Unraveling Bonding Mechanisms and Electronic Structure of Pyridine Oximes on Fe(110) Surface: Deeper Insights from DFT, Molecular Dynamics and SCC-DFT Tight Binding Simulations
Abstract
:1. Introduction
2. Results and Discussion
2.1. SCC-DFTB Simulations
2.1.1. Geometries and Energies
2.1.2. Projected Density of States
2.2. Molecular Dynamics Simulation
2.3. Molecular Electrostatic Potential
3. Computational Details
3.1. SCC-DFTB Simulation
3.2. Molecular Dynamics Simulation
3.3. Quantum Chemical Calculations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, X.; Cai, W.; Huang, Y. One-Pot Synthesis of 2,3,6-Trisubstituted Pyridines by Phosphine-Catalyzed Annulation of γ-Vinyl Allenoates with Enamino Esters Followed by DDQ-Promoted Oxidative Aromatization. Adv. Synth. Catal. 2022, 364, 1879–1883. [Google Scholar] [CrossRef]
- Bull, J.A.; Mousseau, J.J.; Pelletier, G.; Charette, A.B. Synthesis of Pyridine and Dihydropyridine Derivatives by Regio- and Stereoselective Addition to N-Activated Pyridines. Chem. Rev. 2012, 112, 2642–2713. [Google Scholar] [CrossRef] [PubMed]
- Pandey, P.P. Pyridine; BoD—Books on Demand: Paris, France, 2018; ISBN 978-1-78923-422-0. [Google Scholar]
- Shi, Z.; Loh, T.-P. Organocatalytic Synthesis of Highly Functionalized Pyridines at Room Temperature. Angew. Chem. 2013, 125, 8746–8749. [Google Scholar] [CrossRef]
- Kral, K.; Hapke, M. Metall-Freie Cyclotrimerisierung Zur De-Novo-Synthese von Pyridinen. Angew. Chem. 2011, 123, 2482–2483. [Google Scholar] [CrossRef]
- Simon, C.; Constantieux, T.; Rodriguez, J. Utilisation of 1, 3-Dicarbonyl Derivatives in Multicomponent Reactions. Eur. J. Org. Chem. 2004, 2004, 4957–4980. [Google Scholar] [CrossRef]
- Anejjar, A.; Salghi, R.; Zarrouk, A.; Zarrok, H.; Benali, O.; Hammouti, B.; Al-Deyab, S.S.; Benchat, N.-E.; Saddik, R. Investigation of Inhibition by 6-Bromo-3-Nitroso-2-Phenylimidazol [1, 2-α] Pyridine of the Corrosion of C38 Steel in 1 M HCl. Res. Chem. Intermed. 2015, 41, 913–925. [Google Scholar] [CrossRef]
- Xu, B.; Yang, W.; Liu, Y.; Yin, X.; Gong, W.; Chen, Y. Experimental and Theoretical Evaluation of Two Pyridinecarboxaldehyde Thiosemicarbazone Compounds as Corrosion Inhibitors for Mild Steel in Hydrochloric Acid Solution. Corros. Sci. 2014, 78, 260–268. [Google Scholar] [CrossRef]
- Mert, B.D.; Yüce, A.O.; Kardaş, G.; Yazıcı, B. Inhibition Effect of 2-Amino-4-Methylpyridine on Mild Steel Corrosion: Experimental and Theoretical Investigation. Corros. Sci. 2014, 85, 287–295. [Google Scholar] [CrossRef]
- Yıldız, R.; Döner, A.; Doğan, T.; Dehri, İ. Experimental Studies of 2-Pyridinecarbonitrile as Corrosion Inhibitor for Mild Steel in Hydrochloric Acid Solution. Corros. Sci. 2014, 82, 125–132. [Google Scholar] [CrossRef]
