Virgin Olive Oil By-Product Valorization: An Insight into the Phenolic Composition of Olive Seed Extracts from Three Cultivars as Sources of Bioactive Molecules
Abstract
:1. Introduction
2. Results and Discussion
- collecting samples of olive fruits of the three cultivars to evaluate the biodiversity and evolution during ripening of the phenolic contents of seeds;
- characterizing these samples in terms of yield with respect to the weight of the different parts of the fruit (Table 1);
- defining a protocol for the extraction of phenols from olive seeds that enables both the analysis of phenols by HPLC-DAD-MS and the preparation of a dried extract suitable for future biological assays;
- characterizing the phenolic extracts of the seed from both qualitative and quantitative standpoints;
- characterizing the phenolic profile of the pulp and comparing the results with those previously reported in the literature, and with those for seeds.
2.1. Characteristics of the Collected Olive Samples
2.2. Preparation of the Dry Phenolic Extracts from the Olive Seeds
2.3. Characterization of the Phenolic Profile of Olive Seeds over the Course of Ripening
2.4. Phenolic Profile of the Olive Pulp
3. Materials and Methods
3.1. Chemicals
3.2. Olive Fruit Samples Collection
3.3. Pulp/Stone Ratio, Seed Yield and Lyophilization of the Whole Fruit
3.4. Preparation of Phenolic Extracts from Olive Seeds
3.5. Extraction of Phenolic Compounds from Lyophilized Olive Fruits
3.6. HPLC-DAD-MS Analysis of Phenolic Extracts
3.7. Data Treatment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Beauchamp, G.K.; Keast, R.S.J.; Morel, D.; Lin, J.; Pika, J.; Han, Q.; Lee, C.-H.; Smith, A.B.; Breslin, P.A.S. Phytochemistry: Ibuprofen-like activity in extra-virgin olive oil. Nature 2005, 437, 45–46. [Google Scholar] [CrossRef] [PubMed]
- Dinu, M.; Pagliai, G.; Scavone, F.; Bellumori, M.; Cecchi, L.; Nediani, C.; Maggini, N.; Sofi, F.; Giovannelli, L.; Mulinacci, N. Effects of an Olive By-Product Called Pâté on Cardiovascular Risk Factors. J. Am. Coll. Nutr. 2021, 40, 617–623. [Google Scholar] [CrossRef]
- De Bock, M.; Hodgkinson, S.; Curtfield, W.; Schlothauer, R.C. Methods and Uses of an Extract from Olive Leaf in Management of Type 2 Diabetes (WO/2014/038962); Patent Application Publication: Alexandria, VA, USA, 2014. [Google Scholar]
- Migliorini, M.; Cecchi, L.; Cherubini, C.; Trapani, S.; Cini, E.; Zanoni, B. Understanding degradation of phenolic compounds during olive oil processing by inhibitor addition. Eur. J. Lipid Sci. Technol. 2012, 114, 942–950. [Google Scholar] [CrossRef]
- Lopez-Biedma, A.; Sanchez-Quesada, C.; Delgado-Rodriguez, M.; Gaforio, J.J. The biological activities of natural lignans from olives and virgin olive oils: A review. J. Funct. Foods 2016, 26, 36–47. [Google Scholar] [CrossRef]
- Ryan, D.; Robards, K.; Lavee, S. Changes in phenolic content of olive during maturation. Int. J. Food Sci. Technol. 1999, 34, 265–274. [Google Scholar] [CrossRef]
