Effect of Different Time/Temperature Binomials on the Chemical Features, Antioxidant Activity, and Natural Microbial Load of Olive Pomace Paste
Abstract
:1. Introduction
2. Results and Discussion
2.1. Proximate Analysis
2.2. Vitamin E Profile
2.3. Fatty Acids Profile
2.4. Phytochemicals Contents and Antioxidant Activity
2.4.1. Total Phenolics Content (TPC)
2.4.2. Total Flavonoids Content (TFC)
2.4.3. Hydroxytyrosol Content (HTC)
2.4.4. Ferric Reducing Antioxidant Power (Frap) and 2,2-Diphenyl-1-picrylhydrazyl Radical Scavenging Ability (DPPH●-SA)
2.5. Microbiological Analysis
3. Materials and Methods
3.1. Chemicals
3.2. Sample Preparation
3.3. Proximate Composition
3.4. Vitamin E Profile
3.5. Fatty Acids Profile
3.6. Phytochemicals Contents and Antioxidant Activity
3.6.1. Total Phenolics Content (TPC)
3.6.2. Total Flavonoids Content (TFC)
3.6.3. Hydroxytyrosol Content (HTC)
3.6.4. Ferric Reducing Antioxidant Power (FRAP) and 2,2-Diphenyl-1-picrylhydrazyl Radical Scavenging Ability (DPPH●-SA)
3.7. Microbiological Analysis
3.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Nunes, M.A.; Costa, A.S.G.; Bessada, S.; Santos, J.; Puga, H.; Alves, R.C.; Freitas, V.; Oliveira, M.B.P.P. Olive pomace as a valuable source of bioactive compounds: A study regarding its lipid- and water-soluble components. Sci. Total Environ. 2018, 644, 229–236. [Google Scholar] [CrossRef]
- Nations, U. Transforming Our World: The 2030 Agenda for Sustainable Development. Available online: https://sdgs.un.org/sites/default/files/publications/21252030%20Agenda%20for%20Sustainable%20Development%20web.pdf (accessed on 7 February 2023).
- Commission, E. Olive Oil: Detailed Information on the Market Situation, Price Developments, Balance Sheets, Production and Trade. Available online: https://ec.europa.eu/info/food-farming-fisheries/plants-and-plant-products/plant-products/olive-oil_en (accessed on 7 February 2023).
- Nunes, M.A.; Pimentel, F.B.; Costa, A.S.; Alves, R.C.; Oliveira, M.B.P. Olive by-products for functional and food applications: Challenging opportunities to face environmental constraints. Innov. Food Sci. Emerg. Technol. 2016, 35, 139–148. [Google Scholar] [CrossRef]
- Nunes, M.A.; Páscoa, R.N.M.J.; Alves, R.C.; Costa, A.S.G.; Bessada, S.; Oliveira, M.B.P.P. Fourier transform near infrared spectroscopy as a tool to discriminate olive wastes: The case of monocultivar pomaces. Waste Manag. 2020, 103, 378–387. [Google Scholar] [CrossRef]
- Ahmad-Qasem, M.H.; Barrajon-Catalan, E.; Micol, V.; Cárcel, J.A.; Garcia-Perez, J.V. Influence of air temperature on drying kinetics and antioxidant potential of olive pomace. J. Food Eng. 2013, 119, 516–524. [Google Scholar] [CrossRef]
- Uribe, E.; Lemus-Mondaca, R.; Vega-Gálvez, A.; López, L.A.; Pereira, K.; López, J.; Ah-Hen, K.; Di Scala, K. Quality Characterization of Waste Olive Cake During Hot Air Drying: Nutritional Aspects and Antioxidant Activity. Food Bioprocess Technol. 2013, 6, 1207–1217. [Google Scholar] [CrossRef]
- Uribe, E.; Lemus-Mondaca, R.; Vega-Gálvez, A.; Zamorano, M.; Quispe-Fuentes, I.; Pasten, A.; Di Scala, K. Influence of process temperature on drying kinetics, physicochemical properties and antioxidant capacity of the olive-waste cake. Food Chem. 2014, 147, 170–176. [Google Scholar] [CrossRef]
