X.P.; Wang, Y.X. Polygonatum sibiricum extract exerts inhibitory effect on diabetes in a rat model. Trop. J. Pharm. Res. 2021, 18, 1493–1497. [Google Scholar] [CrossRef]
- Cui, X.; Wang, S.; Cao, H.; Guo, H.; Li, Y.; Xu, F.; Zheng, M.; Xi, X.; Han, C. A review: The bioactivities and pharmacological applications of Polygonatum sibiricum polysaccharides. Molecules 2018, 23, 1170. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Tang, W.; Han, C.; Nie, S. Advances in Polygonatum sibiricum polysaccharides: Extraction, purification, structure, biosynthesis, and bioactivity. Front. Nutr. 2022, 9, 1074671. [Google Scholar] [CrossRef]
- Chinese Pharmacopoeia Commission. Chinese Pharmacopoeia; China Medical Science Press: Beijing, China, 2015; pp. 191–193.
- Baek, S.H.; Lee, J.G.; Park, S.Y.; Piao, X.L.; Kim, H.Y.; Bae, O.N.; Park, J.H. Gas chromatographic determination of azetidine-2-carboxylic acid in rhizomes of Polygonatum sibiricum and Polygonatum odoratum. J. Food Compos. Anal. 2012, 25, 137–141. [Google Scholar] [CrossRef]
- Liu, Z.; Ni, H.; Yu, L.; Xu, S.; Bo, R.; Qiu, T.; Gu, P.; Zhu, T.; He, J.; Wusiman, A.; et al. Adjuvant activities of CTAB-modified Polygonatum sibiricum polysaccharide cubosomes on immune responses to ovalbumin in mice. Int. J. Biol. Macromol. 2020, 148, 793–801. [Google Scholar] [CrossRef]
- Wang, S.Q.; Wang, B.; Hua, W.P.; Niu, J.F.; Dang, K.K.; Qiang, Y.; Wang, Z. De Novo assembly and analysis of Polygonatum sibiricum transcriptome and identification of genes involved in polysaccharide biosynthesis. Int. J. Mol. Sci. 2017, 18, 1950. [Google Scholar] [CrossRef]
- Feng, T.; Jiang, Y.; Jia, Q.; Han, R.; Wang, D.; Zhang, X.; Liang, Z. Transcriptome analysis of different sections of rhizome in Polygonatum sibiricum Red. and mining putative genes participate in polysaccharide biosynthesis. Biochem. Genet. 2022, 60, 1547–1566. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Y.Z.; Yang, M.Q.; Yang, W.Z.; Zhang, J.Y. Identification and evaluation of Polygonatum kingianum with different growth ages based on data fusion strategy. Microchem. J. 2021, 160, 105662. [Google Scholar] [CrossRef]
- Li, D.; Wang, Q.; Chen, S.; Liu, H.; Pan, K.; Li, J.; Luo, C.; Wang, H. De novo assembly and analysis of Polygonatum cyrtonema Hua and identification of genes involved in polysaccharide and saponin biosynthesis. BMC Genom. 2022, 23, 195. [Google Scholar] [CrossRef]
- Wang, C.; Peng, D.; Zhu, J.; Zhao, D.; Huang, L. Transcriptome analysis of Polygonatum cyrtonema Hua: Identification of genes involved in polysaccharide biosynthesis. Plant Methods 2019, 15, 65. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Dong, Z.H.; Zhu, X.S.; Xu, H.Y.; Zhao, Z.X. Characterization and protective effect of Polygonatum sibiricum polysaccharide against cyclophosphamide-induced immunosuppression in Balb/c mice. Int. J. Biol. Macromol. 2018, 107, 796–802. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Li, G.; Zhang, X.; Wang, Y.; Qiang, Y.; Wang, B.; Zou, J.; Niu, J.; Wang, Z. Structural characterization and antioxidant activity of Polygonatum sibiricum polysaccharides. Carbohyd. Polym. 2022, 291, 119524. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, N.; Xue, X.; Li, Q.; Sun, D.; Zhao, Z. Purification, structural characterization and in vivo immunoregulatory activity of a novel polysaccharide from Polygonatum sibiricum. Int. J. Biol. Macromol. 2020, 160, 688–694. [Google Scholar] [CrossRef]
- Chen, J.; Xu, Y.; Tan, Z. CO2-triggered switchable hydrophilicity solvent as a recyclable extractant for ultrasonic-assisted extraction of Polygonatum sibiricum polysaccharides. Food Chem. 2023, 402, 134301. [Google Scholar] [CrossRef]
- Leong, Y.K.; Yang, F.; Chang, J. Extraction of polysaccharides from edible mushrooms: Emerging technologies and recent advances. Carbohydr. Polym. 2021, 251, 117006. [Google Scholar] [CrossRef]
- Li, G.; Ma, X.; Jiang, Y.; Li, W.; Wang, Y.; Liu, L.; Sun, C.; Xiao, S.; Lan, J.; Kuang, J.; et al. Aqueous two-phase extraction of polysaccharides from selaginella doederleinii and their bioactivity study. Process. Biochem. 2022, 118, 274–282. [Google Scholar] [CrossRef]
