Development of Computational In Silico Model for Nano Lipid Carrier Formulation of Curcumin
Abstract
:1. Introduction
2. Results and Discussion
2.1. Molecular Dynamic Study for Curcumin Solubility and Interaction with Candidate Lipids
2.2. Formulation of Curcumin-Loaded Nanostructured Lipid Carriers
2.3. Compatibility Study of the Excipients Used in the NLCs Formulations
2.3.1. Fourier Transforms Infrared Spectra
2.3.2. Differential Scanning Calorimetry
2.3.3. X-ray Diffraction Spectra (XRD)
2.4. Evaluation of Curcumin–NLC Formulation
2.4.1. Determination of Drug Content and Incorporation of Efficacy
2.4.2. Particle Size and Poly-Dispersity Index (PDI)
2.4.3. Zeta Potential
2.4.4. EE Percent and Drug Loading
2.5. In Vitro Drug Release
2.6. Morphological Analysis
2.7. In Vitro Gut Permeation Study
2.8. Molecular Docking Studies of the Anti-Viral Activity of Curcumin NLC against SARS-CoV-2 (COVID-19)
3. Materials and Methods
3.1. Materials
3.2. Molecular Dynamic Study for Curcumin Solubility and Interaction with Solid and Liquid Lipids
3.3. Formulation of Curcumin-Loaded Nanostructured Lipid Carriers
3.4. Compatibility Study of the Excipients Used in the NLCs Formulations
3.5. Evaluation of Curcumin NLC Formulation
3.5.1. Drug Content
3.5.2. Particle Size and Particle Size Distribution (PDI)
3.5.3. Zeta Potential (ζ)
3.5.4. Entrapment Efficiency and Drug Loading
3.6. In Vitro Drug Release Study
3.7. NLCs Morphology Determination by AFM
3.8. In Vitro Gut Permeation Study
3.9. Molecular Docking Studies of the Anti-Viral Activity of Curcumin against SARS-CoV-2 (COVID-19)
3.10. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Quintanar-Guerrero, D.; Leyva-Gómez, G.; Vergara, N.E.M.; Muñoz, N.M. Nanopharmaceuticals. Nanomater. Nanotechnol. Med. 2022, 87–114. [Google Scholar] [CrossRef]
- Thi, T.T.H.; Suys, E.J.; Lee, J.S.; Nguyen, D.H.; Park, K.D.; Truong, N.P. Lipid-based nanoparticles in the clinic and clinical trials: From cancer nanomedicine to COVID-19 vaccines. Vaccines 2021, 9, 359. [Google Scholar] [CrossRef] [PubMed]
- Sheng, T.M.; Kumar, P.V. A New Approach for β-cyclodextrin Conjugated Drug Delivery System in Cancer Therapy. Curr. Drug Deliv. 2022, 19, 266–300. [Google Scholar] [PubMed]
- Sakellari, G.I.; Zafeiri, I.; Batchelor, H.; Spyropoulos, F. Formulation design, production and characterisation of solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for the encapsulation of a model hydrophobic active. Food Hydrocoll. Health 2021, 1, 100024. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Li, X.; Cheng, P.; Yang, P.; Shi, P.; Kong, L.; Liu, H. Preparation of Curcumin Solid Lipid Nanoparticles Loaded with Flower-Shaped Lactose for Lung Inhalation and Preliminary Evaluation of Cytotoxicity In Vitro. Evid. Based Complement. Altern. Med. 2021, 2021. [Google Scholar] [CrossRef]
- Baldim, I.; Souza, C.R.F.; Oliveira, W.P. Encapsulation of Essential Oils in Lipid-Based Nanosystems. In Phytotechnology; CRC Press: Boca Raton, FL, USA, 2021; pp. 197–230. [Google Scholar]
- Gupta, T.; Singh, J.; Kaur, S.; Sandhu, S.; Singh, G.; Kaur, I.P. Enhancing bioavailability and stability of curcumin using solid lipid nanoparticles (CLEN): A covenant for its effectiveness. Front. Bioeng. Biotechnol. 2020, 8, 879. [Google Scholar] [CrossRef]
- Zhong, Q.; Zhang, L. Nanoparticles fabricated from bulk solid lipids: Preparation, properties, and potential food applications. Adv. Colloid Interface Sci. 2019, 273, 102033. [Google Scholar] [CrossRef]
- Mura, P.; Maestrelli, F.; D’Ambrosio, M.; Luceri, C.; Cirri, M. Evaluation and comparison of solid lipid Nanoparticles (SLNs) and Nanostructured lipid carriers (NLCs) as vectors to develop Hydrochlorothiazide effective and safe pediatric oral liquid formulations. Pharmaceutics 2021, 13, 437. [Google Scholar] [CrossRef]