- Pasten, A.; Uribe, E.; Stucken, K.; Rodríguez, A.; Vega-Gálvez, A. Influence of Drying on the Recoverable High-Value Products from Olive (cv. Arbequina) Waste Cake. Waste Biomass Valorization 2019, 10, 1627–1638. [Google Scholar] [CrossRef]
- Difonzo, G.; Troilo, M.; Squeo, G.; Pasqualone, A.; Caponio, F. Functional compounds from olive pomace to obtain high-added value foods—A review. J. Sci. Food Agric. 2021, 101, 15–26. [Google Scholar] [CrossRef]
- Ruan, D.; Wang, H.; Cheng, F.; Ruan, D.; Wang, H.; Cheng, F. The Maillard Reaction; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Cilla, A.; Barberá, R.; López-García, G.; Blanco-Morales, V.; Alegría, A.; Garcia-Llatas, G. Impact of processing on mineral bioaccessibility/bioavailability. In Innovative Thermal and Non-Thermal Processing, Bioaccessibility and Bioavailability of Nutrients and Bioactive Compounds; Elsevier: Amsterdam, The Netherlands, 2019; pp. 209–239. [Google Scholar]
- Nunes, M.A.; Pawlowski, S.; Costa, A.S.G.; Alves, R.C.; Oliveira, M.B.P.P.; Velizarov, S. Valorization of olive pomace by a green integrated approach applying sustainable extraction and membrane-assisted concentration. Sci. Total Environ. 2019, 652, 40–47. [Google Scholar] [CrossRef]
- Dhingra, D.; Michael, M.; Rajput, H.; Patil, R. Dietary fibre in foods: A review. J. Food Sci. Technol. 2012, 49, 255–266. [Google Scholar] [CrossRef] [Green Version]
- de Araújo, F.F.; de Paulo Farias, D.; Neri-Numa, I.A.; Pastore, G.M. Polyphenols and their applications: An approach in food chemistry and innovation potential. Food Chem. 2020, 338, 127535. [Google Scholar] [CrossRef]
- Rizvi, S.; Raza, S.T.; Ahmed, F.; Ahmad, A.; Abbas, S.; Mahdi, F. The role of vitamin E in human health and some diseases. Sultan Qaboos Univ. Med. J. 2014, 14, e157. [Google Scholar]
- Dhakal, S.P.; He, J. Microencapsulation of vitamins in food applications to prevent losses in processing and storage: A review. Food Res. Int. 2020, 137, 109326. [Google Scholar] [CrossRef]
- Shahidi, F.; Camargo, A.C.D. Tocopherols and Tocotrienols in Common and Emerging Dietary Sources: Occurrence, Applications, and Health Benefits. Int. J. Mol. Sci. 2016, 17, 1745. [Google Scholar] [CrossRef]
- Ayala, A.; Muñoz, M.F.; Argüelles, S. Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. Oxidative Med. Cell. Longev. 2014, 2014, 360438. [Google Scholar] [CrossRef] [Green Version]
- Bayram, B.; Esatbeyoglu, T.; Schulze, N.; Ozcelik, B.; Frank, J.; Rimbach, G. Comprehensive Analysis of Polyphenols in 55 Extra Virgin Olive Oils by HPLC-ECD and Their Correlation with Antioxidant Activities. Plant Foods Hum. Nutr. 2012, 67, 326–336. [Google Scholar] [CrossRef]
- Kim, A.-N.; Lee, K.-Y.; Rahman, M.S.; Kim, H.-J.; Kerr, W.L.; Choi, S.-G. Thermal treatment of apple puree under oxygen-free condition: Effect on phenolic compounds, ascorbic acid, antioxidant activities, color, and enzyme activities. Food Biosci. 2021, 39, 100802. [Google Scholar] [CrossRef]
- Silva, K.D.R.R.; Sirasa, M.S.F. Antioxidant properties of selected fruit cultivars grown in Sri Lanka. Food Chem. 2018, 238, 203–208. [Google Scholar] [CrossRef]