- Basak, S.; Annapure, U.S. The potential of subcritical water as a “green” method for the extraction and modifification of pectin: A critical review. Food Res. Int. 2022, 181, 111849. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Seoane, P.; Torres Perez, M.D.; de Ana, C.F.; Sinde-Stompel, E.; Domínguez, H. Antiradical and functional properties of subcritical water extracts from edible mushrooms and from commercial counterparts. Int. J. Food Sci. Tech. 2022, 58, 1420–1428. [Google Scholar] [CrossRef]
- Alboofetileh, M.; Rezaei, M.; Tabarsa, M.; You, S.; Mariatti, F.; Cravotto, G. Subcritical water extraction as an efficient technique to isolate biologically-active fucoidans from Nizamuddinia zanardinii. Int. J. Biol. Macromol. 2019, 128, 244. [Google Scholar] [CrossRef] [PubMed]
- Getachew, A.T.; Lee, H.J.; Cho, Y.J.; Chae, S.J.; Chun, B.S. Optimization of polysaccharides extraction from Pacifific oyster (Crassostrea gigas) using subcritical water: Structural characterization and biological activities. Int. J. Biol. Macromol. 2019, 121, 852–861. [Google Scholar] [CrossRef]
- Tang, W.; Liu, C.; Liu, J.; Hu, L.; Huang, Y.; Yuan, L.; Liu, F.; Pan, S.; Chen, S.; Bian, S.; et al. Purification of polysaccharide from Lentinus edodes water extract by membrane separation and its chemical composition and structure characterization. Food Hydrocoll. 2020, 105, 105851. [Google Scholar] [CrossRef]
- Liu, J.; Li, T.; Chen, H.; Yu, Q.; Yan, C. Structural characterization and osteogenic activity in vitro of novel polysaccharides from the rhizome of Polygonatum sibiricum. Food Funct. 2021, 12, 6626–6636. [Google Scholar] [CrossRef]
- Zheng, S.; Wang, Y.; Wu, J.; Wang, S.; Wei, H.; Zhang, Y.; Zhou, J.; Shi, Y. Critical quality control methods for a novel anticoagulant candidate LFG-Na by HPSEC-MALLS-RID and bioactivity assays. Molecules 2022, 27, 4522. [Google Scholar] [CrossRef]
- Liu, D.; Tang, W.; Huang, X.; Hu, J.; Wang, J.; Yin, J.; Nie, S.; Xie, M. Structural characteristic of pectin-glucuronoxylan complex from Dolichos lablab L. hull. Carbohydr. Polym. 2022, 298, 120023. [Google Scholar] [CrossRef]
- Houben, K.; Jolie, R.P.; Fraeye, I.; Van Loey, A.M.; Hendrickx, M.E. Comparative study of the cell wall composition of broccoli, carrot, and tomato: Structural characterization of the extractable pectins and hemicelluloses. Carbohydr. Res. 2011, 346, 1105–1111. [Google Scholar] [CrossRef]
- Xu, S.; Bi, J.; Jin, W.; Fan, B.; Qian, C. Determination of polysaccharides composition in Polygonatum sibiricum and Polygonatum odoratum by HPLC-FLD with pre-column derivatization. Heliyon 2022, 8, e09363. [Google Scholar] [CrossRef]
- Jin, J.; Lao, J.; Zhou, R.; He, W.; Qin, Y.; Zhong, C.; Xie, J.; Liu, H.; Wan, D.; Zhang, S.; et al. Simultaneous identification and dynamic analysis of saccharides during steam processing of rhizomes of Polygonatum cyrtonema by HPLC-QTOF-MS/MS. Molecules 2018, 23, 2855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, P.; Li, X.; Wang, Y.; Yan, L. Characterisation and saccharide mapping of polysaccharides from four common Polygonatum spp. Carbohyd. Polym. 2020, 233, 115836. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Cai, X.; Tian, Q.; Xiao, L.; Zeng, Z.; Cai, X.; Yan, J.; Li, Q. Microwave-assisted degradation of polysaccharide from Polygonatum sibiricum and antioxidant activity. J. Food Sci. 2019, 84, 754–761. [Google Scholar] [CrossRef] [PubMed]
- Bai, J.B.; Ge, J.C.; Zhang, W.J.; Liu, W.; Luo, J.P.; Xua, F.Q.; Wu, D.L.; Xie, S.Z. Physicochemical, morpho-structural, and biological characterization of polysaccharides from three Polygonatum spp. RSC Adv. 2021, 11, 37952–37965. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Li, X.; Wang, Y.; Zhang, X.; Jia, H.; Guo, L.; Huang, L.; Gao, W. Comparative studies on characterization, saccharide mapping and antiglycation activity of polysaccharides from different Polygonatum ssp. J. Pharm. Biomed. Anal. 2020, 186, 113243. [Google Scholar] [CrossRef]
- Bertaud, F.; Sundberg, A.; Holmbom, B. Evaluation of acid methanolysis for analysis of wood hemicelluloses and pectins. Carbohydr. Polym. 2002, 48, 319–324. [Google Scholar] [CrossRef]