- Gurudatt, D.M.; Mohana, K.N. Synthesis of New Pyridine Based 1,3,4-Oxadiazole Derivatives and Their Corrosion Inhibition Performance on Mild Steel in 0.5 M Hydrochloric Acid. Ind. Eng. Chem. Res. 2014, 53, 2092–2105. [Google Scholar] [CrossRef]
- Verma, C.; Rhee, K.Y.; Quraishi, M.A.; Ebenso, E.E. Pyridine Based N-Heterocyclic Compounds as Aqueous Phase Corrosion Inhibitors: A Review. J. Taiwan Inst. Chem. Eng. 2020, 117, 265–277. [Google Scholar] [CrossRef]
- Bockris, J.O.; Reddy, A.K.N.; Gamboa-Aldeco, M.E. Modern Electrochemistry 2B: Electrodics in Chemistry, Engineering, Biology and Environmental Science; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1998; ISBN 978-0-306-46325-9. [Google Scholar]
- Dutta, A.; Saha, S.K.; Adhikari, U.; Banerjee, P.; Sukul, D. Effect of Substitution on Corrosion Inhibition Properties of 2-(Substituted Phenyl) Benzimidazole Derivatives on Mild Steel in 1M HCl Solution: A Combined Experimental and Theoretical Approach. Corros. Sci. 2017, 123, 256–266. [Google Scholar] [CrossRef]
- Mishra, A.; Verma, C.; Lgaz, H.; Srivastava, V.; Quraishi, M.A.; Ebenso, E.E. Synthesis, Characterization and Corrosion Inhibition Studies of N-Phenyl-Benzamides on the Acidic Corrosion of Mild Steel: Experimental and Computational Studies. J. Mol. Liq. 2018, 251, 317–332. [Google Scholar] [CrossRef]
- Quadri, T.W.; Olasunkanmi, L.O.; Akpan, E.D.; Fayemi, O.E.; Lee, H.-S.; Lgaz, H.; Verma, C.; Guo, L.; Kaya, S.; Ebenso, E.E. Development of QSAR-Based (MLR/ANN) Predictive Models for Effective Design of Pyridazine Corrosion Inhibitors. Mater. Today Commun. 2022, 30, 103163. [Google Scholar] [CrossRef]
- Obot, I.B.; Haruna, K.; Saleh, T.A. Atomistic Simulation: A Unique and Powerful Computational Tool for Corrosion Inhibition Research. Arab. J. Sci. Eng. 2018, 44, 1–32. [Google Scholar] [CrossRef]
- Obot, I.B.; Macdonald, D.D.; Gasem, Z.M. Density Functional Theory (DFT) as a Powerful Tool for Designing New Organic Corrosion Inhibitors. Part 1: An Overview. Corros. Sci. 2015, 99, 1–30. [Google Scholar] [CrossRef]
- Verma, C.; Lgaz, H.; Verma, D.; Ebenso, E.E.; Bahadur, I.; Quraishi, M. Molecular Dynamics and Monte Carlo Simulations as Powerful Tools for Study of Interfacial Adsorption Behavior of Corrosion Inhibitors in Aqueous Phase: A Review. J. Mol. Liq. 2018, 260, 99–120. [Google Scholar] [CrossRef]
- Ansari, K.R.; Quraishi, M.A.; Singh, A. Pyridine Derivatives as Corrosion Inhibitors for N80 Steel in 15% HCl: Electrochemical, Surface and Quantum Chemical Studies. Measurement 2015, 76, 136–147. [Google Scholar] [CrossRef]
- Ansari, K.R.; Quraishi, M.A.; Singh, A. Corrosion Inhibition of Mild Steel in Hydrochloric Acid by Some Pyridine Derivatives: An Experimental and Quantum Chemical Study. J. Ind. Eng. Chem. 2015, 25, 89–98. [Google Scholar] [CrossRef]
- Berisha, A. Experimental, Monte Carlo and Molecular Dynamic Study on Corrosion Inhibition of Mild Steel by Pyridine Derivatives in Aqueous Perchloric Acid. Electrochem 2020, 1, 188–199. [Google Scholar] [CrossRef]
