Potential Anti-Alzheimer Properties of Mogrosides in Vitamin B12-Deficient Caenorhabditis elegans
Abstract
:1. Introduction
2. Results
2.1. Chemical Composition
2.2. Effects of Mogrosides on N2 C. elegans Lifespan
2.3. Effects of Mogrosides on C. elegans Reproduction
2.4. Effects of Mogrosides on the Expression of Genes Involved in Inflammation, EGF and Oxidation
2.4.1. Effects of Mogrosides on the Expression of Oxidation-Related Genes in N2, N2/B12−, CL2355 and CL2355/B12− C. elegans
2.4.2. Antioxidant Activity of Mogrosides on N2, N2/B12−, CL2355 and CL2355/B12− C. elegans
2.4.3. Effects of Mogrosides on EGF Genes in N2, N2/B12−, CL2355 and CL2355/B12− C. elegans
2.4.4. Effects of Mogrosides on the Expression of Inflammation and Stress Response Genes in N2, N2/B12−, CL2355 and CL2355/B12− C. elegans
2.5. Serotonin Sensitivity Assay of CL2355 and CL2355/B12− C. elegans by Mogrosides
2.6. Effect of Mogrosides on the Acetylcholine Esterase Gene Expression in Aβ-Transgenic CL2355 and CL2355/B12− C. elegans
3. Discussion
4. Materials and Methods
4.1. Mogrosides Extraction and Analysis by UPLC-qToF-MS Analysis
4.2. Preparation of Vitamin B12-Deficient OP50 Bacterium
4.3. Acquisition and Preparation of Vitamin B12-Deficient N2 and CL2355 Worms
4.4. Lifespan and Reproduction Assay
4.5. RNA Isolation and RT-qPCR
4.6. Serotonin Sensitivity Assay
4.7. H2O2 Assay for C. elegans
4.8. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yiannopoulou, K.G.; Papageorgiou, S.G. Current and Future Treatments in Alzheimer Disease: An Update. J. Cent. Nerv. Syst. Dis. 2020, 12, 1179573520907397. [Google Scholar] [CrossRef] [Green Version]
- Xin, L.; Yamujala, R.; Wang, Y.; Wang, H.; Wu, W.-H.; Lawton, M.A.; Long, C.; Di, R. Acetylcholineestarase-Inhibiting Alkaloids from Lycoris radiata Delay Paralysis of Amyloid Beta-Expressing Transgenic C. elegans CL4176. PLoS ONE 2013, 8, e63874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCaddon, A. Vitamin B12 in Neurology and Ageing; Clinical and Genetic Aspects. Biochimie 2013, 95, 1066–1076. [Google Scholar] [CrossRef] [PubMed]
- Al-Maskari, M.Y.; Waly, M.I.; Ali, A.; Al-Shuaibi, Y.S.; Ouhtit, A. Folate and Vitamin B12 Deficiency and Hyperhomocysteinemia Promote Oxidative Stress in Adult Type 2 Diabetes. Nutrition 2012, 28, e23–e26. [Google Scholar] [CrossRef] [PubMed]
- Kibirige, D.; Mwebaze, R. Vitamin B12 Deficiency among Patients with Diabetes Mellitus: Is Routine Screening and Supplementation Justified? J. Diabetes Metab. Disord. 2013, 12, 17. [Google Scholar] [CrossRef] [Green Version]
- Bito, T.; Misaki, T.; Yabuta, Y.; Ishikawa, T.; Kawano, T.; Watanabe, F. Vitamin B12 Deficiency Results in Severe Oxidative Stress, Leading to Memory Retention Impairment in Caenorhabditis elegans. Redox Biol. 2017, 11, 21–29. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Wang, C.; Qi, X.; Zou, J.; Sun, Z. Antiglycation and Antioxidant Activities of Mogroside Extract from Siraitia grosvenorii (Swingle) Fruits. J. Food Sci. Technol. 2018, 55, 1880–1888. [Google Scholar] [CrossRef]
- Qi, X.-Y.; Chen, W.-J.; Zhang, L.-Q.; Xie, B.-J. Mogrosides Extract from Siraitia grosvenori Scavenges Free Radicals in Vitro and Lowers Oxidative Stress, Serum Glucose, and Lipid Levels in Alloxan-Induced Diabetic Mice. Nutr. Res. 2008, 28, 278–284. [Google Scholar] [CrossRef]