- Gunathilake, K.D.P.P.; Ranaweera, K.K.D.S.; Rupasinghe, H.P.V. Effect of Different Cooking Methods on Polyphenols, Carotenoids and Antioxidant Activities of Selected Edible Leaves. Antioxidants 2018, 7, 117. [Google Scholar] [CrossRef] [Green Version]
- Klen, T.J.; Vodopivec, B.M. The fate of olive fruit phenols during commercial olive oil processing: Traditional press versus continuous two- and three-phase centrifuge. LWT Food Sci. Technol. 2012, 49, 267–274. [Google Scholar] [CrossRef]
- Leonardis, A.D.; Macciola, V.; Iacovino, S. Delivery Systems for Hydroxytyrosol Supplementation: State of the Art. Colloids Interfaces 2020, 4, 25. [Google Scholar] [CrossRef]
- Mateos, R.; Martínez-López, S.; Baeza Arévalo, G.; Amigo-Benavent, M.; Sarriá, B.; Bravo-Clemente, L. Hydroxytyrosol in functional hydroxytyrosol-enriched biscuits is highly bioavailable and decreases oxidised low density lipoprotein levels in humans. Food Chem. 2016, 205, 248–256. [Google Scholar] [CrossRef]
- Costa, A.S.G.; Alves, R.C.; Vinha, A.F.; Costa, E.; Costa, C.S.G.; Nunes, M.A.; Almeida, A.A.; Santos-Silva, A.; Oliveira, M.B.P.P. Nutritional, chemical and antioxidant/pro-oxidant profiles of silverskin, a coffee roasting by-product. Food Chem. 2018, 267, 28–35. [Google Scholar] [CrossRef]
- Gullón, P.; Gullón, B.; Astray, G.; Carpena, M.; Fraga-Corral, M.; Prieto, M.A.; Simal-Gandara, J. Valorization of by-products from olive oil industry and added-value applications for innovative functional foods. Food Res. Int. 2020, 137, 109683. [Google Scholar] [CrossRef]
- Ratnayaka, D.D.; Brandt, M.J.; Johnson, K.M. CHAPTER 6—Chemistry, Microbiology and Biology of Water. In Water Supply, 6th ed.; Ratnayaka, D.D., Brandt, M.J., Johnson, K.M., Eds.; Butterworth-Heinemann: Boston, MA, USA, 2009; pp. 195–266. [Google Scholar]
- Deak, T. Chapter 17—Thermal Treatment. In Food Safety Management; Lelieveld, Y.M.H., Ed.; Academic Press: San Diego, CA, USA, 2014; pp. 423–442. [Google Scholar]
- Berk, Z. Food Process Engineering and Technology, 3rd ed.; Academic Press: Cambridge, MA, USA, 2018. [Google Scholar]
- Fellows, P.J. Food Processing Technology: Principles and Practice; Elsevier: Amsterdam, The Netherlands, 2009. [Google Scholar]
- AOAC. Official Methods of Analysis, 21st ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 2019. [Google Scholar]
- Tontisirin, K. Chapter 2: Methods of Food Analysis. Food Energy: Methods of Analysis and Conversion Factors: Report of a Technical Workshop; Food and Agriculture Organization of the United Nations: Rome, Italy, 2003. [Google Scholar]
- Alves, R.; Casal, S.; Oliveira, M.B.P. Determination of vitamin E in coffee beans by HPLC using a micro-extraction method. Food Sci. Technol. Int. 2009, 15, 57–63. [Google Scholar] [CrossRef]
- Ferreira, D.M.; Nunes, M.A.; Santo, L.E.; Machado, S.; Costa, A.S.G.; Álvarez-Ortí, M.; Pardo, J.E.; Oliveira, M.B.P.P.; Alves, R.C. Characterization of Chia Seeds, Cold-Pressed Oil, and Defatted Cake: An Ancient Grain for Modern Food Production. Molecules 2023, 28, 723. [Google Scholar] [CrossRef]
- ISO 12966; Animal and Vegetable Fats and Oils—Gas Chromatography of Fatty Acid Methyl Esters: Part 2: Preparation of Methyl Esters of Fatty Acids. ISO: London, UK, 2017.