- Kokalj, A. Molecular Modeling of Organic Corrosion Inhibitors: Calculations, Pitfalls, and Conceptualization of Molecule–Surface Bonding. Corros. Sci. 2021, 193, 109650. [Google Scholar] [CrossRef]
- Kokalj, A.; Lozinšek, M.; Kapun, B.; Taheri, P.; Neupane, S.; Losada-Pérez, P.; Xie, C.; Stavber, S.; Crespo, D.; Renner, F.U.; et al. Simplistic Correlations between Molecular Electronic Properties and Inhibition Efficiencies: Do They Really Exist? Corros. Sci. 2021, 179, 108856. [Google Scholar] [CrossRef]
- Hu, S.-Q.; Guo, A.-L.; Yan, Y.-G.; Jia, X.-L.; Geng, Y.-F.; Guo, W.-Y. Computer Simulation of Diffusion of Corrosive Particle in Corrosion Inhibitor Membrane. Comput. Theor. Chem. 2011, 964, 176–181. [Google Scholar] [CrossRef]
- Jono, R.; Shimizu, K.; Terada, T. A Multicanonical Ab Initio Molecular Dynamics Method: Application to Conformation Sampling of Alanine Tripeptide. Chem. Phys. Lett. 2006, 432, 306–312. [Google Scholar] [CrossRef]
- Seabra, G.D.M.; Walker, R.C.; Elstner, M.; Case, D.A.; Roitberg, A.E. Implementation of the SCC-DFTB Method for Hybrid QM/MM Simulations within the Amber Molecular Dynamics Package. J. Phys. Chem. A 2007, 111, 5655–5664. [Google Scholar] [CrossRef]
- Kokalj, A. Corrosion Inhibitors: Physisorbed or Chemisorbed? Corros. Sci. 2022, 196, 109939. [Google Scholar] [CrossRef]
- Dlouhy, M.; Kokalj, A. How Adsorbed H, O, OH, and Cl Affect Plain Adsorption of Imidazole on Copper. Corros. Sci. 2022, 205, 110443. [Google Scholar] [CrossRef]
- Elstner, M.; Porezag, D.; Jungnickel, G.; Elsner, J.; Haugk, M.; Frauenheim, T.; Suhai, S.; Seifert, G. Self-Consistent-Charge Density-Functional Tight-Binding Method for Simulations of Complex Materials Properties. Phys. Rev. B 1998, 58, 7260. [Google Scholar] [CrossRef]
- Frauenheim, T.; Porezag, D.; Elstner, M.; Jungnickel, G.; Elsner, J.; Haugk, M.; Sieck, A.; Seifert, G. An Ab Initio Two-Center Tight-Binding Approach to Simulations of Complex Materials Properties. MRS Online Proc. Libr. OPL 1997, 491, 91–104. [Google Scholar] [CrossRef]
- Varghese, C.S.; Thomas, K.J.; Raphael, V.P.; Shaju, K.S. Electro Analytical and Gravimetrical Investigations on Corrosion Inhibition Properties of Pyridine-Carbaldehyde Derivatives on Carbon Steel. Chem. Sci. Rev. Lett. 2017, 6, 2300–2308. [Google Scholar]
- Kumar, D.; Jain, V.; Rai, B. Imidazole Derivatives as Corrosion Inhibitors for Copper: A DFT and Reactive Force Field Study. Corros. Sci. 2020, 171, 108724. [Google Scholar] [CrossRef]
- Cordero, B.; Gómez, V.; Platero-Prats, A.E.; Revés, M.; Echeverría, J.; Cremades, E.; Barragán, F.; Alvarez, S. Covalent Radii Revisited. Dalton Trans. 2008, 37, 2832–2838. [Google Scholar] [CrossRef] [PubMed]
