Geometric, Electronic, and Optoelectronic Properties of Carbon-Based Polynuclear C3O[C(CN)2]2M3 (where M = Li, Na, and K) Clusters: A DFT Study
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimized Geometries and Thermodynamic Stabilities
2.2. Electronic Properties and Stability
2.3. Global Reactivity Descriptor
2.4. FMO Analysis and Excess Electron Nature of Clusters
2.5. Electrical Conductivity (σ)
2.6. TD-DFT Analysis
2.7. Dipole Moment (µo) and Change in Dipole Moment (Δµ)
2.8. Linear and Nonlinear Optical (NLO) Properties
2.9. Scattering Hyperpolarizability (βHRS)
2.10. Frequency Dependent NLO Properties
3. Computational Details
- , shows the excitation energy (in wavenumbers) corresponding to the required electronic excitation in TD-DFT
- is the value of at the maximum of the band shape
- Sigma (σ) is a wavenumber representation of the standard deviation that is related to the simulated band’s width.
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Kanis, D.R.; Ratner, M.A.; Marks, T.J. Design and construction of molecular assemblies with large second-order optical nonlinearities. Quantum chemical aspects. Chem. Rev. 1994, 94, 195–242. [Google Scholar] [CrossRef]
- He, G.S.; Tan, L.-S.; Zheng, Q.; Prasad, P.N. Multiphoton Absorbing Materials: Molecular Designs, Characterizations, and Applications. Chem. Rev. 2008, 108, 1245–1330. [Google Scholar] [CrossRef]
- Dalton, L.R.; Steier, W.H.; Robinson, B.H.; Zhang, C.; Ren, A.; Garner, S.; Chen, A.; Londergan, T.; Irwin, L.; Carlson, B.; et al. From molecules to opto-chips: Organic electro-optic materials. J. Mater. Chem. 1999, 9, 1905–1920. [Google Scholar] [CrossRef]
- Bredas, J.L.; Adant, C.; Tackx, P.; Persoons, A.; Pierce, B.M. Third-Order Nonlinear Optical Response in Organic Materials: Theoretical and Experimental Aspects. Chem. Rev. 1994, 94, 243–278. [Google Scholar] [CrossRef]
- Kleinman, D.A. Nonlinear Dielectric Polarization in Optical Media. Phys. Rev. 1962, 126, 1977–1979. [Google Scholar] [CrossRef]
- Xiao, D.; Bulat, F.A.; Yang, W.; Beratan, D.N. A Donor−Nanotube Paradigm for Nonlinear Optical Materials. Nano Lett. 2008, 8, 2814–2818. [Google Scholar] [CrossRef]
- Palmer, S.; Sokolovski, S.G.; Rafailov, E.; Nabi, G. Technologic Developments in the Field of Photonics for the Detection of Urinary Bladder Cancer. Clin. Genitourin. Cancer 2013, 11, 390–396. [Google Scholar] [CrossRef]
- Lee, S.; Park, J.; Jeong, M.; Kim, H.; Li, S.; Song, J.; Ham, S.; Jeon, S.; Cho, B. First hyperpolarizabilities of 1, 3, 5-tricyanobenzene derivatives: Origin of larger β values for the octupoles than for the dipoles. ChemPhysChem 2006, 7, 206–212. [Google Scholar] [CrossRef]
- Noori, M.; Soroosh, M.; Baghban, H. Highly efficient self-collimation based waveguide for Mid-IR applications. Photonics Nanostructures Fundam. Appl. 2016, 19, 1–11. [Google Scholar] [CrossRef]
- Clough, B.; Dai, J.; Zhang, X.-C. Laser air photonics: Beyond the terahertz gap. Mater. Today 2012, 15, 50–58. [Google Scholar] [CrossRef]
