Effect of Electrospinning Network Instead of Polymer Network on the Properties of PDLCs
Abstract
:1. Introduction
2. Results and Discussions
2.1. Property Changes in PDLC Films as a Result of Liquid Crystal Content
2.2. Effect of the Thickness of the Nanofibers on the Performance of PDLC
2.3. Effect of Identical Nanofiber Membranes on PDLC’s Photovoltaic Characteristics with Different Ratios
2.4. High Temperature and Humidity Tests
3. Experimental Section
3.1. Materials
3.2. Sample Preparation
3.3. Methods of Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Gradinaru, L.M.; Bercea, M.; Vlad, S.; Mandru, M.B.; Drobota, M.; Aflori, M.; Ciobanu, R.C. Preparation and characterization of electrospun magnetic poly(ether urethane) nanocomposite mats: Relationships between the viscosity of the polymer solutions and the electrospinning ability. Polymer 2022, 256, 125186. [Google Scholar] [CrossRef]
- Haik, J.; Kornhaber, R.; Blal, B.; Harats, M. The Feasibility of a Handheld Electrospinning Device for the Application of Nanofibrous Wound Dressings. Adv. Wound Care 2017, 6, 166–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.-X.; Yu, G.-F.; Zhang, J.; Yu, M.; Ramakrishna, S.; Long, Y.-Z. Conductive polymer ultrafine fibers via electrospinning: Preparation, physical properties and applications. Prog. Mater. Sci. 2021, 115, 100704. [Google Scholar] [CrossRef]
- Guo, S.-M.; Liang, X.; Zhang, C.-H.; Chen, M.; Shen, C.; Zhang, L.-Y.; Yuan, X.; He, B.-F.; Yang, H. Preparation of a Thermally Light-Transmittance-Controllable Film from a Coexistent System of Polymer-Dispersed and Polymer-Stabilized Liquid Crystals. ACS Appl. Mater. Interfaces 2017, 9, 2942–2947. [Google Scholar] [CrossRef]
- Kleivaitė, V.; Milašius, R. Investigation of electrospun web porosity and its statistical evaluation. J. Text. Inst. 2020, 111, 499–504. [Google Scholar] [CrossRef]
- Peidavosi, N.; Azami, M.; Beheshtizadeh, N.; Saadatabadi, A.R. Piezoelectric conductive electrospun nanocomposite PCL/Polyaniline/Barium Titanate scaffold for tissue engineering applications. Sci. Rep. 2022, 12, 20828. [Google Scholar] [CrossRef]
- Abdelhafiz, M.; Shalaby, A.S.A.; Hussein, A.K. Preparation and characterization of bioactive polyvinylpyrrolidone film via electrospinning technique. Microsc. Res. Tech. 2022, 85, 3347–3355. [Google Scholar] [CrossRef]
- Huang, J.; Li, J.; Xu, J.; Wang, Z.; Sheng, W.; Li, H.; Yang, Y.; Song, W. Simultaneous achievement of high visible transmission and near-infrared heat shielding in flexible liquid crystal-based smart windows via electrode design. Sol. Energy 2019, 188, 857–864. [Google Scholar] [CrossRef]
- Xia, S.; Zhang, Y.; Zhao, Y.; Wang, X.; Yan, J. Hierarchical Porous Carbon Nanofibers with Tunable Geometries and Porous Structures Fabricated by a Scalable Electrospinning Technique. ACS Appl. Mater. Interfaces 2021, 13, 44768–44776. [Google Scholar] [CrossRef]
- Chiang, Y.-C.; Tseng, T.-L. Characterization and electrochemical properties of Pt nanoparticles deposited on titanium oxide nanofibers. Mater. Chem. Phys. 2021, 267, 124700. [Google Scholar] [CrossRef]
- Ishinabe, T.; Isa, H.; Shibata, Y.; Fujikake, H. Flexible polymer network liquid crystals using imprinted spacers bonded by UV-curable reactive mesogen for smart window applications. J. Inf. Disp. 2022, 23, 69–75. [Google Scholar] [CrossRef]
- Kakiuchida, H.; Matsuyama, A.; Ogiwara, A. Normal- and Reverse-Mode Thermoresponsive Controllability in Optical Attenuation of Polymer Network Liquid Crystals. ACS Appl. Mater. Interfaces 2019, 11, 19404–19412. [Google Scholar] [CrossRef] [PubMed]
- Shin, Y.-H.; Oh, N.-S.; Kwon, S.-B. Electro-optical properties of vertically aligned polymer network liquid crystals for normally transparent light shutters. Mol. Cryst. Liq. Cryst. 2017, 644, 130–136. [Google Scholar] [CrossRef]