- Deka, H.; Saikia, M.D.; Srivastava, H.K. Adsorption of Various Monoterpenoids on the Surface of Graphene and Nitrogen-Doped Graphene: A DFT Based Study. ChemistrySelect 2017, 2, 5248–5258. [Google Scholar] [CrossRef]
- Prates Ramalho, J.P.; Illas, F. Assessing the Importance of Van Der Waals Interactions on the Adsorption of Azobenzene on the Rutile TiO2(110) Surface. Chem. Phys. Lett. 2012, 545, 60–65. [Google Scholar] [CrossRef]
- Solmaz, R. Investigation of Adsorption and Corrosion Inhibition of Mild Steel in Hydrochloric Acid Solution by 5-(4-Dimethylaminobenzylidene)Rhodanine. Corros. Sci. 2014, 79, 169–176. [Google Scholar] [CrossRef]
- Solmaz, R. Investigation of the Inhibition Effect of 5-((E)-4-Phenylbuta-1,3-Dienylideneamino)-1,3,4-Thiadiazole-2-Thiol Schiff Base on Mild Steel Corrosion in Hydrochloric Acid. Corros. Sci. 2010, 52, 3321–3330. [Google Scholar] [CrossRef]
- Yüce, A.O.; Solmaz, R.; Kardaş, G. Investigation of Inhibition Effect of Rhodanine-N-Acetic Acid on Mild Steel Corrosion in HCl Solution. Mater. Chem. Phys. 2012, 131, 615–620. [Google Scholar] [CrossRef]
- Kumar, D.; Jain, V.; Rai, B. Unravelling the Mechanisms of Corrosion Inhibition of Iron by Henna Extract: A Density Functional Theory Study. Corros. Sci. 2018, 142, 102–109. [Google Scholar] [CrossRef]
- El-Haitout, B.; Selatnia, I.; Lgaz, H.; Al-Hadeethi, M.R.; Lee, H.-S.; Chaouiki, A.; Ko, Y.G.; Ali, I.H.; Salghi, R. Exploring the Feasibility of New Eco-Friendly Heterocyclic Compounds for Establishing Efficient Corrosion Protection for N80 Steel in a Simulated Oil Well Acidizing Environment: From Molecular-Level Prediction to Experimental Validation. Colloids Surf. Physicochem. Eng. Asp. 2023, 656, 130372. [Google Scholar] [CrossRef]
- Lgaz, H.; Lee, H. Facile Preparation of New Hydrazone Compounds and Their Application for Long-Term Corrosion Inhibition of N80 Steel in 15% HCl: An Experimental Study Combined with DFTB Calculations. J. Mol. Liq. 2022, 347, 117952. [Google Scholar] [CrossRef]
- Abbasi, A.; Abdelrasoul, A.; Sardroodi, J.J. Adsorption of CO and NO Molecules on Al, P and Si Embedded MoS2 Nanosheets Investigated by DFT Calculations. Adsorption 2019, 25, 1001–1017. [Google Scholar] [CrossRef]
- Kruczek, J.; Chiu, S.-W.; Varma, S.; Jakobsson, E.; Pandit, S.A. Interactions of Monovalent and Divalent Cations at Palmitoyl-Oleoyl-Phosphatidylcholine Interface. Langmuir 2019, 35, 10522–10532. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.-W.; Liu, Z.; Han, G.-C.; Li, W.; Liu, J.; Chen, Z. Molecular Dynamics Simulation of Inhibition Mechanism of 3,5-Dibromo Salicylaldehyde Schiff’s Base. Comput. Theor. Chem. 2015, 1063, 50–62. [Google Scholar] [CrossRef]
- Lgaz, H.; Chaouiki, A.; Lamouri, R.; Salghi, R.; Lee, H.-S. Computational Methods of Corrosion Inhibition Assessment. In Sustainable Corrosion Inhibitors I: Fundamentals, Methodologies, and Industrial Applications; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2021; Volume 1403, pp. 87–109. ISBN 978-0-8412-9790-6. [Google Scholar]
