Intramolecular and Intermolecular Interaction Switching in the Aggregates of Perylene Diimide Trimer: Effect of Hydrophobicity
Abstract
:1. Introduction
2. Results and Discussions
3. Materials and Methods
3.1. Materials
3.2. Steady-State Spectroscopy and Transient Absorption Spectroscopy
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Gsänger, M.; Bialas, D.; Huang, L.; Stolte, M.; Würthner, F. Organic Semiconductors based on Dyes and Color Pigments. Adv. Mater. 2016, 28, 3615–3645. [Google Scholar] [CrossRef]
- Würthner, F.; Stolte, M. Naphthalene and perylene diimides for organic transistors. Chem. Commun. 2011, 47, 5109–5115. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; An, Y.; Yao, Z.; Li, C.; Shi, G. A Turn-on Fluorescent Sensor for Pyrophosphate Based on the Disassembly of Cu2+-Mediated Perylene Diimide Aggregates. ACS Appl. Mater. Interfaces 2012, 4, 614–618. [Google Scholar] [CrossRef] [PubMed]
- Han, J.J.; Wang, W.; Li, A.D.Q. Folding and Unfolding of Chromophoric Foldamers Show Unusual Colorful Single Molecule Spectral Dynamics. J. Am. Chem. Soc. 2006, 128, 672–673. [Google Scholar] [CrossRef] [Green Version]
- Abd-Ellah, M.; Cann, J.; Dayneko, S.V.; Laventure, A.; Cieplechowicz, E.; Welch, G.C. Interfacial ZnO Modification Using a Carboxylic Acid Functionalized N-Annulated Perylene Diimide for Inverted Type Organic Photovoltaics. ACS Appl. Electron. Mater. 2019, 1, 1590–1596. [Google Scholar] [CrossRef]
- Zhong, Y.; Trinh, M.T.; Chen, R.; Purdum, G.E.; Khlyabich, P.P.; Sezen, M.; Oh, S.; Zhu, H.; Fowler, B.; Zhang, B.; et al. Molecular helices as electron acceptors in high-performance bulk heterojunction solar cells. Nat. Commun. 2015, 6, 8242. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.-C.; Chen, C.-H.; She, N.-Z.; Juan, C.-Y.; Chang, B.; Li, M.-H.; Wang, H.-C.; Cheng, H.-W.; Yabushita, A.; Yang, Y. Twisted-graphene-like perylene diimide with dangling functional chromophores as tunable small-molecule acceptors in binary-blend active layers of organic photovoltaics. J. Mater. Chem. A 2021, 9, 20510–20517. [Google Scholar] [CrossRef]
- Lin, Y.-C.; She, N.-Z.; Chen, C.-H.; Yabushita, A.; Lin, H.; Li, M.-H.; Chang, B.; Hsueh, T.-F.; Tsai, B.-S.; Chen, P.-T. Perylene diimide-fused dithiophenepyrroles with different end groups as acceptors for organic photovoltaics. ACS Appl. Mater. Interfaces 2022, 14, 37990–38003. [Google Scholar] [CrossRef] [PubMed]
- Haase, M.; Hübner, C.G.; Nolde, F.; Müllen, K.; Basché, T. Photoblinking and photobleaching of rylene diimide dyes. Phys. Chem. Chem. Phys. 2011, 13, 1776–1785. [Google Scholar] [CrossRef]
- Chen, C.-y.; Wang, K.; Gu, L.-l.; Li, H. The study of perylene diimide–amino acid derivatives for the fluorescence detection of anions. RSC Adv. 2017, 7, 42685–42689. [Google Scholar] [CrossRef] [Green Version]
- Aivali, S.; Tsimpouki, L.; Anastasopoulos, C.; Kallitsis, J.K. Synthesis and optoelectronic characterization of perylene diimide-quinoline based small molecules. Molecules 2019, 24, 4406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, M.; Mullen, K.; Yin, M. Water-soluble perylenediimides: Design concepts and biological applications. Chem. Soc. Rev. 2016, 45, 1513–1528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaufmann, C.; Bialas, D.; Stolte, M.; Wurthner, F. Discrete pi-Stacks of Perylene Bisimide Dyes within Folda-Dimers: Insight into Long- and Short-Range Exciton Coupling. J. Am. Chem. Soc. 2018, 140, 9986–9995. [Google Scholar] [CrossRef] [PubMed]