- Stanciu, G.D.; Bild, V.; Ababei, D.C.; Rusu, R.N.; Cobzaru, A.; Paduraru, L.; Bulea, D. Link between Diabetes and Alzheimer’s Disease Due to the Shared Amyloid Aggregation and Deposition Involving Both Neurodegenerative Changes and Neurovascular Damages. J. Clin. Med. 2020, 9, 1713. [Google Scholar] [CrossRef]
- Pugazhenthi, S.; Qin, L.; Reddy, P.H. Common Neurodegenerative Pathways in Obesity, Diabetes, and Alzheimer’s Disease. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2017, 1863, 1037–1045. [Google Scholar] [CrossRef]
- Di, R.; Huang, M.-T.; Ho, C.-T. Anti-Inflammatory Activities of Mogrosides from Momordica grosvenori in Murine Macrophages and a Murine Ear Edema Model. J. Agric. Food Chem. 2011, 59, 7474–7481. [Google Scholar] [CrossRef] [PubMed]
- Bito, T.; Matsunaga, Y.; Yabuta, Y.; Kawano, T.; Watanabe, F. Vitamin B12 Deficiency in Caenorhabditis elegans Results in Loss of Fertility, Extended Life Cycle, and Reduced Lifespan. FEBS Open Bio. 2013, 3, 112–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, Y.; Wu, Y.; Brown, M.; Link, C.D. Caenorhabditis elegans Model for Initial Screening and Mechanistic Evaluation of Potential New Drugs for Aging and Alzheimer’s Disease. In Methods of Behavior Analysis in Neuroscience, 2nd ed.; Press/Taylor & Francis: New York, NY, USA, 2009. [Google Scholar]
- Ahad, B.; Shahri, W.; Rasool, H.; Reshi, Z.; Rasool, S.; Hussain, T. Medicinal Plants and Herbal Drugs: An Overview. In Medicinal and Aromatic Plants; Springer: Cham, Switzerland, 2021; pp. 1–40. [Google Scholar] [CrossRef]
- Jin, J.-S.; Lee, J.-H. Phytochemical and Pharmacological Aspects of Siraitia grosvenorii, Luo Han Kuo. Orient. Pharm. Exp. Med. 2012, 12, 233–239. [Google Scholar] [CrossRef]
- Lee, K.H.; Cha, M.; Lee, B.H. Neuroprotective Effect of Antioxidants in the Brain. Int. J. Mol. Sci. 2020, 21, 7152. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.-H.; Chou, C.-Y.; Ch’ang, L.-Y.; Liu, C.-S.; Lin, W. Identification of Novel Human Genes Evolutionarily Conserved in Caenorhabditis elegans by Comparative Proteomics. Genome Res. 2000, 10, 703–713. [Google Scholar] [CrossRef] [Green Version]
- Alexander, A.G.; Marfil, V.; Li, C. Use of Caenorhabditis elegans as a Model to Study Alzheimer’s Disease and Other Neurodegenerative Diseases. Front. Genet. 2014, 5, 279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dostal, V.; Roberts, C.M.; Link, C.D. Genetic Mechanisms of Coffee Extract Protection in a Caenorhabditis elegans Model of β-Amyloid Peptide Toxicity. Genetics 2010, 186, 857–866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Regitz, C.; Fitzenberger, E.; Mahn, F.L.; Dußling, L.M.; Wenzel, U. Resveratrol Reduces Amyloid-Beta (Aβ1–42)-Induced Paralysis through Targeting Proteostasis in an Alzheimer Model of Caenorhabditis elegans. Eur. J. Nutr. 2016, 55, 741–747. [Google Scholar] [CrossRef]
- Link, C.D. Expression of Human Beta-Amyloid Peptide in Transgenic Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 1995, 92, 9368–9372. [Google Scholar] [CrossRef] [Green Version]