- Hammes-Schiffer, S. Quantum Effects in Complex Systems: Summarizing Remarks. Faraday Discuss. 2020, 221, 582–588. [Google Scholar] [CrossRef]
- Suresh, C.H.; Remya, G.S.; Anjalikrishna, P.K. Molecular Electrostatic Potential Analysis: A Powerful Tool to Interpret and Predict Chemical Reactivity. WIREs Comput. Mol. Sci. 2022, 12, e1601. [Google Scholar] [CrossRef]
- Bayoumy, A.M.; Ibrahim, M.; Omar, A. Mapping Molecular Electrostatic Potential (MESP) for Fulleropyrrolidine and Its Derivatives. Opt. Quantum Electron. 2020, 52, 346. [Google Scholar] [CrossRef]
- Oyeneyin, O.E.; Ojo, N.D.; Ipinloju, N.; James, A.C.; Agbaffa, E.B. Investigation of Corrosion Inhibition Potentials of Some Aminopyridine Schiff Bases Using Density Functional Theory and Monte Carlo Simulation. Chem. Afr. 2022, 5, 319–332. [Google Scholar] [CrossRef]
- Zheng, G.; Witek, H.A.; Bobadova-Parvanova, P.; Irle, S.; Musaev, D.G.; Prabhakar, R.; Morokuma, K.; Lundberg, M.; Elstner, M.; Köhler, C. Parameter Calibration of Transition-Metal Elements for the Spin-Polarized Self-Consistent-Charge Density-Functional Tight-Binding (DFTB) Method: Sc, Ti, Fe, Co, and Ni. J. Chem. Theory Comput. 2007, 3, 1349–1367. [Google Scholar] [CrossRef]
- Bai, J.; Liu, X.; Guo, W.; Lei, T.; Teng, B.; Xiang, H.; Wen, X. An Efficient Way to Model Complex Iron Carbides: A Benchmark Study of DFTB2 against DFT. J. Phys. Chem. A 2023, 127, 2071–2080. [Google Scholar] [CrossRef]
- Liu, C.; Batista, E.R.; Aguirre, N.F.; Yang, P.; Cawkwell, M.J.; Jakubikova, E. SCC-DFTB Parameters for Fe–C Interactions. J. Phys. Chem. A 2020, 124, 9674–9682. [Google Scholar] [CrossRef]
- Liu, H.; Seifert, G.; Di Valentin, C. An Efficient Way to Model Complex Magnetite: Assessment of SCC-DFTB against DFT. J. Chem. Phys. 2019, 150, 094703. [Google Scholar] [CrossRef] [PubMed]
- Hourahine, B.; Aradi, B.; Blum, V.; Bonafé, F.; Buccheri, A.; Camacho, C.; Cevallos, C.; Deshaye, M.; Dumitrică, T.; Dominguez, A. DFTB+, a Software Package for Efficient Approximate Density Functional Theory Based Atomistic Simulations. J. Chem. Phys. 2020, 152, 124101. [Google Scholar] [CrossRef]
- Grimme, S. Semiempirical GGA-Type Density Functional Constructed with a Long-Range Dispersion Correction. J. Comput. Chem. 2006, 27, 1787–1799. [Google Scholar] [CrossRef] [PubMed]
- Clark, S.J.; Segall, M.D.; Pickard, C.J.; Hasnip, P.J.; Probert, M.I.; Refson, K.; Payne, M.C. First Principles Methods Using CASTEP. Z. Krist.-Cryst. Mater. 2005, 220, 567–570. [Google Scholar] [CrossRef]
- BIOVIA Dassault Systèmes. Materials Studio, Version 7.0; San Diego, CA, USA, 2012. Available online: https://www.3ds.com/products-services/biovia/products/molecular-modeling-simulation/biovia-materials-studio/ (accessed on 13 March 2023).