- Servili, M.; Selvaggini, R.; Esposto, S.; Taticchi, A.; Montedoro, G.; Morozzi, G. Health and sensory properties of virgin olive oil hydrophilic phenols: Agronomic and technological aspects of production that affect their occurrence in the oil. J. Chromatogr. A 2004, 1–2, 113–127. [Google Scholar] [CrossRef]
- Cecchi, L.; Innocenti, M.; Melani, F.; Migliorini, M.; Conte, L.; Mulinacci, N. New isobaric lignans from refined olive oils as quality markers for virgin olive oils. Food Chem. 2017, 219, 148–157. [Google Scholar] [CrossRef] [Green Version]
- Romani, A.; Ieri, F.; Urciuoli, S.; Noce, A.; Marrone, G.; Nediani, C.; Bernini, R. Health effects of phenolic compounds found in extra-virgin olive oil, by-products, and leaf of Olea europaea L. Nutrients 2019, 11, 1776. [Google Scholar] [CrossRef] [Green Version]
- Visioli, F.; Franco, M.; Toledo, E.; Luchsinger, J.; Willett, W.C.; Hu, F.B.; Martínez-González, M.A. Olive oil and prevention of chronic diseases: Summary of an International conference. Nutr. Metab. Cardiovasc. Dis. 2018, 28, 649–656. [Google Scholar] [CrossRef]
- Olmo-Garcia, L.; Kessler, N.; Neuweger, H.; Wendt, K.; Olmo-Peinado, J.M.; Fernandez-Gutierrez, A.; Baessmann, C.; Carrasco-Pancorbo, A. Unravelling the distribution of secondary metabolites in Olea europaea L.: Exhaustive characterization of eight olive-tree derived matrices by complementary platforms (LC-ESI/APCI-MS and GC-APCI-MS). Molecules 2018, 23, 2419. [Google Scholar] [CrossRef] [Green Version]
- Covas, M.I.; Nyyssonen, K.; Poulsen, H.E.; Kaikkonen, J.; Zunft, H.J.; Kiesewetter, H.; Gaddi, A.; de la Torre, R.; Mursu, J.; Marrugat, J.; et al. The effect of polyphenols in olive oil on heart disease risk factor: A randomized trial. Ann. Intern. Med. 2006, 145, 333–341. [Google Scholar] [CrossRef] [PubMed]
- de la Torre-Carbot, K.; Chávez-Servìn, J.L.; Jauregui, O.; Castellote, A.I.; Lamuela-Raventòs, R.M.; Nurmi, T.; Poulsen, H.E.; Gaddi, A.V.; Kaikkonen, J.; Lopez-Sabater, M.C.; et al. Elevated circulating LDL phenol levels in men who consumed virgin rather than refined olive oil are associated with less oxidation, of plasma LDL. J. Nutr. 2010, 140, 501–508. [Google Scholar] [CrossRef] [Green Version]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific opinion on the substantiation of health claims related to polyphenols in olive oil and protection of LDL particles from oxidative damage. EFSA J. 2011, 9, 2033. Available online: http://www.efsa.europa.eu/en/efsajournal/pub/2033.htm (accessed on 19 February 2023).
- Castillo-Luna, A.; Criado-Navarro, I.; Ledesma-Escobar, C.A.; Lopez-Bascon, M.A.; Priego-Capote, F. The decrease in the health benefits of extra virgin olive oil during storage is conditioned by the initial phenolic profile. Food Chem. 2021, 336, 127730. [Google Scholar] [CrossRef]