- Ban, C.; Jo, M.; Park, Y.H.; Kim, J.H.; Han, J.Y.; Lee, K.W.; Kweon, D.-H.; Choi, Y.J. Enhancing the oral bioavailability of curcumin using solid lipid nanoparticles. Food Chem. 2020, 302, 125328. [Google Scholar] [CrossRef]
- Wang, G.; Li, R.; Parseh, B.; Du, G. Prospects and challenges of anticancer agents’ delivery via chitosan-based drug carriers to combat breast cancer: A review. Carbohydr. Polym. 2021, 268, 118192. [Google Scholar] [CrossRef]
- Degot, P.; Huber, V.; El Maangar, A.; Gramüller, J.; Rohr, L.; Touraud, D.; Zemb, T.; Gschwind, R.M.; Kunz, W. Triple role of sodium salicylate in solubilization, extraction, and stabilization of curcumin from Curcuma Longa. J. Mol. Liq. 2021, 329, 115538. [Google Scholar] [CrossRef]
- Bagherniya, M.; Darand, M.; Askari, G.; Guest, P.C.; Sathyapalan, T.; Sahebkar, A. The clinical use of curcumin for the treatment of rheumatoid arthritis: A systematic review of clinical trials. In Studies on Biomarkers and New Targets in Aging Research in Iran; Springer International Publishing: Cham, Switzerland, 2021; pp. 251–263. [Google Scholar]
- Wünsche, S.; Yuan, L.; Seidel-Morgenstern, A.; Lorenz, H. A Contribution to the Solid State Forms of Bis (demethoxy) curcumin: Co-Crystal Screening and Characterization. Molecules 2021, 26, 720. [Google Scholar] [CrossRef]
- Lohani, A.; Verma, A. Lipid vesicles: Potential nanocarriers for the delivery of essential oils to combat skin aging. In Nanotechnology for the Preparation of Cosmetics Using Plant-Based Extracts; Elsevier: Amsterdam, The Netherlands, 2022; pp. 131–156. [Google Scholar]
- Sabet, S.; Rashidinejad, A.; Melton, L.D.; McGillivray, D.J. Recent advances to improve curcumin oral bioavailability. Trends Food Sci. Technol. 2021, 110, 253–266. [Google Scholar] [CrossRef]
- Komal, K.; Chaudhary, S.; Yadav, P.; Parmanik, R.; Singh, M. The therapeutic and preventive efficacy of curcumin and its derivatives in esophageal cancer. Asian Pac. J. Cancer Prev. APJCP 2019, 20, 1329. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Chen, J.; Dai, W.; He, Z.; Zhai, D.; Chen, W. Pharmacokinetic studies and anticancer activity of curcumin-loaded nanostructured lipid carriers. Acta Pharm. 2017, 67, 357–371. [Google Scholar] [CrossRef] [Green Version]
- Pramanik, S.; Sali, V. Connecting the dots in drug delivery: A tour d’horizon of chitosan-based nanocarriers system. Int. J. Biol. Macromol. 2021, 169, 103–121. [Google Scholar] [CrossRef]
- Luis Abreu, J. Artemisia annua+ Zinc for the Treatment of COVID-19: A Potential Successful Combination Therapy with Ivermectin. Rev. Daena Rev. Daena (Int. J. Good Conscienc.) 2021, 16. [Google Scholar]
- Fai, T.K.; Yee, G.H.; Kumar, P.V.; Elumalai, M. Preparation of Chitosan Particles as a Delivery System for Tetrahydrocurcumin: β-cyclodextrin Inclusive Compound for Colorectal Carcinoma. Curr. Drug Ther. 2021, 16, 430–438. [Google Scholar] [CrossRef]
- Obergrussberger, A.; Friis, S.; Brüggemann, A.; Fertig, N. Automated Patch Clamp in Drug Discovery: Major Breakthroughs and Innovation in the Last Decade; Taylor & Francis: Milton Park, UK, 2021; Volume 16, pp. 1–5. [Google Scholar]
- Luo, Y.; Peng, J.; Ma, J. Next Decade’s AI-Based Drug Development Features Tight Integration of Data and Computation. Health Data Sci. 2022, 2022, 9816939. [Google Scholar] [CrossRef]
- Sabanés Zariquiey, F.; Jacoby, E.; Vos, A.; van Vlijmen, H.W.; Tresadern, G.; Harvey, J. Divide and Conquer. Pocket-Opening Mixed-Solvent Simulations in the Perspective of Docking Virtual Screening Applications for Drug Discovery. J. Chem. Inf. Model. 2022, 62, 533–543. [Google Scholar] [CrossRef]
- Bredewout, M. Virtual Screening in Multi-Target Drug Design. Master’s Thesis, Utrecht University, Utrecht, The Netherlands, 2022. [Google Scholar]