- Kihal, N.; Nazemi, A.; Bourgault, S. Supramolecular Nanostructures Based on Perylene Diimide Bioconjugates: From Self-Assembly to Applications. Nanomaterials 2022, 12, 1223. [Google Scholar] [CrossRef] [PubMed]
- Welsh, T.A.; Laventure, A.; Welch, G.C. Direct (Hetero) arylation for the synthesis of molecular materials: Coupling Thieno [3,4-c] pyrrole-4,6-dione with Perylene Diimide to yield novel non-fullerene acceptors for organic solar cells. Molecules 2018, 23, 931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wurthner, F.; Saha-Moller, C.R.; Fimmel, B.; Ogi, S.; Leowanawat, P.; Schmidt, D. Perylene Bisimide Dye Assemblies as Archetype Functional Supramolecular Materials. Chem. Rev. 2016, 116, 962–1052. [Google Scholar] [CrossRef]
- Oleson, A.; Zhu, T.; Dunn, I.S.; Bialas, D.; Bai, Y.; Zhang, W.; Dai, M.; Reichman, D.R.; Tempelaar, R.; Huang, L.; et al. Perylene Diimide-Based Hj- and hJ-Aggregates: The Prospect of Exciton Band Shape Engineering in Organic Materials. J. Phys. Chem. C 2019, 123, 20567–20578. [Google Scholar] [CrossRef]
- Yagai, S.; Iwai, K.; Karatsu, T.; Kitamura, A. Photoswitchable Exciton Coupling in Merocyanine–Diarylethene Multi-Chromophore Hydrogen-Bonded Complexes. Angew. Chem. Int. Ed. 2012, 51, 9679–9683. [Google Scholar] [CrossRef]
- Würthner, F.; Kaiser, T.E.; Saha-Möller, C.R. J-Aggregates: From Serendipitous Discovery to Supramolecular Engineering of Functional Dye Materials. Angew. Chem. Int. Ed. 2011, 50, 3376–3410. [Google Scholar] [CrossRef]
- Long, S.; Wang, Y.; Vdovic, S.; Zhou, M.; Yan, L.; Niu, Y.; Guo, Q.; Xia, A. Energy transfer and spectroscopic characterization of a perylenetetracarboxylic diimide (PDI) hexamer. Phys. Chem. Chem. Phys. 2015, 17, 18567–18576. [Google Scholar] [CrossRef]
- Giaimo, J.M.; Lockard, J.V.; Sinks, L.E.; Scott, A.M.; Wilson, T.M.; Wasielewski, M.R. Excited singlet states of covalently bound, cofacial dimers and trimers of perylene-3, 4: 9, 10-bis (dicarboximide) s. J. Phys. Chem. A 2008, 112, 2322–2330. [Google Scholar] [CrossRef] [PubMed]
- Sung, J.; Kim, P.; Fimmel, B.; Wurthner, F.; Kim, D. Direct observation of ultrafast coherent exciton dynamics in helical pi-stacks of self-assembled perylene bisimides. Nat. Commun. 2015, 6, 8646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Myong, M.S.; Zhou, J.; Young, R.M.; Wasielewski, M.R. Charge-Transfer Character in Excimers of Perylenediimides Self-Assembled on Anodic Aluminum Oxide Membrane Walls. J. Phys. Chem. C 2020, 124, 4369–4377. [Google Scholar] [CrossRef]
- Kim, W.; Nowak-Krol, A.; Hong, Y.; Schlosser, F.; Wurthner, F.; Kim, D. Solvent-Modulated Charge-Transfer Resonance Enhancement in the Excimer State of a Bay-Substituted Perylene Bisimide Cyclophane. J. Phys. Chem. Lett. 2019, 10, 1919–1927. [Google Scholar] [CrossRef] [PubMed]
- Gorman, J.; Pandya, R.; Allardice, J.R.; Price, M.B.; Schmidt, T.W.; Friend, R.H.; Rao, A.; Davis, N. Excimer Formation in Carboxylic Acid-Functionalized Perylene Diimides Attached to Silicon Dioxide Nanoparticles. J. Phys. Chem. C Nanomater. Interfaces 2019, 123, 3433–3440. [Google Scholar] [CrossRef] [Green Version]