- Hong, L.; Ji, Y.; Kennelly, E.J.; Long, C.; Di, R. Amaryllidaceae Alkaloids from Lycoris Suppress Amyloid β-Induced Neurodegeneration in Transgenic Caenorhabditis elegans CL2355. Ind. Crops Prod. 2022, 189, 115798. [Google Scholar] [CrossRef]
- Lauer, A.A.; Grimm, H.S.; Apel, B.; Golobrodska, N.; Kruse, L.; Ratanski, E.; Schulten, N.; Schwarze, L.; Slawik, T.; Sperlich, S. Mechanistic Link between Vitamin B12 and Alzheimer’s Disease. Biomolecules 2022, 12, 129. [Google Scholar] [CrossRef] [PubMed]
- Minter, M.R.; Taylor, J.M.; Crack, P.J. The Contribution of Neuroinflammation to Amyloid Toxicity in Alzheimer’s Disease. J. Neurochem. 2016, 136, 457–474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, M.-H.; Yang, J.-R.; Tsai, M.-L.; Sang, S.; Ho, C.-T. Anti-Inflammatory Effect of Momordica grosvenori Swingle Extract through Suppressed LPS-Induced Upregulation of INOS and COX-2 in Murine Macrophages. J. Funct. Foods 2009, 1, 145–152. [Google Scholar] [CrossRef]
- Moreno-Arriola, E.; Cárdenas-Rodríguez, N.; Coballase-Urrutia, E.; Pedraza-Chaverri, J.; Carmona-Aparicio, L.; Ortega-Cuellar, D. Caenorhabditis elegans: A Useful Model for Studying Metabolic Disorders in Which Oxidative Stress Is a Contributing Factor. Oxidative Med. Cell. Longev. 2014, 2014, 705253. [Google Scholar] [CrossRef] [Green Version]
- Perez-Saad, H.; Subiros, N.; Berlanga, J.; Aldana, L.; Garcia Del Barco, D. Neuroprotective Effect of Epidermal Growth Factor in Experimental Acrylamide Neuropathy: An Electrophysiological Approach. J. Peripher. Nerv. Syst. 2017, 22, 106–111. [Google Scholar] [CrossRef]
- Miller, J.W. Vitamin B (12) Deficiency, Tumor Necrosis Factor-(Alpha), and Epidermal Growth Factor: A Novel Function for Vitamin B (12)? Nutr. Rev. 2002, 60, 142. [Google Scholar]
- Horspool, A.M.; Chang, H.C. Superoxide Dismutase SOD-1 Modulates C. elegans Pathogen Avoidance Behavior. Sci. Rep. 2017, 7, 45128. [Google Scholar] [CrossRef] [Green Version]
- Jones, L.K.; Lam, R.; McKee, K.K.; Aleksandrova, M.; Dowling, J.; Alexander, S.I.; Mallawaarachchi, A.; Cottle, D.L.; Short, K.M.; Pais, L. A Mutation Affecting Laminin Alpha 5 Polymerisation Gives Rise to a Syndromic Developmental Disorder. Development 2020, 147, dev189183. [Google Scholar] [CrossRef]
- Alvira-Botero, X.; Pérez-Gonzalez, R.; Spuch, C.; Vargas, T.; Antequera, D.; Garzón, M.; Bermejo-Pareja, F.; Carro, E. Megalin Interacts with APP and the Intracellular Adapter Protein FE65 in Neurons. Mol. Cell. Neurosci. 2010, 45, 306–315. [Google Scholar] [CrossRef]
- Katsouri, L.; Georgopoulos, S. Lack of LDL Receptor Enhances Amyloid Deposition and Decreases Glial Response in an Alzheimer’s Disease Mouse Model. PLoS ONE 2011, 6, e21880. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.; Zhang, X.; Chen, W. Role of Oxidative Stress in Alzheimer’s Disease. Biomed. Rep. 2016, 4, 519–522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marucci, G.; Buccioni, M.; Dal Ben, D.; Lambertucci, C.; Volpini, R.; Amenta, F. Efficacy of Acetylcholinesterase Inhibitors in Alzheimer’s Disease. Neuropharmacology 2021, 190, 108352. [Google Scholar] [CrossRef]
- Combes, D.; Fedon, Y.; Toutant, J.; Arpagaus, M. Multiple Ace Genes Encoding Acetylcholinesterases of Caenorhabditis elegans Have Distinct Tissue Expression. Eur. J. Neurosci. 2003, 18, 497–512. [Google Scholar] [CrossRef]