- Bartolomei, M.; Capriotti, A.L.; Li, Y.; Bollati, C.; Li, J.; Cerrato, A.; Cecchi, L.; Pugliese, R.; Bellumori, M.; Mulinacci, N.; et al. Exploitation of olive (Olea europaea L.) seed proteins as upgraded source of bioactive peptides with multifunctional properties: Focus on antioxidant and dipeptidyl-dipeptidase-IV inhibitory activities, and glucagon-like peptide 1 improved modulation. Antioxidants 2022, 11, 1730. [Google Scholar] [CrossRef] [PubMed]
- Galanakis, C.M. Recovery of high added-value components from food wastes: Conventional, emerging technologies and commercialized applications. Trends Food Sci. Technol. 2012, 26, 68–87. [Google Scholar] [CrossRef]
- Peres, F.; Martins, L.L.; Ferreira-Dias, S. Influence of enzymes and technology on virgin olive oil composition. Crit. Rec. Food Sci. Nutr. 2017, 57, 3104–3126. [Google Scholar] [CrossRef]
- Gouvinhas, I.; Garcia, J.; Granato, D.; Barros, A. Seed phytochemical profiling of three olive cultivars, antioxidant capacity, enzymatic inhibition, and effects on human neuroblastoma cells (SH-SY5Y). Molecules 2022, 27, 5057. [Google Scholar] [CrossRef] [PubMed]
- Ranalli, A.; Marchegiani, D.; Pardi, D.; Contento, S.; Pardi, D.; Girardi, F.; Kotti, F. Evaluation of functional phytochemicals in destoned virgin olive oil. Food Bioprocess Technol. 2009, 2, 322–327. [Google Scholar] [CrossRef]
- Maestri, D.; Barrionuevo, D.; Bodoira, R.; Zafra, A.; Jimenez-Lopez, J.; de Dios Alche, J. Nutritional profile and nutraceutical components of olive (Olea europaea L.) seeds. J. Food Sci. Technol. 2019, 56, 4359–4370. [Google Scholar] [CrossRef]
- Silva, S.; Boross, P.; Soares, R.; Coelho, A.V.; Vilas Boas, L.; Bronze, M.R. Characterization of nuzhenide and related secoiridoids in Olea europaea L. seeds using MALDI-TOF mass spectrometry. In Proc. XXVIIIth IHC-IS on Emerging Health Topics in Fruits and Vegetables; Desjardins, Y., Ed.; Acta Hort.: Leuven, Belgium, 2012; Volume 939, ISHS 2012. [Google Scholar]
- Wang, Q.-Q.; Han, S.; Li, X.-X.; Yuan, R.; Zhuo, Y.; Chen, X.; Zhang, C.; Chen, Y.; Gao, H.; Zhao, L.-C.; et al. Nuezhenide exerts anti-inflammatory activity through the NF-kB pathway. Curr. Mol. Pharmacol. 2021, 14, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Alu’datt, M.H.; Alli, I.; Ereifj, K.; Alhamad, M.N.; Alsaad, A.; Rababeh, T. Optimisation and characterisation of various extraction conditions of phenolic compounds and antioxidant activity in olive seeds. Nat. Prod. Res. 2011, 25, 876–889. [Google Scholar] [CrossRef] [PubMed]
- Elbir, M.; Es-Safi, N.E.; Amhoud, A.; Mbarki, M. Characterization of phenolic compounds in olive stones of three Moroccan varieties. Cienc. Y Tecnol. 2015, 17, 479–492. [Google Scholar] [CrossRef] [Green Version]
- Silva, S.; Gomes, L.; Leitao, F.; Bronze, M.R.; Coelho, A.V.; Vilas Boas, L. Secoiridoids in olive seed: Characterization of nüzhenide and 11-methyl oleosides y liquid chromatography with diode array ad mass spectrometry. Grasas Y Aceites 2010, 61, 157–164. [Google Scholar] [CrossRef]