- Liu, D.; Tang, W.; Yin, J.; Nie, S.; Xie, M. Monosaccharide composition analysis of polysaccharides from natural sources: Hydrolysis condition and detection method development. Food Hydrocoll. 2021, 116, 106641. [Google Scholar] [CrossRef]
- Li, X.; Chen, Q.; Liu, G.; Xu, H.; Zhang, X. Chemical elucidation of an arabinogalactan from rhizome of Polygonatum sibiricum with antioxidant activities. Int. J. Biol. Macromol. 2021, 190, 730–838. [Google Scholar] [CrossRef]
- Yelithao, K.; Surayot, U.; Lee, J.H.; You, S. RAW2647 cell activating glucomannans extracted from rhizome of Polygonatum sibiricum. Prev. Nutr. Food Sci. 2016, 21, 245–254. [Google Scholar] [CrossRef] [Green Version]
- Sun, T.; Zhang, H.; Li, Y.; Liu, Y.; Dai, W.; Fang, J.; Cao, C.; Die, Y.; Liu, Q.; Wang, C.; et al. Physicochemical properties and immunological activities of polysaccharides from both crude and wine-processed Polygonatum sibiricum. Int. J. Biol. Macromol. 2020, 143, 255–264. [Google Scholar] [CrossRef]
- Li, Q.; Zeng, J.; Gong, P.; Wu, Y.; Li, H. Effect of steaming process on the structural characteristics and antioxidant activities of polysaccharides from Polygonatum sibiricum rhizomes. Glycoconj. J. 2021, 38, 561–572. [Google Scholar] [CrossRef]
- Fan, B.; Wei, G.; Gan, X.; Li, T.; Qu, Z.; Xu, S.; Liu, C.; Qian, C. Study on the varied content of Polygonatum cyrtonema polysaccharides in the processing of steaming and shining for nine times based on HPLC-MS/MS and chemometrics. Microchem. J. 2020, 159, 105352. [Google Scholar] [CrossRef]
- Hu, J.; Cheng, H.; Xu, J.; Liu, J.; Xing, L.; Shi, S.; Wang, R.; Wu, Z.; Yu, N.; Peng, D. Determination and analysis of monosaccharides in Polygonatum cyrtonema Hua polysaccharides from different areas by ultra-high-performance liquid chromatography quadrupole trap tandem mass spectrometry. J. Sep. Sci. 2021, 44, 3506–3515. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Zhou, H.; Zhao, C.; Xia, L.; Wang, Y.; Wang, Y. Purification, characterization and immunomodulatory activity of fructans from Polygonatum odoratum and P. cyrtonema. Carbohyd. Polym. 2019, 214, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.X.; Zhang, X.; Dabu, X.L.T.; He, J.; Hai, M.R. Analysis of chemical constituents from Polygonatum cyrtonema after “nine-steam-nine-bask” processing. Phytochem. Lett. 2019, 29, 35–40. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, H.; Luo, L.; Zhou, Z.; Wu, M. Structures of fructan and galactan from Polygonatum cyrtonema and their utilization by probiotic bacteria. Carbohyd. Polym. 2021, 267, 118219. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Tao, A.; Yang, R.; Fan, M.; Duan, B. Structural characterization, hypoglycemic effects and antidiabetic mechanism of a novel polysaccharides from Polygonatum kingianum Coll. et Hemsl. Biomed. Pharmacother. 2020, 131, 110687. [Google Scholar] [CrossRef]
- Luo, L.; Qiu, Y.; Gong, L.; Wang, W.; Wen, R. A review of Polygonatum Mill. genus: Its taxonomy, chemical constituents, and pharmacological effect due to processing changes. Molecules 2022, 27, 4821. [Google Scholar] [CrossRef] [PubMed]
- Niccoli, T.; Partridge, L. Ageing as a risk factor for disease. Curr. Biol. 2012, 22, R741–R752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, R.; Tao, M.; Wu, T.; Zhuo, Z.; Xu, T.; Pan, S.; Xu, X. A promising strategy for investigating the anti-aging effect of natural compounds: A case study of caffeoylquinic acids. Food Funct. 2021, 12, 8583–8593. [Google Scholar] [CrossRef]
- Li, R.; Chan, W.; Mat, W.; Ho, Y.; Yeung, R.K.; Tsang, S.; Xue, H. Antiaging and anxiolytic effects of combinatory formulas based on four medicinal herbs. Evid.-Based Complement. Altern. Med. 2017, 2017, 4624069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amorim, J.A.; Coppotelli, G.; Rolo, A.P.; Palmeira, C.M.; Ross, J.M.; Sinclair, D.A. Mitochondrial and metabolic dysfunction in ageing and age-related diseases. Nat. Rev. Endocrinol. 2022, 18, 243–258. [Google Scholar] [CrossRef] [PubMed]
- Bjørklund, G.; Shanaida, M.; Lysiuk, R.; Antonyak, H.; Klishch, I.; Shanaida, V.; Peana, M. Selenium: An antioxidant with a critical role in anti-aging. Molecules 2022, 27, 6613. [Google Scholar] [CrossRef] [PubMed]
- Rusu, M.E.; Fizeșan, I.; Vlase, L.; Popa, D.S. Antioxidants in age-related diseases and anti-aging atrategies. Antioxidants 2022, 11, 1868. [Google Scholar] [CrossRef]