- Ebenso, E.E.; Verma, C.; Olasunkanmi, L.O.; Akpan, E.D.; Verma, D.K.; Lgaz, H.; Guo, L.; Kaya, S.; Quraishi, M.A. Molecular Modelling of Compounds Used for Corrosion Inhibition Studies: A Review. Phys. Chem. Chem. Phys. 2021, 23, 19987–20027. [Google Scholar] [CrossRef] [PubMed]
- Sun, H. COMPASS: An Ab Initio Force-Field Optimized for Condensed-Phase Applications Overview with Details on Alkane and Benzene Compounds. J. Phys. Chem. B 1998, 102, 7338–7364. [Google Scholar] [CrossRef]
- Paterlini, M.G.; Ferguson, D.M. Constant Temperature Simulations Using the Langevin Equation with Velocity Verlet Integration. Chem. Phys. 1998, 236, 243–252. [Google Scholar] [CrossRef]
- Evans, D.J.; Holian, B.L. The Nose–Hoover Thermostat. J. Chem. Phys. 1985, 83, 4069–4074. [Google Scholar] [CrossRef]
- Delley, B. An All-electron Numerical Method for Solving the Local Density Functional for Polyatomic Molecules. J. Chem. Phys. 1990, 92, 508–517. [Google Scholar] [CrossRef]
- Delley, B. From Molecules to Solids with the DMol 3 Approach. J. Chem. Phys. 2000, 113, 7756–7764. [Google Scholar] [CrossRef]
- Ansari, A.; Ou-Ani, O.; Oucheikh, L.; Youssefi, Y.; Chebabe, D.; Oubair, A.; Znini, M. Experimental, Theoretical Modeling and Optimization of Inhibitive Action of Ocimum Basilicum Essential Oil as Green Corrosion Inhibitor for C38 Steel in 0.5 MH 2 SO 4 Medium. Chem. Afr. 2022, 5, 37–55. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H. Gaussian 09, Revision A.02; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Dennington, R.; Keith, T.A.; Millam, J.M. GaussView 6.0. 16; Semichem Inc.: Shawnee Mission, KS, USA, 2016. [Google Scholar]
- Fukui, K. The Role of Frontier Orbitals in Chemical Reactions (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 1982, 21, 801–809. [Google Scholar] [CrossRef]
- Saha, S.K.; Murmu, M.; Murmu, N.C.; Banerjee, P. Evaluating Electronic Structure of Quinazolinone and Pyrimidinone Molecules for Its Corrosion Inhibition Effectiveness on Target Specific Mild Steel in the Acidic Medium: A Combined DFT and MD Simulation Study. J. Mol. Liq. 2016, 224, 629–638. [Google Scholar] [CrossRef]
- Saha, S.K.; Murmu, M.; Murmu, N.C.; Banerjee, P. Benzothiazolylhydrazine Azomethine Derivatives for Efficient Corrosion Inhibition of Mild Steel in Acidic Environment: Integrated Experimental and Density Functional Theory Cum Molecular Dynamics Simulation Approach. J. Mol. Liq. 2022, 364, 120033. [Google Scholar] [CrossRef]
- Isin, D.O.; Karakus, N. Quantum Chemical Study on the Inhibition Efficiencies of Some Sym-Triazines as Inhibitors for Mild Steel in Acidic Medium. J. Taiwan Inst. Chem. Eng. 2015, 50, 306–313. [Google Scholar] [CrossRef]
- Saha, S.K.; Murmu, M.; Murmu, N.C.; Obot, I.B.; Banerjee, P. Molecular Level Insights for the Corrosion Inhibition Effectiveness of Three Amine Derivatives on the Carbon Steel Surface in the Adverse Medium: A Combined Density Functional Theory and Molecular Dynamics Simulation Study. Surf. Interfaces 2018, 10, 65–73. [Google Scholar] [CrossRef]