- Ju, P.; Ding, W.; Chen, J.; Cheng, Y.; Yang, B.; Huang, L.; Zhou, Q.; Zhu, C.; Li, X.; Wang, M. The Protective Effects of Mogroside V and Its Metabolite 11-Oxo-Mogrol of Intestinal Microbiota against MK801-Induced Neuronal Damages. Psychopharmacology 2020, 237, 1011–1026. [Google Scholar] [CrossRef] [PubMed]
- Mo, Q.; Fu, H.; Zhao, D.; Zhang, J.; Wang, C.; Wang, D.; Li, M. Protective Effects of Mogroside v on Oxidative Stress Induced by H2O2 in Skin Fibroblasts. Drug Des. Dev. Ther. 2021, 4901–4909. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Peng, C.; Xu, X.; Peng, Y.; Shi, F.; Li, Q.; Dong, J.; Chen, M. The Protective Effects of Mogroside V against Neuronal Damages by Attenuating Mitochondrial Dysfunction via Upregulating Sirtuin3. Mol. Neurobiol. 2022, 59, 2068–2084. [Google Scholar] [CrossRef] [PubMed]
- Rees, T.M.; Brimijoin, S. The Role of Acetylcholinesterase in the Pathogenesis of Alzheimer’s Disease. Drugs Today 2003, 39, 75–83. [Google Scholar] [CrossRef]
- Luo, Z.; Shi, H.; Zhang, K.; Qin, X.; Guo, Y.; Ma, X. Liquid Chromatography with Tandem Mass Spectrometry Method for the Simultaneous Determination of Multiple Sweet Mogrosides in the Fruits of Siraitia grosvenorii and Its Marketed Sweeteners. J. Sep. Sci. 2016, 39, 4124–4135. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
Retention Time (minutes) | Identification | Formula | [M-H]−, ppm |
---|---|---|---|
5.78 | Mogroside IIe | C42H72O14 | 799.4825, −2.4 |
3.81 | Mogroside III | C48H82O19 | 961.5364, −0.8 |
3.42 | Mogroside IV | C54H92O24 | 1123.5894, 0.5 |
2.81 | Mogroside V | C60H102O29 | 1285.6469, 4.0 |
Human Genes | C. elegans Orthologs | Function |
---|---|---|
SOD-1 | sod-1 | SOD-1 converts superoxide into less toxic oxygen and hydrogen peroxide. Its mutational inactivation has been linked to amyotrophic lateral sclerosis but its pathological mechanism has not been determined [29]. sod-1 exhibits superoxide dismutase activity. |
GPX-4 | gpx-1 | GPX-4 encodes a glutathione peroxidase, which uses glutathione to catalyze the oxidation of lipids or the reduction of hydrogen peroxide to water [26]. gpx-1 is known to enable phospholipid hydroperoxide glutathione peroxidase activity. |
CAT | ctl-1 | Human catalase (CAT) converts hydrogen peroxide to water and oxygen [26]. ctl-1 encodes a protein with catalase activity. |
GSTP1 | gst-10 | Human GSTP1 encodes a member of the glutathione transferases, which conjugate a variety of substrates to glutathione to prevent cellular injury induced by oxidative stress [26]. The gst-10 gene product exhibits glutathione transferase activity. |
LAMA5 | epi-1 | LAMA5 is encodes one of the laminin alpha chains and contributes to the basal membrane of neuromuscular junctions [30]. epi-1 is predicted to encode a structural component of the extracellular matrix that is involved in the positive regulation of endopeptidase activity and the generation of neurons. |
LRP2 | lrp-1 | LRP2 (LDL receptor-related protein 2) participates in the transport and endocytosis of the Aβ complex [31]. lrp-1 affects sterol transporter activity, regulation of locomotion and larval development. C. elegans lrp-1 closely resembles LRP2 and its decrease in expression has been shown to affect neurotransmission in C. elegans [18]. |