- Tang, S.P.; Mao, X.L.; Chen, Y.H.; Yan, L.L.; Ye, L.P.; Li, S.W. Reactive oxygen species induce fatty liver and Ischemia-Reperfusion injury by promoting inflammation and cell death. Front. Immunol. 2022, 13, 870239. [Google Scholar] [CrossRef]
- Forni, C.; Facchiano, F.; Bartoli, M.; Pieretti, S.; Facchiano, A.; D’Arcangelo, D.; Norelli, S.; Valle, G.; Nisini, R.; Beninati, S.; et al. Beneficial role of phytochemicals on oxidative stress and age-related diseases. Biomed. Res. Int. 2019, 2019, 8748253. [Google Scholar] [CrossRef] [Green Version]
- Gasmi, A.; Chirumbolo, S.; Peana, M.; Mujawdiya, P.K.; Dadar, M.; Menzel, A.; Bjørklund, G. Biomarkers of senescence during aging as possible warnings to use preventive measures. Curr. Med. Chem. 2021, 28, 1471–1488. [Google Scholar] [CrossRef]
- Alkadi, H. A review on free radicals and antioxidants. Infect. Disord. Drug Targets 2020, 20, 16–26. [Google Scholar] [CrossRef]
- Akbari, B.; Baghaei-Yazdi, N.; Bahmaie, M.; Mahdavi Abhari, F. The role of plant-derived natural antioxidants in reduction of oxidative stress. Biofactors 2022, 48, 611–633. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Yu, X.; Li, C.; Ma, L.; Zhao, Z.; Guan, S.; Wang, L. Caffeic acid protects against a beta toxicity and prolongs lifespan in Caenorhabditis elegans models. Food Funct. 2021, 12, 1219–1231. [Google Scholar] [CrossRef] [PubMed]
- Longo, V.D.; Anderson, R.M. Nutrition, longevity and disease: From molecular mechanisms to interventions. Cell 2022, 185, 1455–1470. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Wei, S.; Peng, W.; Sun, T.; Li, W. Antioxidant effect of Polygonatum sibiricum polysaccharides in D-galactose-induced heart aging mice. BioMed Res. Int. 2021, 2021, 6688855. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Wu, S.; Huang, X.; Hu, X.; Zhang, Y. Hypolipidemic activity and antiatherosclerotic effect of polysaccharide of Polygonatum sibiricum in rabbit model and related cellular mechanisms. Evid.-Based Complement. Alternat. Med. 2015, 2015, 391065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, W.; Cao, F.S.; Feng, J.; Chen, H.W.; Wan, J.R.; Lu, Q.; Wang, J. Nlrp3 inflammasome activation contributes to long-term behavioral alterations in mice injected with lipopolysaccharide. Neuroscience 2017, 343, 77–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teng, H.; Zhang, Y.; Jin, C.; Wang, T.; Huang, S.; Li, L.; Xie, S.; Wu, D.; Xu, F. Polysaccharides from steam-processed Polygonatum cyrtonema Hua protect against D-galactose-induced oxidative damage in mice by activation of Nrf2/HO-1 signaling. J. Sci. Food Agric. 2023, 103, 779–791. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, X.; Zhou, R.; Cheng, F.; Tang, X.; Lao, J.; Xu, L.; He, W.; Wan, D.; Zeng, H.; et al. Polygonatum cyrtonema Hua polysaccharides protect BV2 microglia relief oxidative stress and ferroptosis by regulating NRF2/HO-1 pathway. Molecules 2022, 27, 7088. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.P.; Zhang, J.; Zhang, Y.Z. The function activities and application of Polygonatum sibiricum polysaccharides. J. Food Saf. Qual. 2013, 4, 273–278. [Google Scholar]
- Zheng, S. Protective effect of Polygonatum sibiricum polysaccharide on D-galactose-induced aging rats model. Sci. Rep. 2020, 10, 2246. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.; Mu, C.; Kazybay, B.; Sun, Q.; Kutzhanova, A.; Nazarbek, G.; Xu, N.; Nurtay, L.; Wang, Q.; Amin, A.; et al. Network pharmacology and experimental investigation of Rhizoma polygonati extract targeted kinase with herbzyme activity for potent drug delivery. Drug Deliv. 2021, 28, 2187–2197. [Google Scholar] [CrossRef]
- Dias, D.A.; Urban, S.; Roessner, U. A historical overview of natural products in drug discovery. Metabolites 2012, 2, 303–336. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Yu, J. Modulation of Toll-like receptor signaling in innate immunity by natural products. Int. Immunopharmacol. 2016, 37, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Legrand, D. Overview of lactoferrin as a natural immune modulator. J. Pediatr. 2016, 173, S10–S15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riquelme, E.; McAllister, F. Bacteria and fungi: The counteracting modulators of immune responses to radiation therapy in cancer. Cancer Cell 2021, 39, 1173–1175. [Google Scholar] [CrossRef]