- Gorl, D.; Zhang, X.; Wurthner, F. Molecular assemblies of perylene bisimide dyes in water. Angew. Chem. Int. Ed. Engl. 2012, 51, 6328–6348. [Google Scholar] [CrossRef]
- Marmur, A. Dissolution and self-assembly: The solvophobic/hydrophobic effect. J. Am. Chem. Soc. 2000, 122, 2120–2121. [Google Scholar] [CrossRef]
- Wurthner, F. Perylene bisimide dyes as versatile building blocks for functional supramolecular architectures. Chem. Commun. 2004, 14, 1564–1579. [Google Scholar] [CrossRef]
- Chen, Z.; Fimmel, B.; Wurthner, F. Solvent and substituent effects on aggregation constants of perylene bisimide pi-stacks--a linear free energy relationship analysis. Org. Biomol. Chem. 2012, 10, 5845–5855. [Google Scholar] [CrossRef]
- Xu, X.; Austin, A.; Mylon, S.E.; Plenge, J.; Szarko, J.M. Improving the Quantum Yields of Perylene Diimide Aggregates by Increasing Molecular Hydrophobicity in Polar Media. Chemphyschem 2017, 18, 2430–2441. [Google Scholar] [CrossRef]
- Islam, M.R.; Sundararajan, P.R. Self-assembly of a set of hydrophilic-solvophobic-hydrophobic coil-rod-coil molecules based on perylene diimide. Phys. Chem. Chem. Phys. 2013, 15, 21058–21069. [Google Scholar] [CrossRef] [PubMed]
- Schill, J.; Milroy, L.G.; Lugger, J.A.M.; Schenning, A.; Brunsveld, L. Relationship between Side-Chain Polarity and the Self-Assembly Characteristics of Perylene Diimide Derivatives in Aqueous Solution. ChemistryOpen 2017, 6, 266–272. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Ma, Z.; Niu, X.; Zhang, W.; Tao, M.; Guo, Q.; Wang, Z.; Xia, A. Bridge-Mediated Charge Separation in Isomeric N-Annulated Perylene Diimide Dimers. J. Am. Chem. Soc. 2019, 141, 12789–12796. [Google Scholar] [CrossRef] [PubMed]
- Kong, J.; Zhang, W.; Li, G.; Huo, D.; Guo, Y.; Niu, X.; Wan, Y.; Tang, B.; Xia, A. Excited-State Symmetry-Breaking Charge Separation Dynamics in Multibranched Perylene Diimide Molecules. J. Phys. Chem. Lett. 2020, 11, 10329–10339. [Google Scholar] [CrossRef]
- Hong, Y.; Kim, J.; Kim, W.; Kaufmann, C.; Kim, H.; Wurthner, F.; Kim, D. Efficient Multiexciton State Generation in Charge-Transfer-Coupled Perylene Bisimide Dimers via Structural Control. J. Am. Chem. Soc. 2020, 142, 7845–7857. [Google Scholar] [CrossRef]
- Kang, S.; Kim, T.; Hong, Y.; Wurthner, F.; Kim, D. Charge-Delocalized State and Coherent Vibrational Dynamics in Rigid PBI H-Aggregates. J. Am. Chem. Soc. 2021, 143, 9825–9833. [Google Scholar] [CrossRef]
- Bae, Y.J.; Shimizu, D.; Schultz, J.D.; Kang, G.; Zhou, J.; Schatz, G.C.; Osuka, A.; Wasielewski, M.R. Balancing charge transfer and Frenkel exciton coupling leads to excimer formation in molecular dimers: Implications for singlet fission. J. Phys. Chem. A 2020, 124, 8478–8487. [Google Scholar] [CrossRef]
- Carlotti, B.; Madu, I.K.; Kim, H.; Cai, Z.; Jiang, H.; Muthike, A.K.; Yu, L.; Zimmerman, P.M.; Goodson, T., 3rd. Activating intramolecular singlet exciton fission by altering pi-bridge flexibility in perylene diimide trimers for organic solar cells. Chem. Sci. 2020, 11, 8757–8770. [Google Scholar] [CrossRef]
- Ran, G.; Wang, H.; Song, Y.; Liu, Y.; Bo, Z.; Zhang, W. Photoinduced excimer generation in perylene diimide dimer: Effects of solvent polarity [Invited]. Chin. Opt. Lett. 2022, 20, 100009. [Google Scholar] [CrossRef]