- Bragina, M.E.; Daina, A.; Perez, M.A.; Michielin, O.; Zoete, V. The SwissSimilarity 2021 Web Tool: Novel Chemical Libraries and Additional Methods for an Enhanced Ligand-Based Virtual Screening Experience. Int. J. Mol. Sci. 2022, 23, 811. [Google Scholar] [CrossRef] [PubMed]
- Elisi, G.M.; Scalvini, L.; Lodola, A.; Bedini, A.; Spadoni, G.; Rivara, S. In silico drug discovery of melatonin receptor ligands with therapeutic potential. Expert Opin. Drug Discov. 2022, 17, 343–354. [Google Scholar] [CrossRef] [PubMed]
- Maki, M.A.A.; Kumar, P.V.; Cheah, S.-C.; Siew Wei, Y.; Al-Nema, M.; Bayazeid, O.; Majeed, A.B.B.A. Molecular modeling-based delivery system enhances everolimus-induced apoptosis in Caco-2 cells. ACS Omega 2019, 4, 8767–8777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galazzo, L.; Bordignon, E. Electron Paramagnetic Resonance Spectroscopy in structural-dynamic studies of large protein complexes. In Progress in Nuclear Magnetic Resonance Spectroscopy; Elsevier: Amsterdam, The Netherlands, 2022. [Google Scholar]
- Kabir, A.; Muth, A. Polypharmacology: The Science of Multi-targeting Molecules. Pharmacol. Res. 2022, 176, 106055. [Google Scholar] [CrossRef] [PubMed]
- Semple, S.C.; Leone, R.; Barbosa, C.J.; Tam, Y.K.; Lin, P.J. Lipid Nanoparticle Delivery Systems to Enable mRNA-Based Therapeutics. Pharmaceutics 2022, 14, 398. [Google Scholar] [CrossRef]
- Ferreira, L.G.; Dos Santos, R.N.; Oliva, G.; Andricopulo, A.D. Molecular docking and structure-based drug design strategies. Molecules 2015, 20, 13384–13421. [Google Scholar] [CrossRef] [Green Version]
- Boufissiou, A.; Abdalla, M.; Sharaf, M.; Al-Resayes, S.I.; Imededdine, K.; Alam, M.; Yagi, S.; Azam, M.; Yousfi, M. In-silico investigation of phenolic compounds from leaves of Phillyrea Angustifolia L. as a potential inhibitor against the SARS-CoV-2 main protease (Mpro PDB ID: 5R83) using a virtual screening method. J. Saudi Chem. Soc. 2022, 26, 101473. [Google Scholar] [CrossRef]
- Zhan, J.; Lei, Z.; Zhang, Y. Non-covalent interactions of graphene surface: Mechanisms and applications. Chem 2022, 8, 947–979. [Google Scholar] [CrossRef]
- Yashvardhini, N.; Samiksha, S.; Jha, D.K. Pharmacological intervention of various Indian medicinal plants in combating COVID-19 infection. Biomed. Res. Ther. 2021, 8, 4461–4475. [Google Scholar]
- Pandeya, K.; Ganeshpurkar, A.; Mishra, M.K. Natural RNA dependent RNA polymerase inhibitors: Molecular docking studies of some biologically active alkaloids of Argemone mexicana. Med. Hypotheses 2020, 144, 109905. [Google Scholar] [CrossRef]
- Tee, Y.N.; Kumar, P.V.; Maki, M.A.; Elumalai, M.; Rahman, S.A.; Cheah, S.-C. Mucoadhesive Low Molecular Chitosan Complexes to Protect rHuKGF from Proteolysis: In-vitro Characterization and FHs 74 Int Cell Proliferation Studies. Curr. Pharm. Biotechnol. 2021, 22, 969–982. [Google Scholar] [CrossRef]
- Kinzhalov, M.A.; Kashina, M.V.; Mikherdov, A.S.; Mozheeva, E.A.; Novikov, A.S.; Smirnov, A.S.; Ivanov, D.M.; Kryukova, M.A.; Ivanov, A.Y.; Smirnov, S.N. Dramatically Enhanced Solubility of Halide-Containing Organometallic Species in Diiodomethane: The Role of Solvent Complex Halogen Bonding. Angew. Chem. 2018, 130, 12967–12971. [Google Scholar] [CrossRef]
- Hasib, R.A.; Ali, M.C.; Rahman, M.S.; Rahman, M.M.; Ahmed, F.F.; Mashud, M.A.A.; Islam, M.A.; Jamal, M.A.H.M. A computational biology approach for the identification of potential SARS-CoV-2 main protease inhibitors from natural essential oil compounds. F1000Research 2022, 10, 1313. [Google Scholar] [CrossRef]
- Nakmode, D.; Bhavana, V.; Thakor, P.; Madan, J.; Singh, P.K.; Singh, S.B.; Rosenholm, J.M.; Bansal, K.K.; Mehra, N.K. Fundamental Aspects of Lipid-Based Excipients in Lipid-Based Product Development. Pharmaceutics 2022, 14, 831. [Google Scholar] [CrossRef]