- Hwang, J.; Yadav, D.; Lee, P.C.; Jin, J.O. Immunomodulatory effects of polysaccharides from marine algae for treating cancer, infectious disease, and inflammation. Phytother. Res. 2022, 36, 761–777. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, J.; Kong, X.; Li, H. Characterization and immunological activities of polysaccharides from Polygonatum sibiricum. Biol. Pharm. Bull. 2020, 43, 959–967. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Yan, B.; Yao, C.; Chen, X.; Li, L.; Wu, Y.; Song, Z.; Song, S.; Zhang, Z.; Luo, P. Oligosaccharides from Polygonatum cyrtonema Hua: Structural characterization and treatment of LPS-induced peritonitis in mice. Carbohyd. Polym. 2020, 255, 117392. [Google Scholar] [CrossRef]
- Shu, G.; Xu, D.; Zhao, J.; Yin, L.; Zhao, X. Protective effect of Polygonatum sibiricum polysaccharide on cyclophosphamide-induced immunosuppression in chickens. Res. Vet. Sci. 2021, 135, 96–105. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liu, N.; Sun, C.; Sun, D.; Wang, Y. Polysaccharides from Polygonatum sibiricum Delar. ex Redoute induce an immune response in the raw 264.7 cell line via an NF-κB/mapk pathway. RSC Adv. 2019, 9, 17988–17994. [Google Scholar] [CrossRef] [Green Version]
- Ni, H.; Xu, S.; Gu, P.; Wusiman, A.; Zhang, Y.; Qiu, T.; Liu, Z.; Ni, H.; Hu, Y.; Liu, J.; et al. Optimization of preparation conditions for CTAB-modified Polygonatum sibiricum polysaccharide cubosomes using the response surface methodology and their effects on splenic lymphocytes. Int. J. Pharm. 2019, 559, 410–419. [Google Scholar] [CrossRef]
- Joseph, S.; David, G.; Steven, G.C.; Arnold, L.S.; Ashley, J.; Deepak, J.; Tim, B.; Maria, D.G.F.; George, B. Novel renal autologous cell therapy for type 2 diabetes mellitus chronic diabetic kidney disease: Clinical trial design. Am. J. Nephrol. 2022, 53, 50–58. [Google Scholar] [CrossRef]
- Wu, R.; Zhou, L.; Chen, Y.; Ding, X.; Liu, Y.; Tong, B.; Lv, H.; Meng, X.; Li, J.; Jian, T.; et al. Sesquiterpene glycoside isolated from loquat leaf targets gut microbiota to prevent type 2 diabetes mellitus in db/db mice. Food Funct. 2022, 13, 1519–1534. [Google Scholar] [CrossRef] [PubMed]
- Benninger Richard, K.P.; Vira, K. The physiological role of β-cell heterogeneity in pancreatic islet function. Nat. Rev. Endocrinol. 2022, 18, 9–22. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Jia, Q.J.; Peng, Y.Q.; Feng, T.H.; Hu, S.T.; Dong, J.E.; Liang, Z.S. Advances in mechanism research on Polygonatum in prevention and treatment of diabetes. Front. Pharmacol. 2022, 13, 758501. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Qin, S.; Pen, G.; Chen, D.; Han, C.; Miao, C.; Lu, B.; Su, C.; Feng, S.; Li, W.; et al. Potential ocular protection and dynamic observation of Polygonatum sibiricum polysaccharide against streptozocin-induced diabetic rats’ model. Exp. Biol. Med. 2017, 242, 92–101. [Google Scholar] [CrossRef] [Green Version]
- Yan, H.; Lu, J.; Wang, Y.; Gu, W.; Yang, X.; Yu, J. Intake of total saponins and polysaccharides from Polygonatum kingianum affects the gut microbiota in diabetic rats. Phytomedicine 2017, 26, 45–54. [Google Scholar] [CrossRef]
- Cai, J.; Zhu, Y.; Zuo, Y.; Tong, Q.; Zhang, Z.; Yang, L.; Li, X.; Yi, G. Polygonatum sibiricum polysaccharide alleviates inflammatory cytokines and promotes glucose uptake in high glucose and high insulin induced 3T3L1 adipocytes by promoting Nrf2 expression. Mol. Med. Rep. 2019, 20, 3951–3958. [Google Scholar] [CrossRef]
- Wang, J.; Lu, C.S.; Liu, D.Y.; Xu, Y.T.; Zhu, Y.; Wu, H.H. Constituents from Polygonatum sibiricum and their inhibitions on the formation of advanced glycosylation end products. J. Asian Nat. Prod. Res. 2016, 18, 697–704. [Google Scholar] [CrossRef]
- Mao, Y.P.; Song, Y.M.; Pan, S.W.; Li, N.; Wang, W.X.; Feng, B.B.; Zhang, J.H. Effect of Codonopsis Radix and Polygonati Rhizoma on the regulation of the IRS1/PI3K/AKT signaling pathway in type 2 diabetic mice. Front. Endocrinol. 2022, 13, 1068555. [Google Scholar] [CrossRef]