- Cecchi, L.; Migliorini, M.; Cherubini, C.; Innocenti, M.; Mulinacci, N. Whole lyophilized olives as sources of unexpectedly high amounts of secoiridoids: The case of three Tuscan cultivars. J. Agric. Food Chem. 2015, 63, 1175–1185. [Google Scholar] [CrossRef]
- Cecchi, L.; Breschi, C.; Migliorini, M.; Canuti, V.; Fia, G.; Mulinacci, N.; Zanoni, B. Moisture in rehydrated olive paste affects oil extraction yield and phenolic compound content and profile of extracted olive oil. Eur. J. Lipid Sci. Technol. 2019, 121, 1800449. [Google Scholar] [CrossRef]
Sample | Sampling Date | Weight (g) | Seed % Weight | Pulp/Stone | Yield of Seed Phenolic Extract | Moisture Whole Fruit | |
---|---|---|---|---|---|---|---|
100 Whole Fruits | 100 Seeds | Ratio | (% on Seed Weight) | (%) | |||
F1 | 15 September 2020 | 101.5 | 2.195 | 2.16% | 1.62 | 15.4% | 44.7% |
F2 | 6 October 2020 | 141.9 | 2.660 | 1.87% | 1.97 | 19.5% | 52.4% |
F3 | 13 October 2020 | 149.2 | 3.345 | 2.24% | 2.33 | 17.8% | 52.9% |
F4 | 20 October 2020 | 151.2 | 3.052 | 2.02% | 2.24 | 17.2% | 52.5% |
F5 | 3 November 2020 | 144.7 | 3.248 | 2.24% | 2.61 | 16.9% | 53.1% |
F6 | 10 November 2020 | 142.6 | 3.402 | 2.39% | 2.64 | 16.5% | 55.9% |
F7 | 17 November 2020 | 166.6 | 4.323 | 2.59% | 2.98 | 14.3% | 57.6% |
M1 | 15 September 2020 | 108.6 | 3.150 | 2.90% | 2.38 | 15.9% | 48.1% |
M2 | 6 October 2020 | 133.4 | 3.395 | 2.54% | 2.84 | 18.8% | 53.3% |
M3 | 13 October 2020 | 151.4 | 2.790 | 1.84% | 3.48 | 16.2% | 53.5% |
M4 | 20 October 2020 | 160.8 | 3.035 | 1.89% | 3.57 | 15.5% | 53.0% |
M5 | 3 November 2020 | 146.3 | 2.834 | 1.94% | 3.53 | 17.6% | 54.1% |
M6 | 10 November 2020 | 159.2 | 3.362 | 2.11% | 3.68 | 15.3% | 53.1% |
M7 | 17 November 2020 | 157.4 | 3.082 | 1.96% | 3.95 | 13.4% | 54.8% |
L1 | 15 September 2020 | 106.0 | 2.515 | 2.37% | 1.75 | 14.5% | 48.0% |
L2 | 6 October 2020 | 117.9 | 3.222 | 2.73% | 1.88 | 17.1% | 56.0% |
L3 | 13 October 2020 | 120.2 | 3.405 | 2.83% | 2.16 | 16.2% | 58.5% |
L4 | 20 October 2020 | 128.2 | 4.034 | 3.15% | 1.94 | 15.0% | 52.7% |
L5 | 3 November 2020 | 139.9 | 4.154 | 2.97% | 2.44 | 14.2% | 58.7% |
L6 | 10 November 2020 | 152.1 | 4.011 | 2.64% | 2.61 | 13.3% | 55.8% |
L7 | 17 November 2020 | 136.2 | 4.418 | 3.24% | 2.84 | 13.0% | 56.8% |
A. FRANTOIO | |||||||
---|---|---|---|---|---|---|---|
Phenolic Compound (mg/kg) | F1 | F2 | F3 | F4 | F5 | F6 | F7 |
tyrosol derivative 1 | 208 | 408 | 259 | 300 | 318 | 228 | 387 |
tyrosol derivative 2 | 392 | 776 | 498 | 575 | 305 | 238 | 200 |
tyrosol derivative 3 | 572 | 455 | 458 | 326 | 430 | 186 | 520 |
tyrosol derivative 4 | 313 | 1007 | 266 | 287 | 180 | 72 | 88 |
oleoside 11-methyl ester | 605 | 1624 | 1193 | 1273 | 1024 | 678 | 760 |
oleoside 11-methyl ester isomer | 1541 | 1101 | 970 | 649 | 606 | 628 | 358 |