- Brown, K.E.; Salamant, W.A.; Shoer, L.E.; Young, R.M.; Wasielewski, M.R. Direct Observation of Ultrafast Excimer Formation in Covalent Perylenediimide Dimers Using Near-Infrared Transient Absorption Spectroscopy. J. Phys. Chem. Lett. 2014, 5, 2588–2593. [Google Scholar] [CrossRef]
- Lim, J.M.; Kim, P.; Yoon, M.-C.; Sung, J.; Dehm, V.; Chen, Z.; Würthner, F.; Kim, D. Exciton delocalization and dynamics in helical π-stacks of self-assembled perylene bisimides. Chem. Sci. 2013, 4, 388–397. [Google Scholar] [CrossRef]
- Margulies, E.A.; Shoer, L.E.; Eaton, S.W.; Wasielewski, M.R. Excimer formation in cofacial and slip-stacked perylene-3,4:9,10-bis(dicarboximide) dimers on a redox-inactive triptycene scaffold. Phys. Chem. Chem. Phys. 2014, 16, 23735–23742. [Google Scholar] [CrossRef] [PubMed]
- Sung, J.; Nowak-Krol, A.; Schlosser, F.; Fimmel, B.; Kim, W.; Kim, D.; Wurthner, F. Direct Observation of Excimer-Mediated Intramolecular Electron Transfer in a Cofacially-Stacked Perylene Bisimide Pair. J. Am. Chem. Soc. 2016, 138, 9029–9032. [Google Scholar] [CrossRef] [PubMed]
- Markovic, V.; Villamaina, D.; Barabanov, I.; Lawson Daku, L.M.; Vauthey, E. Photoinduced Symmetry-Breaking Charge Separation: The Direction of the Charge Transfer. Angew. Chem. Int. Ed. 2011, 50, 7596–7598. [Google Scholar] [CrossRef] [Green Version]
- Smith, M.B.; Michl, J. Recent Advances in Singlet Fission. Annu. Rev. Phys. Chem. 2013, 64, 361–386. [Google Scholar] [CrossRef]
- Ran, G.; Zeb, J.; Song, Y.; Denis, P.A.; Ghani, U.; Zhang, W. Photoinduced Symmetry Breaking-Charge Separation in the Aggregated State of Perylene Diimide: Effect of Hydrophobicity. J. Phys. Chem. C 2022, 126, 3872–3880. [Google Scholar] [CrossRef]
- Liu, H.; Shen, L.; Cao, Z.; Li, X. Covalently linked perylenetetracarboxylic diimide dimers and trimers with rigid “J-type” aggregation structure. Phys. Chem. Chem. Phys. 2014, 16, 16399–16406. [Google Scholar] [CrossRef]
- Wu, Y.; Young, R.M.; Frasconi, M.; Schneebeli, S.T.; Spenst, P.; Gardner, D.M.; Brown, K.E.; Wurthner, F.; Stoddart, J.F.; Wasielewski, M.R. Ultrafast Photoinduced Symmetry-Breaking Charge Separation and Electron Sharing in Perylenediimide Molecular Triangles. J. Am. Chem. Soc. 2015, 137, 13236–13239. [Google Scholar] [CrossRef]
- Lin, C.; Kim, T.; Schultz, J.D.; Young, R.M.; Wasielewski, M.R. Accelerating symmetry-breaking charge separation in a perylenediimide trimer through a vibronically coherent dimer intermediate. Nat. Chem. 2022, 14, 786–793. [Google Scholar] [CrossRef]
- Wang, H.; Li, M.; Liu, Y.; Song, J.; Li, C.; Bo, Z. Perylene diimide based star-shaped small molecular acceptors for high efficiency organic solar cells. J. Mater. Chem. C 2019, 7, 819–825. [Google Scholar] [CrossRef]
- Hestand, N.J.; Spano, F.C. Expanded Theory of H- and J-Molecular Aggregates: The Effects of Vibronic Coupling and Intermolecular Charge Transfer. Chem. Rev. 2018, 118, 7069–7163. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Chen, H.; Li, S.; Zhang, J.; Zou, Y.; Yang, Y. Interplay between Intrachain and Interchain Excited States in Donor-Acceptor Copolymers. J. Phys. Chem. B 2021, 125, 7470–7476. [Google Scholar] [CrossRef] [PubMed]