- Xu, X.; Hu, C.-L.; Kong, F.; Zhang, J.-H.; Mao, J.-G.; Sun, J. ChemInform Abstract: Cs2GeB4O9: A New Second-Order Nonlinear-Optical Crystal. Inorg. Chem. 2013, 52, 5831–5837. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.-G.; Guan, W.; Song, P.; Yan, L.-K.; Su, Z.-M. Redox-Switchable Second-Order Nonlinear Optical Responses of Push−Pull Monotetrathiafulvalene-Metalloporphyrins. Inorg. Chem. 2009, 48, 6548–6554. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Wu, Y.; Li, R. The development of new NLO crystals in the borate series. J. Cryst. Growth 1990, 99, 790–798. [Google Scholar] [CrossRef]
- Kertész, M. Bond length alternation and energy gap in (CH)x. Application of the intermediate exciton formalism. Chem. Phys. 1979, 44, 349–356. [Google Scholar] [CrossRef]
- Arshad, Y.; Khan, S.; Hashmi, M.A.; Ayub, K. Transition metal doping: A new and effective approach for remarkably high nonlinear optical response in aluminum nitride nanocages. New J. Chem. 2018, 42, 6976–6989. [Google Scholar] [CrossRef]
- Liu, Z.-B.; Zhou, Z.-J.; Li, Y.; Li, Z.-R.; Wang, R.; Li, Q.-Z.; Li, Y.; Jia, F.-Y.; Wang, Y.-F.; Li, Z.-J.; et al. Push–pull electron effects of the complexant in a Li atom doped molecule with electride character: A new strategy to enhance the first hyperpolarizability. Phys. Chem. Chem. Phys. 2010, 12, 10562–10568. [Google Scholar] [CrossRef]
- Li, Z.; He, C.; Wang, Z.; Gao, Y.; Dong, Y.; Zhao, C.; Chen, Z.; Wu, Y.; Song, W. Ethylenediamine-modified graphene oxide covalently functionalized with a tetracarboxylic Zn(ii) phthalocyanine hybrid for enhanced nonlinear optical properties. Photochem. Photobiol. Sci. 2016, 15, 910–919. [Google Scholar] [CrossRef]
- Maury, O.; Le Bozec, H. Molecular Engineering of Octupolar NLO Molecules and Materials Based on Bipyridyl Metal Complexes. Accounts Chem. Res. 2005, 38, 691–704. [Google Scholar] [CrossRef]
- Hatua, K.; Nandi, P.K. Beryllium-Cyclobutadiene Multidecker Inverse Sandwiches: Electronic Structure and Second-Hyperpolarizability. J. Phys. Chem. A 2013, 117, 12581–12589. [Google Scholar] [CrossRef]
- Li, X.-H.; Zhang, L.; Zhang, X.-L.; Ni, B.-L.; Li, C.-Y.; Sun, W.-M. Designing a new class of excess electron compounds with unique electronic structures and extremely large non-linear optical responses. New J. Chem. 2020, 44, 6411–6419. [Google Scholar] [CrossRef]
- Zhong, R.-L.; Xu, H.-L.; Muhammad, S.; Zhang, J.; Su, Z.-M. The stability and nonlinear optical properties: Encapsulation of an excess electron compound LiCN⋯Li within boron nitride nanotubes. J. Mater. Chem. 2011, 22, 2196–2202. [Google Scholar] [CrossRef]
- Ahsan, A.; Ayub, K. Adamanzane based alkaline earthides with excellent nonlinear optical response and ultraviolet transparency. Opt. Laser Technol. 2020, 129, 106298. [Google Scholar] [CrossRef]
- Casida, M.E.; Jamorski, C.; Casida, K.C.; Salahub, D.R. Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold. J. Chem. Phys. 1998, 108, 4439–4449. [Google Scholar] [CrossRef]
- Mulliken, R.S. Rydberg States and Rydbergization. Acc. Chem. Res. 1976, 9, 7–12. [Google Scholar] [CrossRef]
- Zhong, R.-L.; Xu, H.-L.; Li, Z.-R.; Su, Z.-M. Role of Excess Electrons in Nonlinear Optical Response. J. Phys. Chem. Lett. 2015, 6, 612–619. [Google Scholar] [CrossRef]