nüzhnide derivative | 923 | 1394 | 1449 | 1867 | 1545 | 1881 | 1123 |
verbascoside | 823 | 2080 | 1187 | 1480 | 1552 | 1269 | 1290 |
nüzhnide | 28,147 | 30,803 | 32,112 | 26,835 | 28,168 | 27,980 | 23,521 |
bis(oleoside 11-methyl ester) glycoside | 1783 | 1222 | 1691 | 1580 | 1327 | 1625 | 1050 |
salidroside oleoside | 1591 | 1786 | 2240 | 1867 | 1265 | 1501 | 985 |
nüzhnide isomer | 2031 | 1792 | 1932 | 1093 | 1601 | 1557 | 1756 |
nüzhnide 11-methyl oleoside isomer 1 | 4489 | 6047 | 5889 | 3265 | 4378 | 3943 | 5264 |
nüzhnide 11-methyl oleoside isomer 2 | 2829 | 2360 | 3132 | 2012 | 2305 | 2396 | 2208 |
nüzhnide 11-methyl oleoside isomer 3 | 537 | 504 | 834 | 1148 | 1911 | 1311 | 2083 |
nüzhnide 11-methyl oleoside | 33,742 | 41,639 | 42,976 | 39,942 | 40,156 | 39,190 | 31,286 |
nüzhnide di-(11-methyl oleoside) isomer 1 | 397 | 461 | 770 | 776 | 918 | 751 | 1423 |
nüzhnide di-(11-methyl oleoside) isomer 2 | 150 | 139 | 244 | 238 | 469 | 310 | 673 |
ligstroside oleoside | nd | nd | nd | nd | nd | nd | nd |
nüzhenide 11-methyl oleoside/ nüzhenide ratio | 1.1988 | 1.3518 | 1.3383 | 1.4884 | 1.4256 | 1.4006 | 1.3301 |
Total phenols | 81,073 | 95,598 | 98,100 | 85,513 | 88,458 | 85,744 | 74,975 |
B. MORAIOLO | |||||||
Phenolic Compound (mg/kg) | M1 | M2 | M3 | M4 | M5 | M6 | M7 |
tyrosol derivative 1 | 269 | 498 | 440 | 491 | 302 | 160 | 174 |
tyrosol derivative 2 | 317 | 249 | 366 | 313 | 275 | 167 | 92 |
tyrosol derivative 3 | 273 | 252 | 284 | 185 | 244 | 157 | 174 |
tyrosol derivative 4 | 58 | 106 | 68 | 34 | 102 | 39 | 44 |
oleoside 11-methyl ester | 1577 | 1485 | 2222 | 2251 | 1455 | 949 | 840 |
oleoside 11-methyl ester isomer | 504 | 358 | 488 | 462 | 360 | 226 | 199 |
nüzhnide derivative | 2159 | 2261 | 2602 | 2621 | 2722 | 2477 | 1882 |
verbascoside | 321 | 657 | 716 | 787 | 593 | 404 | 428 |
nüzhnide | 20,919 | 20,250 | 19,736 | 18,274 | 19,439 | 16,879 | 14,463 |
bis(oleoside 11-methyl ester) glycoside | 2058 | 2842 | 2457 | 2255 | 2264 | 2128 | 1877 |
salidroside oleoside | 2765 | 3401 | 3352 | 3120 | 2697 | 2148 | 2379 |
nüzhnide isomer | 699 | 688 | 536 | 506 | 629 | 434 | 516 |
nüzhnide 11-methyl oleoside isomer 1 | 4987 | 5900 | 5202 | 4267 | 2554 | 2433 | 3351 |
nüzhnide 11-methyl oleoside isomer 2 | 1280 | 1487 | 1271 | 1015 | 1159 | 911 | 1269 |
nüzhnide 11-methyl oleoside isomer 3 | 1481 | 1861 | 1883 | 1558 | 1890 | 1656 | 1796 |
nüzhnide 11-methyl oleoside | 36,590 | 46,531 | 44,407 | 42,683 | 42,155 | 38,070 | 31,916 |
nüzhnide di-(11-methyl oleoside) isomer 1 | 931 | 1165 | 1213 | 931 | 972 | 973 | 1164 |
nüzhnide di-(11-methyl oleoside) isomer 2 | 155 | 178 | 170 | 144 | 200 | 162 | 222 |
ligstroside oleoside | nd | nd | nd | nd | nd | nd | nd |
nüzhenide 11-methyl oleoside/ nüzhenide ratio | 1.749 | 2.298 | 2.250 | 2.336 | 2.169 | 2.255 | 2.207 |
Total phenols | 77,343 | 90,169 | 87,413 | 81,897 | 80,012 | 70,373 | 62,786 |
C. LECCINO | |||||||