g/100 g | Sample | Moisture | Total Protein | Ash | Total Fat | Total Fiber | Remaining Carbohydrates |
---|---|---|---|---|---|---|---|
Dry weight | OP | - | 6.3 ± 0.8 c | 2.7 ± 0.0 d | 3.6 ± 0.1 c | 44.0 ± 0.9 b | 43.4 ± 1.6 a |
OPP | - | 9.6 ± 0.6 a | 4.9 ± 0.0 c | 9.3 ± 0.3 a | 48.0 ± 0.9 a | 28.2 ± 1.8 c | |
OPPA | - | 8.4 ± 0.2 ab | 5.3 ± 0.0 bc | 8.1 ± 0.4 ab | 44.0 ± 0.4 b | 34.1 ± 0.2 b | |
OPPB | - | 8.6 ± 0.5 ab | 5.4 ± 0.0 b | 8.2 ± 0.2 ab | 44.3 ± 0.1 b | 33.5 ± 0.8 bc | |
OPPC | - | 8.9 ± 0.1 ab | 5.2 ± 0.0 bc | 7.0 ± 0.0 b | 44.6 ± 0.4 b | 34.4 ± 0.4 b | |
OPPD | - | 7.0 ± 0.6 bc | 5.9 ± 0.3 a | 6.8 ± 0.9 b | 43.5 ± 0.2 b | 36.8 ± 2.1 b | |
Fresh weight | OP | 60.9 ± 0.3 d | 2.5 ± 0.3 a | 1.1 ± 0.0 d | 1.4 ± 0.0 c | 17.2 ± 0.3 a | 16.9 ± 0.3 a |
OPP | 73.9 ± 0.1 ab | 2.5 ± 0.2 a | 1.3 ± 0.0 c | 2.4 ± 0.1 a | 12.5 ± 0.2 b | 7.4 ± 0.4 d | |
OPPA | 73.1 ± 0.0 bc | 2.2 ± 0.1 a | 1.4 ± 0.0 b | 2.2 ± 0.1 ab | 11.8 ± 0.1 bc | 9.2 ± 0.1 bc | |
OPPB | 74.7 ± 0.3 a | 2.2 ± 0.1 a | 1.4 ± 0.0 bc | 2.1 ± 0.0 ab | 11.2 ± 0.0 c | 8.5 ± 0.5 cd | |
OPPC | 73.9 ± 0.6 ab | 2.3 ± 0.0 a | 1.3 ± 0.0 bc | 1.8 ± 0.0 bc | 12.3 ± 0.1 b | 8.3 ± 0.5 cd | |
OPPD | 72.4 ± 0.0 c | 1.9 ± 0.2 a | 1.6 ± 0.1 a | 1.9 ± 0.3 bc | 11.4 ± 0.1 c | 10.8 ± 0.6 b |
μg/100 g | Sample | α-tocopherol | α-tocotrienol | β-tocopherol | γ-tocopherol | δ-tocopherol | Total Vitamin E |
---|---|---|---|---|---|---|---|
Dry weight | OP | 4133 ± 138 d | 62 ± 1 c | 50 ± 1 c | 97 ± 2 c | 17 ± 0 c | 4360 ± 143 d |
OPP | 5715 ± 227 a | 109 ± 1 b | 78 ± 2 b | 162 ± 6 ab | 37 ± 0 b | 6101 ± 234 a | |
OPPA | 4906 ± 65 c | 130 ± 1 a | 73 ±1 b | 146 ± 4 b | 36 ± 0 b | 5290 ± 65 c | |
OPPB | 4983 ± 84 c | 127 ± 5 a | 73 ± 1 b | 146 ± 3 b | 37 ± 0 b | 5365 ± 87 c | |
OPPC | 5066 ± 42 bc | 112 ± 3 b | 71 ± 0 b | 148 ± 5 b | 32 ± 0 b | 5430 ± 45 bc | |
OPPD | 5335 ± 93 b | nd | 106 ± 6 a | 165 ± 11 a | 115 ± 4 a | 5722 ± 112 b | |
Fresh weight | OP | 1614 ± 54 a | 24 ± 0 d | 20 ± 1 b | 38 ± 1 bc | 7 ± 0 c | 1703 ± 56 a |
OPP | 1489 ± 59 b | 28 ± 0 c | 20 ± 1 b | 42 ± 2 ab | 10 ± 0 b | 1590 ± 61 b | |
OPPA | 1318 ±17 c | 35 ± 0 a | 20 ± 0 b | 39 ± 1 bc | 10 ± 0 b | 1421 ± 18 c | |
OPPB | 1262 ± 21 c | 32 ± 1 b | 18 ± 0 b | 37 ± 1 c | 9 ± 0 b | 1358 ± 22 c | |
OPPC | 1324 ± 11 c | 29 ± 1 c | 18 ± 0 b | 39 ± 1 bc | 8 ± 0 b | 1419 ± 12 c | |
OPPD | 1472 ± 26 b | nd | 29 ± 2 a | 46 ± 3 a | 32 ± 1 a | 1579 ± 31 b |
Fatty Acids (Relative %) | OP | OPP | OPPA | OPPB | OPPC | OPPD |
---|---|---|---|---|---|---|