- Azmi, N.A.N.; Elgharbawy, A.A.; Motlagh, S.R.; Samsudin, N.; Salleh, H.M. Nanoemulsions: Factory for food, pharmaceutical and cosmetics. Processes 2019, 7, 617. [Google Scholar] [CrossRef] [Green Version]
- Awais, M.; Ullah, N.; Ahmad, J.; Sikandar, F.; Ehsan, M.M.; Salehin, S.; Bhuiyan, A.A. Heat transfer and pressure drop performance of Nanofluid: A state-of-the-art review. Int. J. Thermofluids 2021, 9, 100065. [Google Scholar] [CrossRef]
- Saghafi, Z.; Mohammadi, M.; Mahboobian, M.M.; Derakhshandeh, K. Preparation, characterization, and in vivo evaluation of perphenazine-loaded nanostructured lipid carriers for oral bioavailability improvement. Drug Dev. Ind. Pharm. 2021, 47, 509–520. [Google Scholar]
- Ajala, T.O.; Abraham, A.; Keck, C.M.; Odeku, O.A.; Elufioye, T.O.; Olopade, J.O. Shea butter (Vitellaria paradoxa) and Pentaclethra macrophylla oil as lipids in the formulation of Nanostructured lipid carriers. Sci. Afr. 2021, 13, e00965. [Google Scholar]
- Erawati, T.; Agustin, E.D.; Meldaviati, G.; Rohmah, N.N.; Purwanti, T.; Miatmoko, A.; Hendradi, E.; Rosita, N.; Hariyadi, D.M. Effect of Peppermint Oil on the Characteristics and Physical Stability of Nanostructured Lipid Carrier-CoQ10. Trop. J. Nat. Prod. Res. 2022, 6, 303–307. [Google Scholar]
- Chen, P.; Zhang, H.; Cheng, S.; Zhai, G.; Shen, C. Development of curcumin loaded nanostructured lipid carrier based thermosensitive in situ gel for dermal delivery. Colloids Surf. A Physicochem. Eng. Asp. 2016, 506, 356–362. [Google Scholar] [CrossRef]
- Rapalli, V.K.; Kaul, V.; Waghule, T.; Gorantla, S.; Sharma, S.; Roy, A.; Dubey, S.K.; Singhvi, G. Curcumin loaded nanostructured lipid carriers for enhanced skin retained topical delivery: Optimization, scale-up, in-vitro characterization and assessment of ex-vivo skin deposition. Eur. J. Pharm. Sci. 2020, 152, 105438. [Google Scholar] [CrossRef] [PubMed]
- Selvaraj, K.; Yoo, B.-K. Curcumin-loaded nanostructured lipid carrier modified with partially hydrolyzed ginsenoside. AAPS PharmSciTech 2019, 20, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Rajasekar, A.; Devasena, T.; Suresh, S.; Senthil, B.; Sivaramakrishnan, R.; Pugazhendhi, A. Curcumin nanospheres and nanorods: Synthesis, characterization and anticancer activity. Process Biochem. 2022, 112, 248–253. [Google Scholar] [CrossRef]
- Lin, D.; Xiao, L.; Qin, W.; Loy, D.A.; Wu, Z.; Chen, H.; Zhang, Q. Preparation, characterization and antioxidant properties of curcumin encapsulated chitosan/lignosulfonate micelles. Carbohydr. Polym. 2022, 281, 119080. [Google Scholar] [CrossRef]
- Muntean, P.; Socaciu, C.; Socaciu, M.A. Lipid Nanostructured Particles as Emerging Carriers for Targeted Delivery of Bioactive Molecules: Applications in Food and Biomedical Sciences (An Overview). Bull. UASVM Food Sci. Technol. 2020, 77, 37–46. [Google Scholar] [CrossRef]
- Behbahani, E.S.; Ghaedi, M.; Abbaspour, M.; Rostamizadeh, K.; Dashtian, K. Curcumin loaded nanostructured lipid carriers: In vitro digestion and release studies. Polyhedron 2019, 164, 113–122. [Google Scholar] [CrossRef]
- Beraldo-Araújo, V.L.; Vicente, A.F.S.; van Vliet Lima, M.; Umerska, A.; Souto, E.B.; Tajber, L.; Oliveira-Nascimento, L. Levofloxacin in nanostructured lipid carriers: Preformulation and critical process parameters for a highly incorporated formulation. Int. J. Pharm. 2022, 626, 122193. [Google Scholar] [CrossRef]
- Agrawal, M.; Saraf, S.; Pradhan, M.; Patel, R.J.; Singhvi, G.; Alexander, A. Design and optimization of curcumin loaded nano lipid carrier system using Box-Behnken design. Biomed. Pharmacother. 2021, 141, 111919. [Google Scholar] [CrossRef]
- Sharma, A.; Baldi, A. Nanostructured lipid carriers: A review. J. Dev. Drugs 2018, 7, 1000191. [Google Scholar]