Phenolic Compound (mg/kg) | L1 | L2 | L3 | L4 | L5 | L6 | L7 |
tyrosol derivative 1 | 283 | 455 | 421 | 647 | 467 | 552 | 385 |
tyrosol derivative 2 | 345 | 655 | 468 | 624 | 208 | 433 | 269 |
tyrosol derivative 3 | 1481 | 891 | 458 | 595 | 433 | 471 | 341 |
tyrosol derivative 4 | 607 | 242 | 91 | 108 | 118 | 130 | 72 |
oleoside 11-methyl ester | 1586 | 1510 | 1206 | 1190 | 1290 | 667 | 669 |
oleoside 11-methyl ester isomer | 2523 | 1524 | 1103 | 971 | 713 | 506 | 320 |
nüzhnide derivative | 341 | 946 | 1235 | 1430 | 1115 | 1907 | 1558 |
verbascoside | 1267 | 1745 | 1353 | 1632 | 1384 | 1508 | 798 |
nüzhnide | 24,359 | 30,491 | 29,355 | 25,836 | 29,693 | 18,678 | 16,294 |
bis(oleoside 11-methyl ester) glycoside | 467 | 972 | 1382 | 933 | 1234 | 1535 | 1282 |
salidroside oleoside | 908 | 1231 | 1161 | 1752 | 968 | 874 | 759 |
nüzhnide isomer | 2101 | 2337 | 2215 | 1690 | 2231 | 1313 | 1086 |
nüzhnide 11-methyl oleoside isomer 1 | 8143 | 10,138 | 9340 | 5396 | 5819 | 6563 | 5229 |
nüzhnide 11-methyl oleoside isomer 2 | 3159 | 3512 | 3241 | 2991 | 2858 | 2530 | 2387 |
nüzhnide 11-methyl oleoside isomer 3 | 222 | 538 | 1120 | 1404 | 2322 | 1622 | 1539 |
nüzhnide 11-methyl oleoside | 38,304 | 40,916 | 42,395 | 42,597 | 41,390 | 31,467 | 31,379 |
nüzhnide di-(11-methyl oleoside) isomer 1 | 153 | 643 | 1052 | 759 | 1251 | 1167 | 1048 |
nüzhnide di-(11-methyl oleoside) isomer 2 | 98 | 257 | 421 | 385 | 688 | 506 | 443 |
ligstroside oleoside | 232 | 145 | 72 | 48 | nd | nd | nd |
nüzhenide 11-methyl oleoside/ nüzhenide ratio | 1.572 | 1.342 | 1.444 | 1.649 | 1.394 | 1.685 | 1.926 |
Total phenols | 86,579 | 99,148 | 98,089 | 90,988 | 94,182 | 72,429 | 65,858 |
(A) | |||||||
---|---|---|---|---|---|---|---|
Phenolic Compound (mg/kg) | F1 | F2 | F3 | F4 | F5 | F6 | F7 |
hydroxytyrosol glucoside | 141 | 119 | - | - | - | - | - |
hydroxytyrosol | 461 | 211 | 185 | 210 | 242 | 274 | 191 |
tyrosol glucoside | 41 | 56 | 111 | 82 | 265 | 198 | 163 |
tyrosol | 35 | 116 | 128 | 136 | 96 | 188 | 166 |
demethyloleuropein | - | 328 | 451 | 1060 | 9847 | 14,407 | 13,286 |
rutin | 1003 | 683 | 505 | 642 | 695 | 599 | 484 |
luteolin-7-O-glucoside | 634 | 366 | 297 | 380 | 539 | 379 | 382 |
verbascoside | 5449 | 1477 | 1550 | 1022 | 1485 | 1309 | 890 |
oleuropein | 44,565 | 28,243 | 28,097 | 21,296 | 33,358 | 20,152 | 18,520 |
comselogoside | 5112 | 2329 | 2557 | 1028 | 2453 | 1592 | 1223 |
ligstroside | 2925 | 1410 | 1777 | 1348 | 1203 | 832 | 695 |
total phenols | 120,675 | 69,538 | 61,496 | 53,222 | 82,712 | 71,687 | 61,326 |
(B) | |||||||
Phenolic Compound (mg/kg) | M1 | M2 | M3 | M4 | M5 | M6 | M7 |
hydroxytyrosol glucoside | 76 | 157 | 27 | 21 | - | - | - |
hydroxytyrosol | 476 | 165 | 180 | 179 | 163 | 174 | 194 |
tyrosol glucoside | 65 | 70 | 204 | 229 | 331 | 345 | 346 |
tyrosol | 159 | 46 | 64 | 61 | 103 | 103 | 158 |
demethyloleuropein | - | - | - | - | 966 | 3701 | 3610 |
rutin | 695 | 936 | 800 | 903 | 1090 | 897 | 1037 |