- Miao, Z.; Liang, Z.; Wang, D. Nano-doped PDLC combined with photochromic material for bifunctional optical control films. Liq. Cryst. 2022, 49, 1735–1745. [Google Scholar] [CrossRef]
- Ahmad, F.; Jamil, M.; Jeon, Y.J.; Woo, L.J.; Jung, J.E.; Lee, G.H.; Park, J. Comparative study on the electrooptical properties of polymer-dispersed liquid crystal films with different mixtures of monomers and liquid crystals. J. Appl. Polym. Sci. 2011, 121, 1424–1430. [Google Scholar] [CrossRef]
- Abualnaja, M.M.; Hossan, A.; Bayazeed, A.; Al-Qahtani, S.D.; Al-Ahmed, Z.A.; Abdel-Hafez, S.H.; El-Metwaly, N.M. Synthesis and self-assembly of new fluorescent cholesteryloxy-substituted fluorinated terphenyls with gel formation and mesogenic phases. J. Mol. Struct. 2022, 1251, 132006. [Google Scholar] [CrossRef]
- Oh, M.; Lee, C.; Park, J.; Lee, K.; Tae, S. Evaluation of Energy and Daylight Performance of Old Office Buildings in South Korea with Curtain Walls Remodeled Using Polymer Dispersed Liquid Crystal (PDLC) Films. Energies 2019, 12, 3679. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Liu, S. Development and Prospect of Viewing Angle Switchable Liquid Crystal Devices. Crystals 2022, 12, 1347. [Google Scholar] [CrossRef]
- Ahmad, F.; Jeon, A.-R.; Jeon, Y.J.; Jamil, M. A novel technique of fabrication of nanoparticle acrylate doped polymer dispersed liquid crystal (PDLC) film. J. Dispers. Sci. Technol. 2022, 43, 1506–1511. [Google Scholar] [CrossRef]
- Sharma, V.; Kumar, P. Electro-optically oriented Kerr and orientational phase study of normal mode polymer dispersed liquid crystals—Effect of dispersion of nanoparticles. J. Mol. Liq. 2022, 348, 118030. [Google Scholar] [CrossRef]
- Lu, H.; Huang, P.; Wu, T.; Chen, C.; Shi, J.; Xu, M.; Qiu, L.; Ding, Y.; Zhu, J. PDLC with controllable microstructure using wavelength-selective two-stage polymerization. Polymer 2022, 243, 124641. [Google Scholar] [CrossRef]
- Yan, B.; He, J.; Fang, Y.; Du, X.; Zhang, Q.; Wang, S.; Pan, C.; Wang, Y. The effect of the resultant microphase-separated structures of polymer matrices on the electro-optical properties of polymer dispersed liquid crystal films by Iniferter polymerization. Eur. Polym. J. 2009, 45, 1936–1940. [Google Scholar] [CrossRef]
- Nasir, N.; Kumar, S.; Kim, M.; Nguyen, V.H.; Suleman, M.; Park, H.M.; Lee, S.; Kang, D.; Seo, Y. Effect of the Photoinitiator Concentration on the Electro-optical Properties of Thiol–Acrylate-Based PDLC Smart Windows. ACS Appl. Energy Mater. 2022, 5, 6986–6995. [Google Scholar] [CrossRef]
- Zeng, X.; Huang, L.Q.; Wang, C.N.; Wang, J.S.; Li, J.T.; Luo, X.T. Sono crystallization of ZIF-8 on electrostatic spinning TiO2 nanofibers surface with enhanced photocatalysis property through synergistic effect. ACS Appl. Mater. Interfaces 2016, 8, 20274–20282. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Li, C.; Cao, R.; Du, X. High-Performance Electronic Cloth for Facilitating the Rehabilitation of Human Joints. ACS Appl. Mater. Interfaces 2019, 11, 22722–22729. [Google Scholar] [CrossRef]
- Liu, J.; Weng, W.; Xie, H.; Luo, G.; Li, G.; Sun, W.; Ruan, C.; Wang, X. Myoglobin- and Hydroxyapatite-Doped Carbon Nanofiber-Modified Electrodes for Electrochemistry and Electrocatalysis. ACS Omega 2019, 4, 15653–15659. [Google Scholar] [CrossRef] [Green Version]
- Al-Abduljabbar, A.; Farooq, I. Electrospun Polymer Nanofibers: Processing, Properties, and Applications. Polymers 2023, 15, 65. [Google Scholar] [CrossRef]
- Beck, M.E.; Hersam, M.C. Emerging Opportunities for Electrostatic Control in Atomically Thin Devices. ACS Nano 2020, 14, 6498–6518. [Google Scholar] [CrossRef]