LDL | lrx-1 | Low-density lipoprotein (LDL) receptor domains are known to play an important part in cholesterol homeostasis. Reduction of LDL receptors increases the deposition of Aβ in the brain [32]. lrx-1 is predicted to encode a protein that has low-density lipoprotein (LDL) receptor domains. |
TRAF3 | trf-1 | TRAF3 is a tumor necrosis factor gene and is involved in the innate immune response [28]. trf-1 is predicted to enable both ubiquitin-protein ligase binding and tumor necrosis factor receptor biding activity. It is also involved in innate immune response and the defense response against Gram-negative bacterium. |
TNFA1P1 | ZC239.12 F22E5.6 | TNFA1P1 encodes tumor necrosis factor and is involved in the innate immune response [28]. ZC239.12 and F22E5.6 act upstream of, or as part of the IRE1- and PERK-mediated unfolded protein responses. |
HSP | hsp-16.2 hsp-16.41 | HSP are heat shock proteins involved in stress response [2]. hsp-16.2 and hsp-16.41 gene products are predicted to promote unfolded protein binding activity and be involved in response to heat stress. |
Genes | Forward Primer | Reverse Primer | Accession Number |
---|---|---|---|
act-1 | CTCCACGCGCCGTGTT | CATACCGACCATGACTCCTTGA | T04C12.6.1 |
sod-1 | GCCGGAGCCCATGGAT | CGGCCTTACAGTACTTGGTGATG | C15F1.7a.1 |
gpx-1 | GCGAGGGAGTCGGAGACAA | GAGCTCCGGCGTTTCCA | F26E4.12.1 |
ctl-1 | GACCGAATTTGAACGCGTATC | TCGCGTTGATCCAGACTTTGT | Y54G11A.6.1 |
gst-10 | ACAAAAAGGATGGTCTCGAAGTTC | TGGTTCCTGACCGGCAAA | Y45G12C.2a.1 |
epi-1 | TCACAATTTCCCACCGAAAAC | TCCTGTCAGAGAGCAATAGATTTCA | K08C7.3a.1 |
lrp-1 | AGCCGTTCAACCGGTTCTT | ATAAGGCTGCTGCTGAGTTGCT | F29D11.1.1 |
lrx-1 | GCGACCCGCTGCAATCTA | GCGGCCAAGAGTGGTGTTAC | T04H1.6.1 |
ace-1 | AGCCGTTCAACCGGTTCTT | ATAAGGCTGCTGCTGAGTTGCT | W09B12.1.1 |
trf-1 | TGTCAACATGATCGGGCAAA | TCAAAAGTGCAAACGACTGGAA | F45G2.6.1 |
F22E5.6 | TCCCCATACGAAACAACACA | CTCCTCCCAGCTTTTCCACAA | F22E5.6.1 |
ZC239.12 | CCAGAAGAATCCCCATACGA | TCCTCCTCCAACTTTTCCAAA | ZC239.12.1 |
hsp-16.2 | GGTGCAGTTGCTTCGAATCTT | TCTTCCTTGAACCGCTTCTTTC | Y46H3A.3a.1 |
hsp-16.41 | AAACAAAATCGGAACATGGATACTT | TGGAGCCTCAATTTGGAGTTTTC | Y46H3A.2.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai Shi, D.; Long, C.; Vardeman, E.; Kennelly, E.J.; Lawton, M.A.; Di, R. Potential Anti-Alzheimer Properties of Mogrosides in Vitamin B12-Deficient Caenorhabditis elegans. Molecules 2023, 28, 1826. https://doi.org/10.3390/molecules28041826
Cai Shi D, Long C, Vardeman E, Kennelly EJ, Lawton MA, Di R. Potential Anti-Alzheimer Properties of Mogrosides in Vitamin B12-Deficient Caenorhabditis elegans. Molecules. 2023; 28(4):1826. https://doi.org/10.3390/molecules28041826
Chicago/Turabian StyleCai Shi, Denia, Chunlin Long, Ella Vardeman, Edward J. Kennelly, Michael A. Lawton, and Rong Di. 2023. "Potential Anti-Alzheimer Properties of Mogrosides in Vitamin B12-Deficient Caenorhabditis elegans" Molecules 28, no. 4: 1826. https://doi.org/10.3390/molecules28041826
APA StyleCai Shi, D., Long, C., Vardeman, E., Kennelly, E. J., Lawton, M. A., & Di, R. (2023). Potential Anti-Alzheimer Properties of Mogrosides in Vitamin B12-Deficient Caenorhabditis elegans. Molecules, 28(4), 1826. https://doi.org/10.3390/molecules28041826