- Dong, J.; Gu, W.; Yang, X.; Zeng, L.; Wang, X.; Mu, J.; Wang, Y.; Li, F.; Yang, M.; Yu, J. Crosstalk between Polygonatum kingianum, the miRNA, and gut microbiota in the regulation of lipid metabolism. Front. Pharmacol. 2021, 12, 740528. [Google Scholar] [CrossRef]
- Borciani, G.; Montalbano, G.; Baldini, N.; Cerqueni, G.; Ciapetti, G. Co-culture systems of osteoblasts and osteoclasts: Simulating in vitro bone remodeling in regenerative approaches. Acta Biomater. 2020, 108, 22–45. [Google Scholar] [CrossRef]
- Pietschmann, P.; Rauner, M.; Sipos, W.; Kerschan-Schindl, K. Osteoporosis: An age-related and gender-specific disease-a mini review. Gerontology 2009, 55, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Nong, M.N.; Zhao, J.M.; Peng, X.M.; Zong, S.H.; Zeng, G.F. Polygonatum sibiricum polysaccharide inhibits osteoporosis by promoting osteoblast formation and blocking osteoclastogenesis through Wnt/β-catenin signalling pathway. Sci. Rep. 2016, 6, 32261. [Google Scholar] [CrossRef] [Green Version]
- Peng, X.M.; He, J.C.; Zhao, J.M.; Wu, Y.L.; Shi, X.Z.; Du, L.; Nong, M.N.; Zong, S.H.; Zeng, G.F. Polygonatum sibiricum polysaccharide promotes osteoblastic differentiation through the ERK/GSK-3β/β-catenin signaling pathway in vitro. Rejuvenation Res. 2017, 21, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Wu, P.; Fu, W.; Xiong, Y.; Zhang, L.; Gao, Y.; Deng, G.Y.; Zong, S.; Zeng, G. The role and mechanism of miRNA-1224 in the Polygonatum Sibiricum polysaccharide regulation of bone marrow-derived macrophages to osteoclast differentiation. Rejuvenation Res. 2019, 22, 420–430. [Google Scholar] [CrossRef]
- Yang, M.; Meng, F.; Gu, W.; Fu, L.; Zhang, F.; Li, F.; Tao, Y.; Zhang, Z.; Wang, X.; Yang, X.; et al. Influence of polysaccharides from Polygonatum kingianum on short-chain fatty acid production and quorum sensing in Lactobacillus faecis. Front. Microbiol. 2021, 12, 758870. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Ye, Y.; Liu, C.; Chen, B.; Ji, J.; Sun, J.; Zhang, Y.; Sun, X. Positive effects of steamed Polygonatum sibiricum polysaccharides including a glucofructan on fatty acids and intestinal microflora. Food Chem. 2023, 402, 134068. [Google Scholar] [CrossRef]
- Cao, G.H.; Li, Z.D.; Zhao, R.H.; Zhang, Q.R.; Li, J.B.; He, Z.W.; Kang, K.; He, S. Compare of antibacterial effect produced by polysaccharides between raw materials and processing Polygonatum sibirium. Food Sci. Technol. 2017, 42, 202–206. [Google Scholar]
- Liu, F.; Liu, Y.; Meng, Y.; Yang, M.; He, K. Structure of polysaccharide from Polygonatum cyrtonema Hua and the antiherpetic activity of its hydrolyzed fragments. Antivir. Res. 2004, 63, 183–189. [Google Scholar] [CrossRef]
- Liu, X.X.; Wan, Z.J.; Lin, S.; Lu, X.X. Preparation and antiherpetic activities of chemically modified polysaccharides from Polygonatum cyrtonema Hua. Carbohyd. Polym. 2011, 83, 737–742. [Google Scholar] [CrossRef]
- Luo, C.; Xu, X.; Wei, X.; Feng, W.; Huang, H.; Liu, H.; Xu, R.; Lin, J.; Han, L.; Zhang, D. Natural medicines for the treatment of fatigue: Bioactive components, pharmacology, and mechanisms. Pharmacol. Res. 2019, 148, 104409. [Google Scholar] [CrossRef]
- Zhang, L.; Cao, B.; Hou, Y.; Gu, X.; Wei, Q.Q.; Ou, R.; Zhao, B.; Song, W.; Shang, H. Fatigue in patients with multiple system atrophy: A prospective cohort study. Neurology 2022, 98, e73–e82. [Google Scholar] [CrossRef] [PubMed]
- Solem, S.; Hagen, R.; Wang, C.E.; Hjemdal, O.; Waterloo, K.; Eisemann, M.; Halvorsen, M. Metacognitions and mindful attention awareness in depression: A comparison of currently depressed, previously depressed and never depressed individuals. Clin. Psychol. Psychother. 2017, 24, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Shen, F.; Song, Z.; Xie, P.; Li, L.; Wang, B.; Peng, D.; Zhu, G. Polygonatum sibiricum polysaccharide prevents depression-like behaviors by reducing oxidative stress, inflammation, and cellular and synaptic damage. J. Ethnopharmacol. 2021, 275, 114164. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.Q.; Li, Y.Q.; Yu, L.P.; Li, X.; Yang, X.X. Muscle fatigue-alleviating effects of a prescription composed of Polygonati Rhizoma and Notoginseng radix et rhizoma. BioMed Res. Int. 2020, 2020, 3963045. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.F.; Hu, Y.Q.; Wu, Q.G.; Zhang, R. Virtual screening of potential anti-fatigue mechanism of Polygonati Rhizoma based on network pharmacology. Comb. Chem. High Throughput Screen. 2019, 22, 612–624. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Jiang, Z.; Yang, R.; Ye, Y.; Liu, S. Polysaccharide-rich extract from Polygonatum sibiricum protects hematopoiesis in bone marrow suppressed by triple negative breast cancer. Biomed. Pharmacother. 2021, 137, 111338. [Google Scholar] [CrossRef]