- Zhong, R.; Xu, H.; Sun, S.; Qiu, Y.; Su, Z. The Excess Electron in a Boron Nitride Nanotube: Pyramidal NBO Charge Distribution and Remarkable First Hyperpolarizability. Chem.—Eur. J. 2012, 18, 11350. [Google Scholar] [CrossRef]
- Chen, W.; Li, Z.-R.; Wu, D.; Li, Y.; Sun, C.-C.; Gu, F.L. The Structure and the Large Nonlinear Optical Properties of Li@Calix [4]pyrrole. J. Am. Chem. Soc. 2005, 127, 10977–10981. [Google Scholar] [CrossRef]
- Ma, F.; Li, Z.; Xu, H.; Li, Z.; Li, Z.; Aoki, Y.; Gu, F. Lithium salt electride with an excess electron pair—A class of nonlinear optical molecules for extraordinary first hyperpolarizability. J. Phys. Chem. A 2008, 112, 11462–11467. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Peng, D.; Gu, F.L.; Zhu, C. A nonlinear optical switch induced by an external electric field: Inorganic alkaline–earth alkalide. RSC Adv. 2019, 9, 16718–16728. [Google Scholar] [CrossRef] [Green Version]
- Ahsan, A.; Ayub, K. Extremely large nonlinear optical response and excellent electronic stability of true alkaline earthides based on hexaammine complexant. J. Mol. Liq. 2019, 297, 111899. [Google Scholar] [CrossRef]
- Ayub, K.; Ahsan, F. Transition metalides based on facially polarized all-cis-1, 2, 3, 4, 5, 6-hexafluorocyclohexane–a new class of high performance second order nonlinear optical materials. Phys. Chem. Chem. Phys. 2023, 25, 4732–4737. [Google Scholar]
- Sun, W.-M.; Li, X.-H.; Wu, D.; Li, Y.; He, H.-M.; Li, Z.-R.; Chen, J.-H.; Li, C.-Y. A theoretical study on superalkali-doped nanocages: Unique inorganic electrides with high stability, deep-ultraviolet transparency, and a considerable nonlinear optical response. Dalton Trans. 2016, 45, 7500–7509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.; Ichimura, A.; Huang, R.; Redko, M.; Phillips, R.; Jackson, J.; Dye, J. Crystalline Salts of Na- and K- (Alkalides) that Are Stable at Room Temperature. J. Am. Chem. Soc. 1999, 121, 10666–10667. [Google Scholar] [CrossRef]
- Ichimura, A.S.; Dye, J.L.; Camblor, M.A.; Villaescusa, L.A. Toward Inorganic Electrides. J. Am. Chem. Soc. 2002, 124, 1170–1171. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; Jiang, D.; Qin, J.; Duan, Q. Alkaline-earthide: A new class of excess electron compounds Li-C6H6F6-M (M = Be, Mg and Ca ) with extremely large nonlinear optical responses. Chem. Phys. Lett. 2018, 711, 55–59. [Google Scholar] [CrossRef]
- Sun, W.-M.; Li, X.-H.; Wu, J.; Lan, J.-M.; Li, C.-Y.; Wu, D.; Li, Y.; Li, Z.-R. Can Coinage Metal Atoms Be Capable of Serving as an Excess Electron Source of Alkalides with Considerable Nonlinear Optical Responses? Inorg. Chem. 2017, 56, 4594–4600. [Google Scholar] [CrossRef] [PubMed]
- Gutsev, G.; Boldyrev, A. DVM Xα calculations on the electronic structure of “superalkali” cations. Chem. Phys. Lett. 1982, 92, 262–266. [Google Scholar] [CrossRef]
- Sikorska, C.; Gaston, N. N4Mg6M (M = Li, Na, K) superalkalis for CO2 activation. J. Chem. Phys. 2020, 153, 144301. [Google Scholar] [CrossRef]
- Saedi, L.; Dodangi, M.; Mohammadpanaardakan, A.; Eghtedari, M. Superalkali–Superhalogen Complexes as Versatile Materials for Hydrogen Storage: A Theoretical Study. J. Clust. Sci. 2019, 31, 71–78. [Google Scholar] [CrossRef]