luteolin-7-O-glucoside | 294 | 480 | 405 | 484 | 562 | 462 | 527 |
verbascoside | 2600 | 2166 | 3115 | 3206 | 1636 | 2094 | 1282 |
oleuropein | 23,056 | 34,024 | 40,597 | 39,373 | 34,757 | 31,391 | 33,262 |
comselogoside | 1009 | 5758 | 7300 | 7677 | 5519 | 6189 | 5376 |
ligstroside | 1801 | 1474 | 2106 | 2061 | 1147 | 1398 | 1025 |
total phenols | 74,749 | 83,492 | 91,901 | 92,979 | 80,026 | 81,513 | 78,861 |
(C) | |||||||
Phenolic Compound (mg/kg) | L1 | L2 | L3 | L4 | L5 | L6 | L7 |
hydroxytyrosol glucoside | 188 | 219 | - | - | - | - | - |
hydroxytyrosol | 1179 | 470 | 84 | 49 | 140 | 75 | 95 |
tyrosol glucoside | 222 | 194 | 181 | 150 | 164 | 219 | 196 |
tyrosol | 146 | 99 | 240 | 224 | 218 | 352 | 304 |
demethyloleuropein | - | - | 1787 | 2574 | 8920 | 17,445 | 21,053 |
rutin | 868 | 988 | 816 | 831 | 716 | 454 | 575 |
luteolin-7-O-glucoside | 218 | 328 | 340 | 309 | 362 | 203 | 319 |
verbascoside | 571 | 483 | 837 | 305 | 447 | 293 | 322 |
oleuropein | 38,273 | 42,176 | 43,352 | 30,006 | 37,337 | 20,734 | 13,258 |
comselogoside | 770 | 3721 | 2658 | 1588 | 1740 | 1810 | 2042 |
ligstroside | 1861 | 1512 | 1555 | 1261 | 1428 | 622 | 302 |
total phenols | 104,067 | 87,215 | 84,480 | 69,952 | 82,216 | 77,287 | 66,567 |
Sampling Date | Frantoio cv | Moraiolo cv | Leccino cv |
---|---|---|---|
15 September 2020 | F1 | M1 | L1 |
6 October 2020 | F2 | M2 | L2 |
13 October 2020 | F3 | M3 | L3 |
20 October 2020 | F4 | M4 | L4 |
3 November 2020 | F5 | M5 | L5 |
10 November 2020 | F6 | M6 | L6 |
17 November 2020 | F7 | M7 | L7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cecchi, L.; Ghizzani, G.; Bellumori, M.; Lammi, C.; Zanoni, B.; Mulinacci, N. Virgin Olive Oil By-Product Valorization: An Insight into the Phenolic Composition of Olive Seed Extracts from Three Cultivars as Sources of Bioactive Molecules. Molecules 2023, 28, 2776. https://doi.org/10.3390/molecules28062776
Cecchi L, Ghizzani G, Bellumori M, Lammi C, Zanoni B, Mulinacci N. Virgin Olive Oil By-Product Valorization: An Insight into the Phenolic Composition of Olive Seed Extracts from Three Cultivars as Sources of Bioactive Molecules. Molecules. 2023; 28(6):2776. https://doi.org/10.3390/molecules28062776
Chicago/Turabian StyleCecchi, Lorenzo, Giulia Ghizzani, Maria Bellumori, Carmen Lammi, Bruno Zanoni, and Nadia Mulinacci. 2023. "Virgin Olive Oil By-Product Valorization: An Insight into the Phenolic Composition of Olive Seed Extracts from Three Cultivars as Sources of Bioactive Molecules" Molecules 28, no. 6: 2776. https://doi.org/10.3390/molecules28062776
APA StyleCecchi, L., Ghizzani, G., Bellumori, M., Lammi, C., Zanoni, B., & Mulinacci, N. (2023). Virgin Olive Oil By-Product Valorization: An Insight into the Phenolic Composition of Olive Seed Extracts from Three Cultivars as Sources of Bioactive Molecules. Molecules, 28(6), 2776. https://doi.org/10.3390/molecules28062776