- Amin, M.K.; Boateng, J.S. Enhancing stability and mucoadhesive properties of chitosan nanoparticles by surface modification with sodium alginate and polyethylene glycol for potential oral mucosa vaccine delivery. Mar. Drugs 2022, 20, 156. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhang, S.; Ma, M.; Wang, D.; Xu, Y. Encapsulation and delivery of curcumin in cellulose nanocrystals nanoparticles using pH-driven method. LWT 2022, 155, 112863. [Google Scholar] [CrossRef]
- Chang, S.-H.; Lin, H.-T.V.; Wu, G.-J.; Tsai, G.J. pH Effects on solubility, zeta potential, and correlation between antibacterial activity and molecular weight of chitosan. Carbohydr. Polym. 2015, 134, 74–81. [Google Scholar] [CrossRef]
- Shah, R.M.; Eldridge, D.S.; Palombo, E.A.; Harding, I.H. Stability mechanisms for microwave-produced solid lipid nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 2022, 643, 128774. [Google Scholar] [CrossRef]
- Garg, N.K.; Sharma, G.; Singh, B.; Nirbhavane, P.; Tyagi, R.K.; Shukla, R.; Katare, O. Quality by Design (QbD)-enabled development of aceclofenac loaded-nano structured lipid carriers (NLCs): An improved dermatokinetic profile for inflammatory disorder (s). Int. J. Pharm. 2017, 517, 413–431. [Google Scholar] [CrossRef]
- Safarpour, F.; Kharaziha, M.; Emadi, R. Inspiring biomimetic system based on red blood cell membrane vesicles for effective curcumin loading and release. Int. J. Pharm. 2022, 613, 121419. [Google Scholar] [CrossRef]
- Aditya, N.; Shim, M.; Lee, I.; Lee, Y.; Im, M.-H.; Ko, S. Curcumin and genistein coloaded nanostructured lipid carriers: In vitro digestion and antiprostate cancer activity. J. Agric. Food Chem. 2013, 61, 1878–1883. [Google Scholar] [CrossRef]
- Ganassin, R.; da Silva, V.C.M.; Araujo, V.H.S.; Tavares, G.R.; da Silva, P.B.; Cáceres-Vélez, P.R.; Porcel, J.E.M.; Rodrigues, M.C.; Andreozzi, P.; Fernandes, R.P. Solid lipid nanoparticles loaded with curcumin: Development and in vitro toxicity against CT26 cells. Nanomedicine 2022, 17, 167–179. [Google Scholar] [CrossRef]
- Zhang, J.; He, Y.; Jiang, J.; Li, M.; Jin, C.; Wang, L.; Wang, D. In vitro and in vivo evaluation of folate-mediated PEGylated nanostructured lipid carriers for the efficient delivery of furanodiene. Drug Dev. Ind. Pharm. 2017, 43, 1610–1618. [Google Scholar] [CrossRef]
- Al-Hmoud, H.A.; Ibrahim, N.E.; El-Hallous, E.I. Surfactants solubility, concentration and the other formulations effects on the drug release rate from a controlled-release matrix. Afr. J. Pharm. Pharmacol. 2014, 8, 364–371. [Google Scholar]
- Katona, G.; Sipos, B.; Ambrus, R.; Csóka, I.; Szabó-Révész, P. Characterizing the Drug-Release Enhancement Effect of Surfactants on Megestrol-Acetate-Loaded Granules. Pharmaceuticals 2022, 15, 113. [Google Scholar] [CrossRef]
- Kontomaris, S.V.; Stylianou, A.; Malamou, A. Atomic Force Microscopy Nanoindentation Method on Collagen Fibrils. Materials 2022, 15, 2477. [Google Scholar] [CrossRef] [PubMed]
- Maw, P.D.; Pienpinijtham, P.; Pruksakorn, P.; Jansook, P. Cyclodextrin-based Pickering nanoemulsions containing amphotericin B: Part II. Formulation, antifungal activity, and chemical stability. J. Drug Deliv. Sci. Technol. 2022, 69, 103174. [Google Scholar] [CrossRef]
- Barman, D.; Narang, K.; Parui, R.; Zehra, N.; Khatun, M.N.; Adil, L.R.; Iyer, P.K. Review on recent trends and prospects in π-conjugated luminescent aggregates for biomedical applications. Aggregate 2022, 3, e172. [Google Scholar] [CrossRef]
- Castelli, R.; Ibarra, M.; Faccio, R.; Miraballes, I.; Fernández, M.; Moglioni, A.; Cabral, P.; Cerecetto, H.; Glisoni, R.J.; Calzada, V. T908 Polymeric Micelles Improved the Uptake of Sgc8-c Aptamer Probe in Tumor-Bearing Mice: A Co-Association Study between the Probe and Preformed Nanostructures. Pharmaceuticals 2021, 15, 15. [Google Scholar] [CrossRef]