- Park, H.; Meloni, G. Activation of Dinitrogen with a Superalkali Species, Li3 F2. ChemPhysChem 2018, 19, 256–260. [Google Scholar] [CrossRef]
- Giri, S.; Behera, S.; Jena, P. Superalkalis and Superhalogens as Building Blocks of Supersalts. J. Phys. Chem. A 2014, 118, 638–645. [Google Scholar] [CrossRef] [PubMed]
- Percec, V.; Won, B.C.; Peterca, M.; Heiney, P.A. Expanding the Structural Diversity of Self-Assembling Dendrons and Supramolecular Dendrimers via Complex Building Blocks. J. Am. Chem. Soc. 2007, 129, 11265–11278. [Google Scholar] [CrossRef] [PubMed]
- Ullah, F.; Kosar, N.; Ayub, K.; Mahmood, T. Superalkalis as a source of diffuse excess electrons in newly designed inorganic electrides with remarkable nonlinear response and deep ultraviolet transparency: A DFT study. Appl. Surf. Sci. 2019, 483, 1118–1128. [Google Scholar] [CrossRef]
- Sajid, H.; Ayub, K.; Mahmood, T. Exceptionally high NLO response and deep ultraviolet transparency of superalkali doped macrocyclic oligofuran rings. New J. Chem. 2020, 44, 2609–2618. [Google Scholar] [CrossRef]
- Srivastava, A.; Misra, N. Nonlinear optical behavior of LinF (n = 2–5) superalkali clusters. J. Mol. Model. 2015, 21, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, A.K.; Misra, N. M2X (M = Li, Na; X = F, Cl): The smallest superalkali clusters with significant NLO responses and electride characteristics. Mol. Simul. 2016, 42, 981–985. [Google Scholar] [CrossRef]
- Ahsin, A.; Ayub, K. Theoretical investigation of superalkali clusters M2OCN and M2NCO (where M = Li, Na, K) as excess electron system with significant static and dynamic nonlinear optical response. Optik 2020, 227, 166037. [Google Scholar] [CrossRef]
- Ahsin, A.; Ayub, K. Extremely large static and dynamic nonlinear optical response of small superalkali clusters NM3M’(M, M’= Li, Na, K). J. Mol. Graph. Model. 2021, 109, 108031. [Google Scholar] [CrossRef]
- Li, X.-H.; Zhang, X.-L.; Chen, Q.-H.; Zhang, L.; Chen, J.-H.; Wu, D.; Sun, W.-M.; Li, Z.-R. Coinage metalides: A new class of excess electron compounds with high stability and large nonlinear optical responses. Phys. Chem. Chem. Phys. 2020, 22, 8476–8484. [Google Scholar] [CrossRef]
- Ahsin, A.; Ali, A.; Ayub, K. Alkaline earth metals serving as source of excess electron for alkaline earth metals to impart large second and third order nonlinear optical response; a DFT study. J. Mol. Graph. Model. 2020, 101, 107759. [Google Scholar] [CrossRef] [PubMed]
- Ahsin, A.; Ayub, K. Remarkable electronic and NLO properties of bimetallic superalkali clusters: A DFT study. J. Nanostructure Chem. 2021, 12, 529–545. [Google Scholar] [CrossRef]
- Ahsin, A.; Ayub, K. Zintl based superatom P7M2 (M = Li, Na, K & Be, Mg, Ca) clusters with excellent second and third-order nonlinear optical response. Mater. Sci. Semicond. Process. 2021, 134, 105986. [Google Scholar]
- Ahsin, A.; Ayub, K. Superalkali-based alkalides Li3O@[12-crown-4]M (where M = Li, Na, and K) with remarkable static and dynamic NLO properties; A DFT study. Mater. Sci. Semicond. Process. 2021, 138, 106254. [Google Scholar] [CrossRef]