- Li, M.; Liu, Y.; Zhang, H.; Liu, Y.; Wang, W.; You, S.; Hu, X.; Song, M.; Wu, R.; Wu, J. Anti-cancer potential of polysaccharide extracted from Polygonatum sibiricum on HepG2 cells via cell cycle arrest and apoptosis. Front. Nutr. 2022, 9, 938290. [Google Scholar] [CrossRef]
- Zhu, X.; Wu, W.; Chen, X.; Yang, F.; Zhang, J.; Hou, J. Protective effects of Polygonatum sibiricum polysaccharide on acute heart failure in rats. Acta Cir. Bras. 2018, 33, 868–878. [Google Scholar] [CrossRef] [Green Version]
- Gan, Q.; Wang, X.; Cao, M.; Zheng, S.; Ma, Y.; Huang, Q. NF-κB and AMPK-Nrf2 pathways support the protective effect of polysaccharides from Polygonatum cyrtonema Hua in lipopolysaccharide-induced acute lung injury. J. Ethnopharmacol. 2022, 291, 115153. [Google Scholar] [CrossRef]
- Liu, B.; Cheng, Y.; Zhang, B.; Bian, H.J.; Bao, J.K. Polygonatum cyrtonema lectin induces apoptosis and autophagy in human melanoma A375 cells through a mitochondria-mediated ROS-p38-p53 pathway. Cancer Lett. 2009, 275, 54–60. [Google Scholar] [CrossRef]
- Shen, F.; Xie, P.; Li, C.; Bian, Z.; Wang, X.; Peng, D.; Zhu, G. Polysaccharides from Polygonatum cyrtonema Hua reduce depression-like behavior in mice by inhibiting oxidative stress-Calpain-1-NLRP3 signaling axis. Oxidative Med. Cell. Longev. 2022, 2022, 2566917. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.X.; Cao, Y.Z.; Chen, L.X.; Wang, J.J.; Tian, Q.H.; Wang, N. A polysaccharide from Polygonatum sibiricum attenuates amyloid-β-induced neurotoxicity in PC12 cells. Carbohydr. Polym. 2015, 117, 879–886. [Google Scholar] [CrossRef] [PubMed]
- Bondi, M.W.; Edmonds, E.C.; Salmon, D.P. Alzheimer’s Disease: Past, present, and future. J. Int. Neuropsychol. Soc. 2017, 23, 818–831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, F.; Zhang, J.G.; Wang, L.H.; Mao, D.X. Effects of Polygonatum sibiricum polysaccharide on learning and memory in a scopolamine-induced mouse model of dementia. Neural Regen. Res. 2008, 3, 33–36. [Google Scholar] [CrossRef]
- Bian, Z.; Li, C.; Peng, D.; Wang, X.; Zhu, G. Use of steaming process to improve biochemical activity of Polygonatum sibiricum polysaccharides against D-Galactose-induced memory impairment in mice. Int. J. Mol. Sci. 2022, 23, 11220. [Google Scholar] [CrossRef]
- Xiao, L.; Qi, L.; Zhang, G.; Liu, H.; Gu, Y.; Zhang, L.; Zhang, M.; Wu, H. Polygonatum sibiricum polysaccharides attenuate Lipopoly-Saccharide-induced Septic Liver Injury by Suppression of Pyroptosis via NLRP3/GSDMD Signals. Molecules 2022, 27, 5999. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.X.; Wang, X.; Shi, T.T.; Dong, J.C.; Li, F.J.; Zeng, L.X.; Yang, M.; Gu, W.; Li, J.P.; Yu, J. Mitochondrial dysfunction in high-fat diet-induced nonalcoholic fatty liver disease: The alleviating effect and its mechanism of Polygonatum kingianum. Biomed. Pharmacother. 2019, 117, 109083. [Google Scholar] [CrossRef]
- Li, W.; Yu, L.; Fu, B.; Chu, J.; Chen, C.; Li, X.; Ma, J.; Tang, W. Protective effects of Polygonatum kingianum polysaccharides and aqueous extract on uranium-induced toxicity in human kidney (HK-2) cells. Int. J. Biol. Macromol. 2022, 202, 68–79. [Google Scholar] [CrossRef]
- Wang, J.; Wang, F.; Yuan, L.; Ruan, H.; Zhu, Z.; Fan, X.; Zhu, L.; Peng, X. Blood-enriching effects and immune-regulation mechanism of steam- processed Polygonatum sibiricum polysaccharide in blood deficiency syndrome mice. Front. Immunol. 2022, 13, 813676. [Google Scholar] [CrossRef]
- Zhao, P.; Zhao, C.C.; Li, X.; Gao, Q.Z.; Huang, L.Q.; Xiao, P.G.; Gao, W.Y. The genus Polygonatum: A review of ethnopharmacology, phytochemistry and pharmacology. J. Ethnopharmacol. 2018, 214, 274–291. [Google Scholar] [CrossRef]