- Rubab, S.; Naeem, K.; Rana, I.; Khan, N.; Afridi, M.; Ullah, I.; Shah, F.A.; Sarwar, S.; ud Din, F.; Choi, H.-I. Enhanced neuroprotective and antidepressant activity of curcumin-loaded nanostructured lipid carriers in lipopolysaccharide-induced depression and anxiety rat model. Int. J. Pharm. 2021, 603, 120670. [Google Scholar] [CrossRef]
- Parhi, R. The Role of Phytocompounds in Cosmeceutical Applications. In Medicinal Plants: Chemistry, Pharmacology, and Therapeutic Applications; CRC Press: Boca Raton, FL, USA, 2019; pp. 139–160. [Google Scholar]
- Ahmad, M.Z.; Ahmad, J.; Aslam, M.; Khan, M.A.; Alasmary, M.Y.; Abdel-Wahab, B.A. Repurposed drug against COVID-19: Nanomedicine as an approach for finding new hope in old medicines. Nano Express 2021, 2, 022007. [Google Scholar] [CrossRef]
- Pawar, R.P.; Rohane, S.H. Role of Autodock vina in PyRx Molecular Docking. Asian J. Res. Chem. 2021, 14, 132–134. [Google Scholar]
- Pathak, R.K.; Seo, Y.-J.; Kim, J.-M. Structural insights into inhibition of PRRSV Nsp4 revealed by structure-based virtual screening, molecular dynamics, and MM-PBSA studies. J. Biol. Eng. 2022, 16, 1–11. [Google Scholar] [CrossRef]
- Ram, H.; Sharma, R.; Dewan, D.; Singh, A. Insight view on pandemic COVID-19: Worldwide perspective with homoeopathic management through repertorial analysis. Homœopathic Links 2020, 33, 180–195. [Google Scholar] [CrossRef]
- Pawar, S.S.; Rohane, S.H. Review on discovery studio: An important tool for molecular docking. Asian J. Res. Chem 2021, 14, 86–88. [Google Scholar] [CrossRef]
- Xanthopoulou, E.; Zamboulis, A.; Terzopoulou, Z.; Bikiaris, D.N.; Kourtidou, D.; Tarani, E.; Chrissafis, K.; Papageorgiou, G.Z. Towards novel lignin-based aromatic polyesters: In-depth study of the thermal degradation and crystallization of poly (propylene vanillate). Thermochim. Acta 2022, 709, 179145. [Google Scholar] [CrossRef]
- Xing, R.; Mustapha, O.; Ali, T.; Rehman, M.; Zaidi, S.; Baseer, A.; Batool, S.; Mukhtiar, M.; Shafique, S.; Malik, M. Development, characterization, and evaluation of SLN-loaded thermoresponsive hydrogel system of topotecan as biological macromolecule for colorectal delivery. BioMed Res. Int. 2021, 2021. [Google Scholar] [CrossRef]
- Gordillo-Galeano, A.; Mora-Huertas, C.E. Hydrodynamic diameter and zeta potential of nanostructured lipid carriers: Emphasizing some parameters for correct measurements. Colloids Surf. A Physicochem. Eng. Asp. 2021, 620, 126610. [Google Scholar] [CrossRef]
- Reddy, K.B. In Vitro-In Vivo Characterization of Oleuropein loaded Nanostructured Lipid Carriers in the Treatment of Streptococcus pneumoniae induced Meningitis. Asian J. Pharm. 2019, 13. [Google Scholar] [CrossRef]
- Onugwu, A.L.; Attama, A.A.; Nnamani, P.O.; Onugwu, S.O.; Onuigbo, E.B.; Khutoryanskiy, V.V. Development and optimization of solid lipid nanoparticles coated with chitosan and poly (2-ethyl-2-oxazoline) for ocular drug delivery of ciprofloxacin. J. Drug Deliv. Sci. Technol. 2022, 74, 103527. [Google Scholar] [CrossRef]
- Rahamathulla, M.; Saisivam, S.; Alshetaili, A.; Hani, U.; Gangadharappa, H.V.; Alshehri, S.; Ghoneim, M.M.; Shakeel, F. Design and Evaluation of Losartan Potassium Effervescent Floating Matrix Tablets: In Vivo X-ray Imaging and Pharmacokinetic Studies in Albino Rabbits. Polymers 2021, 13, 3476. [Google Scholar] [CrossRef]
- Ulla, M.R.; Saisivam, S. Floating matrix tablet of losartan potassium by using hydrophilic swelling polymer and natural gum. Turk. J. Pharm. Sci 2013, 10, 435–446. [Google Scholar]
- Khan, K.A.; Khan, G.M.; Muzammal, M.; Al Mohaini, M.; Alsalman, A.J.; Al Hawaj, M.A.; Ahmad, A.; Niazi, Z.R.; Shah, K.U.; Farid, A. Preparation of Losartan Potassium Controlled Release Matrices and In-Vitro Investigation Using Rate Controlling Agents. Molecules 2022, 27, 864. [Google Scholar] [CrossRef]