- Ahsin, A.; Ayub, K. Oxacarbon superalkali C3X3Y3 (X = O, S and Y = Li, Na, K) clusters as excess electron compounds for remarkable static and dynamic NLO response. J. Mol. Graph. Model. 2021, 106, 107922. [Google Scholar] [CrossRef]
- Ahsin, A.; Ayub, K. Theoretical investigation of lithium-based clusters Lin (where n = 3, 5, 7) with remarkable electronic and frequency-dependent NLO properties. Eur. Phys. J. Plus 2022, 137, 803. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 09; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Dennington, R.; Keith, T.A.; Millam, J.M. GaussView, 6th ed.; Semichem Inc.: Shawnee Mission, KS, USA, 2009. [Google Scholar]
- Grein, F. Influence of diffuse and polarization functions on the second-order Møller–Plesset optimized dihedral angle of biphenyl. Theor. Chem. Accounts 2003, 109, 274–277. [Google Scholar] [CrossRef]
- Okuno, K.; Shigeta, Y.; Kishi, R.; Miyasaka, H.; Nakano, M. Tuned CAM-B3LYP functional in the time-dependent density functional theory scheme for excitation energies and properties of diarylethene derivatives. J. Photochem. Photobiol. A Chem. 2012, 235, 29–34. [Google Scholar] [CrossRef]
- Kobayashi, R.; Amos, R.D. The application of CAM-B3LYP to the charge-transfer band problem of the zincbacteriochlorin–bacteriochlorin complex. Chem. Phys. Lett. 2006, 420, 106–109. [Google Scholar] [CrossRef]
- Bravo-Pérez, G.; Garzón, I.; Novaro, O. Ab initio study of small gold clusters. J. Mol. Struct. THEOCHEM 1999, 493, 225–231. [Google Scholar] [CrossRef]
- Marchetti, O.; Werner, H.-J. Accurate Calculations of Intermolecular Interaction Energies Using Explicitly Correlated Coupled Cluster Wave Functions and a Dispersion-Weighted MP2 Method. J. Phys. Chem. A 2009, 113, 11580–11585. [Google Scholar] [CrossRef] [PubMed]
- Castet, F.; Rodriguez, V.; Pozzo, J.-L.; Ducasse, L.; Plaquet, A.; Champagne, B. Design and Characterization of Molecular Nonlinear Optical Switches. Accounts Chem. Res. 2013, 46, 2656–2665. [Google Scholar] [CrossRef] [PubMed]
- Maroulis, G. Quantifying the performance of conventional DFT methods on a class of difficult problems: The interaction (hyper)polarizability of two water molecules as a test case. Int. J. Quantum Chem. 2011, 112, 2231–2241. [Google Scholar] [CrossRef]
- Karamanis, P.; Maroulis, G.; Pouchan, C. Molecular geometry and polarizability of small cadmium selenide clusters from all-electron ab initio and Density Functional Theory calculations. J. Chem. Phys. 2006, 124, 71101. [Google Scholar] [CrossRef] [PubMed]
- Reed, A.E.; Weinstock, R.B.; Weinhold, F. Natural population analysis. J. Chem. Phys. 1985, 83, 735–746. [Google Scholar] [CrossRef]
- Allouche, A.-R. Gabedit-A graphical user interface for computational chemistry softwares. J. Comput. Chem. 2010, 32, 174–182. [Google Scholar] [CrossRef] [PubMed]
Cluster | dM-O | dM-N | Eb | Q(M) | Q(N) | Q(O) | VIE | VEA |
---|---|---|---|---|---|---|---|---|
C1 | 1.82 | 1.89 | −162.4 | 0.58 | −0.485 | −0.960 | 3.65 | 0.76 |
C2 | 2.24 | 2.26 | −160.1 | 0.61 | −0.521 | −0.839 | 3.41 | 0.89 |
C3 | 2.58 | 2.62 | −162.1 | 0.62 | −0.523 | −0.830 | 3.00 | 0.27 |
Cluster | EHOMO | ELUMO | EH-L | η | S | χ |