- Deng, X.; Zhao, Y.; Gao, H.; Wang, D.; Miao, Z.; Cao, H.; Yang, Z.; He, W. Studies on electro-optical properties of polymer dispersed liquid crystals doped with reticular nanofiber films prepared by electrospinning. Liq. Cryst. 2021, 48, 1850–1858. [Google Scholar] [CrossRef]
- Kumar, S. Discotic liquid crystal-nanoparticle hybrid systems. NPG Asia Mater. 2014, 6, e82. [Google Scholar] [CrossRef]
- Rohatgi, A.; Thomas, J.P.; Baucom, J.N.; Pogue, W.R.; Cerully, L.B.; Ebenstein, D.M.; Wahl, K.J. Processing and mechanical performance of liquid crystalline polymer/nanofiber monofilaments. Scr. Mater. 2008, 58, 25–28. [Google Scholar] [CrossRef]
- Saeed, M.H.; Zhang, S.; Cao, Y.; Zhou, L.; Hu, J.; Muhammad, I.; Xiao, J.; Zhang, L.; Yang, H. Recent Advances in The Polymer Dispersed Liquid Crystal Composite and Its Applications. Molecules 2020, 25, 5510. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Cao, H.; Chen, M.; Zhang, L.; Jiang, T.; Chen, H.; Li, F.; Zhu, S.; Yang, H. Effects of the fluorinated liquid crystal molecules on the electro-optical properties of polymer dispersed liquid crystal films. Liq. Cryst. 2017, 44, 2301–2310. [Google Scholar] [CrossRef]
- Pande, M.; Tripathi, P.K.; Misra, A.K.; Manohar, S.; Manohar, R.; Singh, S. Dielectric and electro-optical properties of polymer-stabilized liquid crystal system. Appl. Phys. A 2016, 122, 217. [Google Scholar] [CrossRef]
- Ryu, J.-H.; Lee, S.-G.; Suh, K.-D. The influence of nematic liquid crystal content on the electro-optical properties of a polymer dispersed liquid crystal prepared with monodisperse liquid crystal microcapsules. Liq. Cryst. 2004, 31, 1587–1593. [Google Scholar] [CrossRef]
- Parab, S.; Malik, M.; Bhatia, P.; Deshmukh, R. Investigation of liquid crystal dispersion and dielectric relaxation behavior in polymer dispersed liquid crystal composite films. J. Mol. Liq. 2014, 199, 287–293. [Google Scholar] [CrossRef]
- Deshmukh, R.R.; Jain, A.K. The complete morphological, electro-optical and dielectric study of dichroic dye-doped polymer-dispersed liquid crystal. Liq. Cryst. 2014, 41, 960–975. [Google Scholar] [CrossRef]
Sample | PMMA (wt. %) | DMF (wt. %) | Electrospinning Time (min) |
---|---|---|---|
b1 | 25 | 75 | 5 |
b2 | 25 | 75 | 10 |
b3 | 25 | 75 | 15 |
b4 | 25 | 75 | 20 |
b5 | 25 | 75 | 25 |
Sample | Weight Percentage (%) | Electrospinning Nanofilm Samples | |
---|---|---|---|
SLC1717 | UV6301 | ||
Group A | |||
A1 | 90.0 | 10.0 | 0 |
A2 | 80.0 | 20.0 | 0 |
A3 | 70.0 | 30.0 | 0 |
A4 | 60.0 | 40.0 | 0 |
A5 | 50.0 | 50.0 | 0 |
Group B | |||
B1 | 80.0 | 20.0 | b1 |
B2 | 80.0 | 20.0 | b2 |
B3 | 80.0 | 20.0 | b3 |
B4 | 80.0 | 20.0 | b4 |
B5 | 80.0 | 20.0 | b5 |
Group C | |||
C1 | 90.0 | 10.0 | b3 |
C2 | 80.0 | 20.0 | b3 |
C3 | 70.0 | 30.0 | b3 |
C4 | 60.0 | 40.0 | b3 |
C5 | 50.0 | 50.0 | b3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Lang, T.; Li, C.; Yin, W.; Sun, Y.; Yao, R.; Ma, C.; Shi, Z.; Wang, D.; Miao, Z. Effect of Electrospinning Network Instead of Polymer Network on the Properties of PDLCs. Molecules 2023, 28, 3372. https://doi.org/10.3390/molecules28083372
Zhao Y, Lang T, Li C, Yin W, Sun Y, Yao R, Ma C, Shi Z, Wang D, Miao Z. Effect of Electrospinning Network Instead of Polymer Network on the Properties of PDLCs. Molecules. 2023; 28(8):3372. https://doi.org/10.3390/molecules28083372
Chicago/Turabian StyleZhao, Yuzhen, Tingting Lang, Chaonian Li, Wenbo Yin, Yitian Sun, Ruijuan Yao, Cheng Ma, Zuhui Shi, Dong Wang, and Zongcheng Miao. 2023. "Effect of Electrospinning Network Instead of Polymer Network on the Properties of PDLCs" Molecules 28, no. 8: 3372. https://doi.org/10.3390/molecules28083372
APA StyleZhao, Y., Lang, T., Li, C., Yin, W., Sun, Y., Yao, R., Ma, C., Shi, Z., Wang, D., & Miao, Z. (2023). Effect of Electrospinning Network Instead of Polymer Network on the Properties of PDLCs. Molecules, 28(8), 3372. https://doi.org/10.3390/molecules28083372