- Homa, Z.; Ahsan, M.Q.; Rahman, M.M.; Ibrahim, M.; Sultana, N.A.; Haque, S.; Chowdhury, M. Design, Development and In-vitro Evaluation of Amlodipine besylate Effervescent floating tablets by using different polymers. Pharm. Biol. Eval. 2015, 2, 179–187. [Google Scholar]
- Sapavatu, S.N.; Jadi, R.K. Formulation development and characterization of gastroretentive drug delivery systems of loratadine. Int. J. Appl. Pharm. 2019, 11, 91–99. [Google Scholar] [CrossRef]
- Saraogi, G.K.; Tholiya, S.; Mishra, Y.; Mishra, V.; Albutti, A.; Nayak, P.; Tambuwala, M.M. Formulation development and evaluation of pravastatin-loaded nanogel for hyperlipidemia management. Gels 2022, 8, 81. [Google Scholar] [CrossRef] [PubMed]
- Pujals, S.; Feiner-Gracia, N.; Delcanale, P.; Voets, I.; Albertazzi, L. Super-resolution microscopy as a powerful tool to study complex synthetic materials. Nat. Rev. Chem. 2019, 3, 68–84. [Google Scholar] [CrossRef] [Green Version]
- Kurniawan, J.; Ventrici de Souza, J.F.; Dang, A.T.; Liu, G.-Y.; Kuhl, T.L. Preparation and characterization of solid-supported lipid bilayers formed by Langmuir–Blodgett deposition: A tutorial. Langmuir 2018, 34, 15622–15639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Presas, E.; McCartney, F.; Sultan, E.; Hunger, C.; Nellen, S.; Alvarez, C.V.; Werner, U.; Bazile, D.; Brayden, D.J.; O’Driscoll, C.M. Physicochemical, pharmacokinetic and pharmacodynamic analyses of amphiphilic cyclodextrin-based nanoparticles designed to enhance intestinal delivery of insulin. J. Control. Release 2018, 286, 402–414. [Google Scholar] [CrossRef]
- Malik, Y.A. Properties of coronavirus and SARS-CoV-2. Malays. J. Pathol. 2020, 42, 3–11. [Google Scholar]
Distance | Category | Type |
---|---|---|
2.44011 | Hydrogen bond | Conventional hydrogen bond |
2.27678 | Hydrogen bond | Conventional hydrogen bond |
2.99625 | Hydrogen bond | Conventional hydrogen bond |
3.46712 | Hydrophobic | Pi–sigma |
5.46068 | Hydrophobic | Pi–alkyl |
2.44011 | Hydrogen bond | Conventional hydrogen bond |
2.27678 | Hydrogen bond | Conventional hydrogen bond |
2.99625 | Hydrogen bond | Conventional hydrogen bond |
Solid Lipids | Predicted Solubility (kcal/mol) | Actual Solubility (mg/g) |
---|---|---|
GMS | −8.6 | 3.58 ± 0.03 |
Palmitic acid | −4.8 | 3.28 ± 0.06 |
Tri Palmitin | −2.9 | 3.25 ± 0.30 |
Stearic acid | −2.4 | 2.62 ± 0.12 |
Cetosteryl | −1.8 | 2.06 ± 0.13 |
Liquid lipids | ||
Oleic acid | −6.5 | 4.61 ± 0.13 |
Castor oil | −5.3 | 3.52 ± 0.52 |
Olive oil | −5.1 | 3.48 ± 0.34 |
Soybean oil | −4.7 | 1.36 ± 0.26 |
Corn oil | −4.4 | 1.06 ± 0.15 |
Grape seeds oil | −3.9 | 0.59 ± 0.64 |
F. Code | EE% | P. Size (nm) | PDI | Zeta (-) |
---|---|---|---|---|
F1 | 84.23 ± 1.35 | 99.64 ± 8.64 | 0.192 ± 0.01 | 42.3 ± 0.01 |
F2 | 80.11 ± 0.60 | 100.29 ± 5.16 | 0.172 ± 0.03 | 41.8 ± 0.13 |
F3 | 56.37 ± 2.13 | 164.06 ± 3.49 | 0.694 ± 0.06 | 23.4 ± 0.11 |
F4 | 83.41 ± 0.29 | 99.86 ± 4.16 | 0.164 ± 0.29 | 41.8 ± 0.34 |
F5 | 61.62 ± 3.17 | 190.64 ± 2.31 | 0.524 ± 0.17 | 29.1 ± 0.06 |
F6 | 70.09 ± 0.84 | 159.10 ± 3.19 | 1.135 ± 0.34 | 26.4 ± 0.08 |
F7 | 55.25 ± 3.73 | 305.04 ± 1.05 | 0.961 ± 0.19 | 24.7 ± 0.46 |
F8 | 49.19 ± 2.49 | 341.23 ± 2.43 | 0.659 ± 0.03 | 22.9 ± 0.61 |
F9 | 45.64 ± 0.51 | 251.11 ± 1.38 | 0.654 ± 0.24 | 20.4 ± 0.94 |
F10 | 60.73 ± 0.28 | 284.32 ± 0.67 | 0.829 ± 0.06 | 30.4 ± 0.31 |
F11 | 65.34 ± 0.61 | 268.06 ± 4.13 | 0.675 ± 0.14 | 34.9 ± 0.62 |
F12 | 83.08 ± 0.13 | 123.29 ± 5.03 | 0.197 ± 0.28 | 41.8 ± 0.09 |
F13 | 68.09 ± 1.28 | 146.16 ± 1.29 | 0.829 ± 0.07 | 29.1 ± 0.37 |
F14 | 52.43 ± 1.42 | 193.43 ± 3.45 | 0.753 ± 0.03 | 32.5 ± 0.13 |
F15 | 62.39 ± 3.24 | 227.16 ± 4.07 | 0.761 ± 0.31 | 29.7 ± 0.16 |
F16 | 81.06 ± 1.06 | 116.22 ± 3.18 | 0.219 ± 0.62 | 41.8 ± 0.08 |