- Liu, J.; Peng, L.; Huang, W.; Li, Z.; Pan, J.; Sang, L.; Lu, S.; Zhang, J.; Li, W.; Luo, Y. Balancing between aging and cancer: Molecular genetics meets traditional Chinese medicine. J. Cell. Biochem. 2017, 118, 2581–2586. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.O.; Kim, K.S.; Lee, G.D.; Kwon, J.H. Antihyperglycemic and antioxidative effects of new herbal formula in streptozotocin-induced diabetic rats. J. Med. Food. 2009, 12, 728–735. [Google Scholar] [CrossRef] [PubMed]
- Gong, H.; Gan, X.; Li, Y.; Chen, J.; Xu, Y.; Shi, S.; Li, T.; Li, B.; Wang, H.; Wang, S. Review on the genus Polygonatum polysaccharides: Extraction, purification, structural characteristics and bioactivities. Int. J. Biol. Macromol. 2023, 229, 909–930. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Sun, W.; Gu, L.B.; Tu, Y.; Yu, B.Y.; Hu, H. Huaiqihuang Granules (槐杞黄颗粒) reduce proteinuria by enhancing nephrin expression and regulating necrosis factor κB signaling pathway in adriamycin-induced nephropathy. Chin. J. Integr. Med. 2017, 23, 279–287. [Google Scholar] [CrossRef]
- Ye, S.; Kee, K.H.; Wen, F.; Xu, Y.; Wei, W.; Xu, C.; Cai, J. Effect of a traditional Chinese herbal medicine formulation on cell survival and apoptosis of MPP+-treated MES 23.5 dopaminergic cells. Park. Dis. 2017, 2017, 4764212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Zhang, H.J.; Ji, B.P.; Cai, S.B.; Wang, R.J.; Zhou, F.; Yang, J.S.; Liu, H.J. A diet formula of Puerariae radix, Lycium barbarum, Crataegus pinnatifida, and Polygonati rhizoma alleviates insulin resistance and hepatic steatosis in CD-1 mice and HepG2 cells. Food Funct. 2014, 5, 1038–1049. [Google Scholar] [CrossRef]
Type | Molecular Weight | Composition | Reference |
---|---|---|---|
PSP | (2.2–4400) × 103 Da | Man, Glu Gal, Ara, Fru, Rha, Xyl, GalA, GlcA, homogalactan, and galactomannans | [36,58] |
PCP | (8.5–42,400) × 103 Da | Glu, Man, Rha, Gal, Rib, Ara, Fruf, Glcp | [66,67] |
PKP | 8.7 × 103 Da | Fru, Glu, Gal, Man, Xyl, Ara, Man, and β1,2-link Glc | [58] |
Model | Active Components | Dose | Putative Mechanism | References |
---|---|---|---|---|
NCI-H716 cells | Polygonatum polysaccharides | 25–100 μg/mL for 2h | stimulate GLP-1 production | [58] |
HepG2 cells | PKPs-1 | 0.78–100 mg/L for 24 h | upregulate the levels of Glu utilization efficiency | [66] |
STZ-induced diabetic mice | PKPs-1 | 1190 mg/kg once daily for 15 consecutive days | improve insulin tolerance; affect metabolism of serum lipids; activate PI3K/AKT signaling pathway; increase expression of IRS-1, PI3K, and AKT | [66] |
STZ-induced diabetic SD rats | PSP | 200–800 mg/kg·d for 12 weeks | lower levels of FBG and glycated hemoglobin; improve polydipsia, polyphagia, polyuria and weight loss; delay cataract progression; suppress oxidative stress reaction; alleviate retinal vasculopathy; elevate levels of insulin and C-peptide in plasma; inhibit formation of advanced glycosylation end products | [108] |
T2DM rats | PKP | 0.1 g/kg for 56 days | increase the content of fasting insulin and lowered the levels of FBG | [109] |
IR-3T3-L1 adipocytes | PSP | 50–250 µg/mL | alleviate inflammatory cytokines; promoting Nrf2 expression | [110] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; He, F.; Wu, H.; Xiang, F.; Zheng, H.; Wu, W.; Li, S. Health-Promoting Activities and Associated Mechanisms of Polygonati Rhizoma Polysaccharides. Molecules 2023, 28, 1350. https://doi.org/10.3390/molecules28031350
Wang S, He F, Wu H, Xiang F, Zheng H, Wu W, Li S. Health-Promoting Activities and Associated Mechanisms of Polygonati Rhizoma Polysaccharides. Molecules. 2023; 28(3):1350. https://doi.org/10.3390/molecules28031350
Chicago/Turabian StyleWang, Shuzhen, Feng He, Hongmei Wu, Fu Xiang, Hongyan Zheng, Wei Wu, and Shiming Li. 2023. "Health-Promoting Activities and Associated Mechanisms of Polygonati Rhizoma Polysaccharides" Molecules 28, no. 3: 1350. https://doi.org/10.3390/molecules28031350
APA StyleWang, S., He, F., Wu, H., Xiang, F., Zheng, H., Wu, W., & Li, S. (2023). Health-Promoting Activities and Associated Mechanisms of Polygonati Rhizoma Polysaccharides. Molecules, 28(3), 1350. https://doi.org/10.3390/molecules28031350