- Islam, N.; Kaya, S. Conceptual Density Functional Theory and Its Application in the Chemical Domain; CRC Press: Boca Raton, FL, USA, 2018; ISBN 978-1-351-36024-1. [Google Scholar]
- Pearson, R.G. Hard and Soft Acids and Bases. J. Am. Chem. Soc. 1963, 85, 3533–3539. [Google Scholar] [CrossRef]
- Kokalj, A. On the HSAB Based Estimate of Charge Transfer between Adsorbates and Metal Surfaces. Chem. Phys. 2012, 393, 1–12. [Google Scholar] [CrossRef]
- Saha, S.K.; Dutta, A.; Ghosh, P.; Sukul, D.; Banerjee, P. Novel Schiff-Base Molecules as Efficient Corrosion Inhibitors for Mild Steel Surface in 1 M HCl Medium: Experimental and Theoretical Approach. Phys. Chem. Chem. Phys. 2016, 18, 17898–17911. [Google Scholar] [CrossRef]
- Makedonas, C.; Mitsopoulou, C.A. An Investigation of the Reactivity of [(Diimine)(Dithiolato)M] Complexes Using the Fukui Functions Concept. Eur. J. Inorg. Chem. 2006, 2006, 590–598. [Google Scholar] [CrossRef]
- Thanikaivelan, P.; Padmanabhan, J.; Subramanian, V.; Ramasami, T. Chemical Reactivity and Selectivity Using Fukui Functions: Basis Set and Population Scheme Dependence in the Framework of B3LYP Theory. Theor. Chem. Acc. 2002, 107, 326–335. [Google Scholar] [CrossRef]
- Morell, C.; Grand, A.; Toro-Labbé, A. New Dual Descriptor for Chemical Reactivity. J. Phys. Chem. A 2005, 109, 205–212. [Google Scholar] [CrossRef] [PubMed]
Molecule | Interaction Energy |
---|---|
2POH | −0.007 |
2POH+ | −1.897 |
3POH | −2.534 |
3POH+ | −2.007 |
Molecule | Adsorption Energy | |
---|---|---|
Vacuum State | Aqueous State | |
2POH | −10.258 | −8.124 |
2POH+ | −11.867 | −11.047 |
3POH | −14.688 | −13.745 |
3POH+ | −12.744 | −11.655 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lgaz, H.; Lee, H.-s.; Kaya, S.; Salghi, R.; Ibrahim, S.M.; Chafiq, M.; Bazzi, L.; Ko, Y.G. Unraveling Bonding Mechanisms and Electronic Structure of Pyridine Oximes on Fe(110) Surface: Deeper Insights from DFT, Molecular Dynamics and SCC-DFT Tight Binding Simulations. Molecules 2023, 28, 3545. https://doi.org/10.3390/molecules28083545
Lgaz H, Lee H-s, Kaya S, Salghi R, Ibrahim SM, Chafiq M, Bazzi L, Ko YG. Unraveling Bonding Mechanisms and Electronic Structure of Pyridine Oximes on Fe(110) Surface: Deeper Insights from DFT, Molecular Dynamics and SCC-DFT Tight Binding Simulations. Molecules. 2023; 28(8):3545. https://doi.org/10.3390/molecules28083545
Chicago/Turabian StyleLgaz, Hassane, Han-seung Lee, Savaş Kaya, Rachid Salghi, Sobhy M. Ibrahim, Maryam Chafiq, Lahcen Bazzi, and Young Gun Ko. 2023. "Unraveling Bonding Mechanisms and Electronic Structure of Pyridine Oximes on Fe(110) Surface: Deeper Insights from DFT, Molecular Dynamics and SCC-DFT Tight Binding Simulations" Molecules 28, no. 8: 3545. https://doi.org/10.3390/molecules28083545
APA StyleLgaz, H., Lee, H. -s., Kaya, S., Salghi, R., Ibrahim, S. M., Chafiq, M., Bazzi, L., & Ko, Y. G. (2023). Unraveling Bonding Mechanisms and Electronic Structure of Pyridine Oximes on Fe(110) Surface: Deeper Insights from DFT, Molecular Dynamics and SCC-DFT Tight Binding Simulations. Molecules, 28(8), 3545. https://doi.org/10.3390/molecules28083545