F17 | 49.43 ± 2.67 | 237.24 ± 5.10 | 0.894 ± 0.37 | 28.1 ± 0.27 |
F18 | 52.57 ± 2.61 | 249.70 ± 0.94 | 0.691 ± 0.09 | 20.6 ± 0.31 |
F19 | 82.31 ± 0.27 | 110.13 ± 0.07 | 0.168 ± 0.15 | 39.7 ± 0.82 |
F20 | 43.51 ± 3.16 | 312.13 ± 1.49 | 0.694 ± 0.20 | 25.1 ± 0.19 |
Target | Binding Energy (kcal/mol) for ACE2 Receptors–Curcumin in Complex |
---|---|
ACE 2 | |
7KMB | −9.1 |
7KNB | −8.6 |
7KNH | −8.4 |
Bond Length (A0) | Bond Category | Bond Type |
---|---|---|
2.90749 | Hydrogen bond | Conventional hydrogen bond |
3.5423 | Hydrogen bond | Carbon hydrogen bond |
3.2796 | Hydrophobic | Pi–Sigma |
3.8657 | Hydrophobic | Pi–Sigma |
5.31932 | Hydrophobic | Alkyl |
5.12768 | Hydrophobic | Pi–alkyl |
4.84944 | Hydrophobic | Pi–alkyl |
4.1316 | Hydrophobic | Pi–alkyl |
Bond Length (A0) | Bond Category | Bond Type |
---|---|---|
Curcumin–7KMB receptor in a complex | ||
2.58816 | Hydrogen bond | Conventional hydrogen bond |
2.03326 | Hydrogen bond | Conventional hydrogen bond |
1.99813 | Hydrogen bond | Conventional hydrogen bond |
2.08162 | Hydrogen bond | Conventional hydrogen bond |
2.21662 | Hydrogen bond | Conventional hydrogen bond |
2.95087 | Hydrogen bond | Conventional hydrogen bond |
4.14296 | Electrostatic | Pi–anion |
5.1296 | Hydrophobic | Pi–Pi Stacked |
5.35067 | Hydrophobic | Pi–alkyl |
Curcumin–7KNB receptor in a complex | ||
2.07633 | Hydrogen bond | Conventional hydrogen bond |
2.07392 | Hydrogen bond | Conventional hydrogen bond |
2.71198 | Hydrogen bond | Conventional hydrogen bond |
2.63368 | Hydrogen bond | Conventional hydrogen bond |
2.60406 | Hydrogen bond | Conventional hydrogen bond |
3.01875 | Hydrogen bond | Conventional hydrogen bond |
3.71325 | Hydrogen bond | Carbon hydrogen bond |
4.66974 | Hydrophobic | Amide–Pi Stacked |
4.4217 | Hydrophobic | Alkyl |
3.88384 | Hydrophobic | Pi–alkyl |
4.12778 | Hydrophobic | Pi–alkyl |
Curcumin–7KNH in a complex | ||
2.68924 | Hydrogen bond | Conventional hydrogen bond |
2.75846 | Hydrogen bond | Conventional hydrogen bond |
2.39584 | Hydrogen bond | Conventional hydrogen bond |
2.44114 | Hydrogen bond | Conventional hydrogen bond |
2.66824 | Hydrogen bond | Conventional hydrogen bond |
3.40111 | Hydrogen bond | Carbon hydrogen bond |
3.56468 | Hydrogen bond | Carbon hydrogen bond |
3.74797 | Hydrogen bond | Carbon hydrogen bond |
4.00134 | Electrostatic | Pi–anion |
4.55541 | Hydrophobic | Alkyl |
F. Code | Drug (mg) | Solid Lipid % | Liquid Lipid (%) |
---|---|---|---|
F1 | 10 | 1 | 1 |
F2 | 10 | 2 | 2 |
F3 | 10 | 3 | 3 |
F4 | 10 | 4 | 4 |
F5 | 10 | 5 | 5 |
F6 | 10 | 1 | 2 |
F7 | 10 | 2 | 4 |
F8 | 10 | 3 | 6 |
F9 | 10 | 4 | 8 |
F10 | 10 | 5 | 10 |
F11 | 10 | 2 | 1 |
F12 | 10 | 4 | 2 |
F13 | 10 | 6 | 3 |
F14 | 10 | 8 | 4 |
F15 | 10 | 10 | 5 |
F16 | 10 | 3 | 1 |
F17 | 10 | 6 | 2 |
F18 | 10 | 9 | 3 |
F19 | 10 | 12 | 4 |
F20 | 10 | 15 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albasri, O.W.A.; Kumar, P.V.; Rajagopal, M.S. Development of Computational In Silico Model for Nano Lipid Carrier Formulation of Curcumin. Molecules 2023, 28, 1833. https://doi.org/10.3390/molecules28041833
Albasri OWA, Kumar PV, Rajagopal MS. Development of Computational In Silico Model for Nano Lipid Carrier Formulation of Curcumin. Molecules. 2023; 28(4):1833. https://doi.org/10.3390/molecules28041833
Chicago/Turabian StyleAlbasri, Omar Waleed Abduljaleel, Palanirajan Vijayaraj Kumar, and Mogana Sundari Rajagopal. 2023. "Development of Computational In Silico Model for Nano Lipid Carrier Formulation of Curcumin" Molecules 28, no. 4: 1833. https://doi.org/10.3390/molecules28041833
APA StyleAlbasri, O. W. A., Kumar, P. V., & Rajagopal, M. S. (2023). Development of Computational In Silico Model for Nano Lipid Carrier Formulation of Curcumin. Molecules, 28(4), 1833. https://doi.org/10.3390/molecules28041833