- Miguez, J.M.; Pineiro, M.M.; Algaba, J.; Mendiboure, B.; Torre, J.P.; Blas, F.J. Understanding the Phase Behavior of Tetrahydrofuran + Carbon Dioxide, + Methane, and + Water Binary Mixtures from the SAFT-VR Approach. J. Phys. Chem. B 2015, 119, 14288–14302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Zhang, W.; Xu, S.; Hu, C. The Roles of H(2)O/Tetrahydrofuran System in Lignocellulose Valorization. Front. Chem. 2020, 8, 70. [Google Scholar] [CrossRef] [PubMed]
- Bialas, A.L.; Spano, F.C. A Holstein–Peierls Approach to Excimer Spectra: The Evolution from Vibronically Structured to Unstructured Emission. J. Phys. Chem. C 2022, 126, 4067–4081. [Google Scholar] [CrossRef]
- Son, M.; Park, K.H.; Shao, C.; Wurthner, F.; Kim, D. Spectroscopic Demonstration of Exciton Dynamics and Excimer Formation in a Sterically Controlled Perylene Bisimide Dimer Aggregate. J. Phys. Chem. Lett. 2014, 5, 3601–3607. [Google Scholar] [CrossRef]
- Traeger, H.; Sagara, Y.; Kiebala, D.J.; Schrettl, S.; Weder, C. Folded Perylene Diimide Loops as Mechanoresponsive Motifs. Angew. Chem. Int. Ed. Engl. 2021, 60, 16191–16199. [Google Scholar] [CrossRef]
- Snellenburg, J.; Laptenok, S.; Seger, R.; Mullen, K.; Van Stokkum, I. Glotaran: A Java-based graphical user interface for the R package TIMP. J. Stat. Softw. 2012, 49, 1–22. [Google Scholar] [CrossRef] [Green Version]
Water Percentage | Lifetime τ (ns) | Quantum Yield |
---|---|---|
0% | 4.62 ± 0.1 | 0.18 |
10% | 3.6 ± 0.1 | 0.02 |
20% | 4.1 ± 0.1 | 0.02 |
30% | 4.5 ± 0.08 | 0.02 |
40% | 4.4 ± 0.03 | 0.01 |
50% | 4.2 ± 0.02 | 0.01 |
Water Percentage | Lifetime (τ) | |||||
---|---|---|---|---|---|---|
τ1 (fs) | τ2 (ps) | τ3 (ns) | τ4 (ps) | τ5 (ns) | τ6 (ns) | |
0% | 512 ± 27 | 7.2 ± 1 | 4.6 ± 0.7 | 5.8 ± 1 | 0.48 ± 0.1 | 12.3 ± 2.1 |
10% | 526 ± 58 | 5.1 ± 1 | 4.4 ± 0.5 | 9.6± 1 | 0.7 ± 0.1 | 14.9 ± 1.5 |
20% | 560 ± 80 | 7.5 ± 1 | 4.3 ± 0.7 | 29.8 ± 4 | 0.91 ± 0.1 | 18.7 ± 2.5 |
30% | 540 ± 90 | 6.1 ± 1 | 4.5 ± 0.7 | 57.8 ± 9 | 1.17 ± 0.2 | 16.5 ± 2.7 |
40% | 526 ± 58 | 9.1 ± 1 | 4.3 ± 0.5 | 102 ± 11 | 1.23 ± 0.2 | 17.9 ± 1.9 |
50% | 568 ± 79 | 8.9 ± 1 | 4.1 ± 0.4 | 107.5 ± 12 | 1.22 ± 0.1 | 14.9 ± 1.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, P.; Ran, G.; Wang, H.; Yue, J.; Kong, Q.; Bo, Z.; Zhang, W. Intramolecular and Intermolecular Interaction Switching in the Aggregates of Perylene Diimide Trimer: Effect of Hydrophobicity. Molecules 2023, 28, 3003. https://doi.org/10.3390/molecules28073003
Su P, Ran G, Wang H, Yue J, Kong Q, Bo Z, Zhang W. Intramolecular and Intermolecular Interaction Switching in the Aggregates of Perylene Diimide Trimer: Effect of Hydrophobicity. Molecules. 2023; 28(7):3003. https://doi.org/10.3390/molecules28073003
Chicago/Turabian StyleSu, Peiyuan, Guangliu Ran, Hang Wang, Jianing Yue, Qingyu Kong, Zhishan Bo, and Wenkai Zhang. 2023. "Intramolecular and Intermolecular Interaction Switching in the Aggregates of Perylene Diimide Trimer: Effect of Hydrophobicity" Molecules 28, no. 7: 3003. https://doi.org/10.3390/molecules28073003
APA StyleSu, P., Ran, G., Wang, H., Yue, J., Kong, Q., Bo, Z., & Zhang, W. (2023). Intramolecular and Intermolecular Interaction Switching in the Aggregates of Perylene Diimide Trimer: Effect of Hydrophobicity. Molecules, 28(7), 3003. https://doi.org/10.3390/molecules28073003