Myristic (C14:0) | 0.03 ± 0.00 a | 0.02 ± 0.00 b | 0.02 ± 0.00 b | 0.02 ± 0.00 b | 0.03 ± 0.00 a | 0.03 ± 0.00 a |
Palmitic (C16:0) | 11.18 ± 0.08 a | 11.18 ± 0.04 a | 11.24 ± 0.01 a | 11.30 ± 0.15 a | 11.24 ± 0.02 a | 11.25 ± 0.02 a |
Palmitoleic (C16:1) | 0.59 ± 0.03 a | 0.60 ± 0.03 a | 0.63 ± 0.00 a | 0.60 ± 0.03 a | 0.63 ± 0.01 a | 0.64 ± 0.00 a |
Heptanoic (C17:0) | 0.10 ± 0.00 a | 0.10 ± 0.00 a | 0.10 ± 0.00 a | 0.10 ± 0.01 a | 0.10 ± 0.00 a | 0.10 ± 0.00 a |
Stearic (C18:0) | 2.82 ± 0.15 a | 2.85 ± 0.20 a | 2.79 ± 0.01 a | 2.84 ± 0.21 a | 2.81 ± 0.01 a | 2.79 ± 0.04 a |
Oleic (C18:1n9c) | 73.07 ± 0.40 b | 74.69 ± 0.26 a | 74.37 ± 0.12 a | 74.41 ± 0.11 a | 74.29 ± 0.03 a | 74.24 ± 0.24 a |
Linoleic (C18:2n6c) | 9.97 ± 0.47 a | 8.52 ± 0.33 b | 8.79 ± 0.13 b | 8.68 ±0.28 b | 8.85 ± 0.05 b | 8.91 ± 0.07 b |
Arachidic (C20:0) | 0.51 ± 0.05 a | 0.47 ± 0.03 a | 0.45 ± 0.00 a | 0.46 ± 0.03 a | 0.46 ± 0.01 a | 0.45 ± 0.04 a |
α-linolenic (C18:3n3) | 0.92 ± 0.10 a | 0.90 ± 0.10 a | 0.96 ± 0.01 a | 0.89 ± 0.07 a | 0.93 ± 0.02 a | 0.93 ± 0.02 a |
cis-11-Eicosenoic (C20:1n9) | 0.38 ± 0.01 a | 0.34 ± 0.02 a | 0.35 ± 0.00 a | 0.35 ± 0.01 a | 0.35 ± 0.01 a | 0.35 ± 0.02 a |
Behenic (C22:0) | 0.28 ± 0.04 a | 0.21 ± 0.02 b | 0.21 ± 0.00 b | 0.22 ± 0.03 ab | 0.21 ± 0.00 b | 0.20 ± 0.02 b |
Lignoceric (C24:0) | 0.16 ± 0.02 a | 0.12 ± 0.01 b | 0.11 ± 0.00 b | 0.12 ± 0.00 b | 0.11 ± 0.01 b | 0.12 ± 0.01b |
∑ SFA | 15.07 ± 0.15 a | 14.97 ± 0.22 a | 14.91 ± 0.01 a | 15.07 ± 0.35 a | 14.95 ± 0.03 a | 14.93 ± 0.12 a |
∑ PUFA | 10.89 ± 0.46 a | 9.42 ± 0.34 b | 9.74 ± 0.10 b | 9.57 ± 0.28 b | 9.78 ± 0.05 b | 9.85 ± 0.07 b |
∑ MUFA | 74.03 ± 0.31 b | 75.64 ± 0.20 a | 75.34 ± 0.10 a | 75.36 ± 0.10 a | 75.27 ± 0.02 a | 75.22 ± 0.18 a |
MUFA/PUFA | 6.81 ± 0.33 b | 8.04 ± 0.31 a | 7.73 ± 0.09 a | 7.88 ± 0.23 a | 7.70 ± 0.04 a | 7.64 ± 0.07 a |
Sample | TPC g GAE/100 g | TFC g CE/100 g | HTC g/100 g | FRAP g FSE/100 g | DPPH●-SA g TE/100 g | |
---|---|---|---|---|---|---|
Dry weight | OP | 3.08 ± 0.13 d | 2.69 ± 0.03 d | 0.36 ± 0.00 cd | 4.43 ± 0.57 d | 1.53 ± 0.06 bc |
OPP | 4.09 ± 0.11 a | 3.44 ± 0.03 a | 0.65 ± 0.04 a | 6.10 ± 0.28 a | 1.84 ± 0.10 a | |
OPPA | 3.46 ± 0.14 c | 2.80 ± 0.19 cd | 0.35 ± 0.02 d | 4.98 ± 0.11 c | 1.38 ± 0.05 c | |
OPPB | 3.50 ± 0.16 c | 2.88 ± 0.09 c | 0.40 ± 0.03 cd | 5.17 ± 0.17 bc | 1.46 ± 0.04 c | |
OPPC | 3.81 ± 0.15 b | 3.10 ± 0.08 b | 0.42 ± 0.02 c | 5.47 ± 0.26 b | 1.66 ± 0.12 b | |
OPPD | 3.81 ± 0.13 b | 3.32 ± 0.20 a | 0.54 ± 0.03 b | 6.10 ± 0.43 a | 1.92 ± 0.14 a | |
Fresh weight | OP | 1.20 ± 0.05 a | 1.05 ± 0.01 a | 0.14 ± 0.00 b | 1.73 ± 0.22 a | 0.60 ± 0.02 a |