---|---|---|---|---|---|---|
C1 | −4.70 | −0.61 | 4.08 | 1.839 | 0.27 | −1.81 |
C2 | −3.24 | −0.88 | 2.35 | 1.721 | 0.29 | −1.72 |
C3 | −2.80 | −0.83 | 1.96 | 1.505 | 0.33 | −1.50 |
Clusters | TD-DFT Parameters from Crucial Transitions | |||
---|---|---|---|---|
ΔE (eV) | λmax (nm) | fo (au) | Major Orbital Contribution | |
C1 | 1.63 | 758 | 0.19 | HOMO→LUMO+2 (82%) |
C2 | 1.80 | 688 | 0.26 | HOMO→LUMO+3 (36%) |
C3 | 1.24 | 995 | 0.28 | HOMO→LUMO+5 (67%) |
TD-DFT Parameters from First Allowed Transitions | ||||
C1 | 1.63 | 758 | 0.19 | HOMO→LUMO+2 (82%) |
C2 | 0.92 | 1338 | 0.23 | HOMO→LUMO+1 (99%) |
C3 | 0.86 | 1441 | 0.25 | HOMO→LUMO+1 (96%) |
TD-DFT Parameters for Highest Energy States | ||||
C1 | 5.12 | 242 | 0.0018 | |
C2 | 4.25 | 291 | 0.0005 | |
C3 | 3.92 | 315 | 0.0002 |
Clusters | αo | βo | γo | βHRS | βvec | <βJ=1> | <βJ=3> | Φβ(j = 1) | Φβ(j = 3) |
---|---|---|---|---|---|---|---|---|---|
C1 | 2.5 × 102 | 2.37 × 103 | 5.5 × 106 | 1.34 × 103 | 2.37 × 103 | 1.8 × 103 | 3.37 × 103 | 35% | 65% |
C2 | 5.07 × 102 | 4.46 × 103 | 1.2 × 106 | 4.87 × 103 | 4.46 × 103 | 3.28 × 103 | 1.49 × 104 | 18% | 82% |
C3 | 6.62 × 102 | 5.78 × 103 | 2.9 × 105 | 1.62 × 104 | 5.78 × 103 | 4.30 × 103 | 5.20 × 103 | 08% | 92% |
Cluster | ω = 0 | ω = 532 nm | ω = 1064 nm | ||
---|---|---|---|---|---|
β (0;0,0) | β (−ω; ω,0) | β (2-ω;ω,ω) | β (−ω; ω,0) | β (−2ω; ω, ω) | |
C1 | 2.5 × 102 | 8.1 ×103 | 2.2 × 105 | 8.1 × 105 | 2.9 × 105 |
C2 | 5.0 × 102 | 1.0 × 105 | 4.2 × 105 | 2.7 × 106 | 1.6 × 105 |
C3 | 6.6 × 102 | 1.2 × 107 | 1.7 × 106 | 5.0 × 105 | 4.5 × 103 |
Clusters | ω = 0 | ω = 532 nm | ω = 1064 nm | ||
---|---|---|---|---|---|
γ (0;0,0,0) | γ (−ω; ω,0,0) | γ (−2ω;ω,ω, ω) | γ (−ω; ω,0,0) | γ (−2ω; ω, ω, ω) | |
C1 | 5.5 × 106 | 3.0 × 108 | 6.0 × 107 | 1.0 × 106 | 1.2 × 108 |
C2 | 1.2 × 106 | 2.4 × 108 | 2.3 × 107 | 2.3 × 107 | 5.0 × 107 |
C3 | 2.9 × 105 | 4.9 × 107 | 1.7 × 108 | 2.6 × 109 | 2.0 × 109 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bayach, I.; Ahsin, A.; Majid, S.U.; Rashid, U.; Sheikh, N.S.; Ayub, K. Geometric, Electronic, and Optoelectronic Properties of Carbon-Based Polynuclear C3O[C(CN)2]2M3 (where M = Li, Na, and K) Clusters: A DFT Study. Molecules 2023, 28, 1827. https://doi.org/10.3390/molecules28041827
Bayach I, Ahsin A, Majid SU, Rashid U, Sheikh NS, Ayub K. Geometric, Electronic, and Optoelectronic Properties of Carbon-Based Polynuclear C3O[C(CN)2]2M3 (where M = Li, Na, and K) Clusters: A DFT Study. Molecules. 2023; 28(4):1827. https://doi.org/10.3390/molecules28041827
Chicago/Turabian StyleBayach, Imene, Atazaz Ahsin, Safi Ullah Majid, Umer Rashid, Nadeem S. Sheikh, and Khurshid Ayub. 2023. "Geometric, Electronic, and Optoelectronic Properties of Carbon-Based Polynuclear C3O[C(CN)2]2M3 (where M = Li, Na, and K) Clusters: A DFT Study" Molecules 28, no. 4: 1827. https://doi.org/10.3390/molecules28041827
APA StyleBayach, I., Ahsin, A., Majid, S. U., Rashid, U., Sheikh, N. S., & Ayub, K. (2023). Geometric, Electronic, and Optoelectronic Properties of Carbon-Based Polynuclear C3O[C(CN)2]2M3 (where M = Li, Na, and K) Clusters: A DFT Study. Molecules, 28(4), 1827. https://doi.org/10.3390/molecules28041827