OPP | 1.07 ± 0.03 b | 0.90 ± 0.01 b | 0.17 ± 0.01 a | 1.59 ± 0.07 a | 0.48 ± 0.03 c | |
OPPA | 0.93 ± 0.04 d | 0.75 ± 0.05 d | 0.09 ± 0.00 c | 1.34 ± 0.03 b | 0.37 ± 0.01 d | |
OPPB | 0.89 ± 0.04 d | 0.73 ± 0.02 d | 0.10 ± 0.01 c | 1.31 ± 0.04 b | 0.37 ± 0.01 d | |
OPPC | 1.00 ± 0.04 c | 0.81 ± 0.02 c | 0.11 ± 0.00 c | 1.43 ± 0.07 b | 0.43 ± 0.03 c | |
OPPD | 1.05 ± 0.04 bc | 0.92 ± 0.05 b | 0.15 ± 0.01 ab | 1.68 ± 0.12 a | 0.53 ± 0.04 b |
Temperature | Sample | Dilution | Total Count of Microorganisms (CFU) |
---|---|---|---|
22 °C | OP | 10−2 | 3.6 × 103 |
OPP | 10−2 | 4.4 × 103 | |
OPPA | 10−1 | Ø | |
OPPB | 10−1 | Ø | |
OPPC | 10−1 | Ø | |
OPPD | 10−1 | Ø | |
37 °C | OP | 10−1 | 1.2 × 103 |
OPP | 10−1 | 1.2 × 103 | |
OPPA | 10−1 | Ø | |
OPPB | 10−1 | 5.3 × 102 | |
OPPC | 10−1 | Ø | |
OPPD | 10−1 | Ø |
Samples | Temperature (°C) | Time |
---|---|---|
OPPA | 65 | 30 min |
OPPB | 77 | 1 min |
OPPC | 88 | 15 s |
OPPD | 120 | 20 min |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sousa, M.M.; Ferreira, D.M.; Machado, S.; Lobo, J.C.; Costa, A.S.G.; Palmeira, J.D.; Nunes, M.A.; Alves, R.C.; Ferreira, H.; Oliveira, M.B.P.P. Effect of Different Time/Temperature Binomials on the Chemical Features, Antioxidant Activity, and Natural Microbial Load of Olive Pomace Paste. Molecules 2023, 28, 2876. https://doi.org/10.3390/molecules28062876
Sousa MM, Ferreira DM, Machado S, Lobo JC, Costa ASG, Palmeira JD, Nunes MA, Alves RC, Ferreira H, Oliveira MBPP. Effect of Different Time/Temperature Binomials on the Chemical Features, Antioxidant Activity, and Natural Microbial Load of Olive Pomace Paste. Molecules. 2023; 28(6):2876. https://doi.org/10.3390/molecules28062876
Chicago/Turabian StyleSousa, Maria Manuela, Diana Melo Ferreira, Susana Machado, Joana C. Lobo, Anabela S. G. Costa, Josman D. Palmeira, Maria Antónia Nunes, Rita C. Alves, Helena Ferreira, and Maria Beatriz P. P. Oliveira. 2023. "Effect of Different Time/Temperature Binomials on the Chemical Features, Antioxidant Activity, and Natural Microbial Load of Olive Pomace Paste" Molecules 28, no. 6: 2876. https://doi.org/10.3390/molecules28062876
APA StyleSousa, M. M., Ferreira, D. M., Machado, S., Lobo, J. C., Costa, A. S. G., Palmeira, J. D., Nunes, M. A., Alves, R. C., Ferreira, H., & Oliveira, M. B. P. P. (2023). Effect of Different Time/Temperature Binomials on the Chemical Features, Antioxidant Activity, and Natural Microbial Load of Olive Pomace Paste. Molecules, 28(6), 2876. https://doi.org/10.3390/molecules28062876