Effect of Equivalence Ratio on Pollutant Formation in CH4O/H2/NH3 Blend Combustion
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of Equivalent Ratio on Combustion Components of Ternary Carbon-Neutral Fuel Blends
2.2. Effect of Equivalence Ratio on Pollutant Formation in Blended Combustion of Ternary Carbon-Neutral Fuels
2.2.1. Effect of Equivalent Ratio on CO and CO2 Formation in Blended Combustion of Ternary Carbon-Neutral Fuels
2.2.2. Effect of Equivalent Ratio on NOX Formation in Blended Combustion of Ternary Carbon-Neutral Fuels
2.3. Mechanism Analysis of CO, CO2, and NOX Formation in the Combustion of Ternary Blended Fuel as Affected by Equivalence Ratio
3. Materials and Methods
3.1. Reactive Force Field Molecular Dynamics (ReaxFF MD)
3.2. Case Set-Ups
3.3. Computational Details and Post-Processing
3.4. Validation of the ReaxFF MD Method
4. Conclusions
- (1)
- Reducing the equivalence ratio accelerates the decomposition of CH4O, NH3, and H2 in general. The rate of consumption of each fuel is fastest at φ = 0.33. The rates of CH4O and NH3 decomposition are similar at φ = 0.66 and φ = 0.4.
- (2)
- CO showed an “inverted U” shaped trend of increasing and then decreasing over time. The CO peak appeared at φ = 0.5. CO2 shows a continuous increase as the reaction proceeds. The rate and amount of CO2 formation are inversely proportional to the magnitude of the equivalence ratio. When φ > 0.5, the effect of equivalence ratio on CO2 is more obvious. NO2 is the main component of NOX. When φ ≥ 0.66, NOX shows a tendency to increase and then stabilize as the reaction proceeds. When φ < 0.66, NOX shows a continuous increasing trend.
- (3)
- C migration path analysis showed that for φ ≥ 0.5, the intermediates CH3 and CH4 are added to the CH4O to CH2O conversion stage as the equivalence ratio decreases. The new pathways are CH4O→CH3→CH2O and CH4O→CH3→CH4→CH2O. At φ ≤ 0.5, new intermediates CHO2 and CH2O2 are added to the CH2O to CO2 phase as the equivalence ratio decreases. The added paths are CH2O→CO→CHO2→CO2, CH2O→CO→CO2, CH2O→CHO→CO→CHO2→CO2, and CH2O→CH2O2→CO2.
- (4)
- N migration pathway analysis showed that the conversion pathway of NH3 to NO shifted from the long reaction chains of NH3→NH2→NH→NO, NH3→NH2→NH→HNO→NO, and NH3→NH2→HNO→NO, to the shorter reaction chains of NH3→HNO→NO and NH3→NH2→NO as the equivalence ratio decreased. This is due to the fact that as the equivalence ratio decreases, more O2 collides to form OH and some of the O2 is directly involved in the reaction. NO2 is the main component of NOX. Statistics show that the equivalence ratios from 1 to 0.33 correspond to 12%, 21.4%, 34%, 46.95%, and 48.86% of NO2 remaining, respectively. This is also caused by the influence of the equivalence ratio on the OH radical concentration.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jisoo, S.; Sungwook, P. Numerical analysis for optimizing combustion strategy in an ammonia-diesel dual-fuel engine. Energy Convers. Manag. 2023, 284, 116980. [Google Scholar]
- Zhang, L.; Sun, R.; Wang, Z.; Zhu, W.; Wang, X.; Qi, H. Application of experiments and density function theory on the formation mechanism of NH during O/Ar and O/HO combustion process of demineralized coals. Fuel 2023, 331, 125730. [Google Scholar] [CrossRef]
- Wang, J.; Li, X.; Li, J.; Xie, Y.; Fan, M.; Jiang, L. Study on the ignition characteristics of CH4/H2/air mixtures in a micro flow reactor with a controlled temperature profile. Int. J. Hydrogen Energy 2023, 51, 818–829. [Google Scholar] [CrossRef]
- Yan, Z.; Yang, Y.; Li, Q.; Yan, Y.; Tian, Z.; Song, C.; Huang, Z. Study on effects of NH3 and/or H2 addition on the characteristics of soot formation and gas emissions in a laminar ethylene diffusion flame. Fuel Process Technol. 2023, 242, 107633. [Google Scholar] [CrossRef]
- Xuan, J.; He, L.; Wen, W.; Feng, Y. Hydrogenase and Nitrogenase: Key Catalysts in Biohydrogen Production. Molecules 2023, 28, 1392. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Gu, M.; Zhu, Y.; Cao, L.; Zhu, B.; Wu, J.; Lin, Y.; Huang, X. A review of the effects of hydrogen, carbon dioxide, and water vapor addition on soot formation in hydrocarbon flames. Int. J. Hydrogen Energy 2021, 46, 31400–31427. [Google Scholar] [CrossRef]
- Zhang, F.; Li, S.; Liu, Q.; Sun, J.; Wei, X.; Gu, M.; Wang, Y.; Huang, X. Effect of ammonia on the soot surface characteristics in ammonia/ethylene co-flow diffusion flames. Fuel 2023, 341, 127633. [Google Scholar] [CrossRef]
- Arun, K.; Ganesh, D.; Nagarajan, G.; Abul, K. An innovative method of ammonia use in a light-duty automotive diesel engine to enhance diesel combustion, performance, and emissions. Int. J. Hydrogen Energy 2020, 45, 98–118. [Google Scholar]
- Xu, L.; Xu, S.; Bai, X.; Juho, A.; Saana, H.; Jari, H. Performance and emission characteristics of an ammonia/diesel dual-fuel marine engine. Renew. Sust. Energy Rev. 2023, 185, 113631. [Google Scholar] [CrossRef]
- Sanchez, A.; Castellano, E.; Martín, M.; Vega, P. Evaluating ammonia as green fuel for power formation: A thermo-chemical perspective. Appl. Energy 2021, 293, 116956. [Google Scholar] [CrossRef]
- Fenghour, A.; Wakeham, A.; Vesovic, V.; Watson, J.; Millat, J.; Vogel, E. The viscosity of ammonia. J. Phys. Chem. Ref. Data 1995, 24, 1649–1667. [Google Scholar] [CrossRef]
- Frigo, S.; Gentili, R. Analysis of the behaviour of a 4-stroke Si engine fuelled with ammonia and hydrogen. Int. J. Hydrogen Energy 2013, 38, 1607–1615. [Google Scholar] [CrossRef]
- Chai, W.; Bao, Y.; Jin, P.; Tang, G.; Zhou, L. A review on ammonia, ammonia-hydrogen and ammonia-methane fuels. Renew. Sustain. Energy Rev. 2021, 147, 111254. [Google Scholar] [CrossRef]
- Zhang, R.; Chen, L.; Wei, H.; Li, J.; Chen, R.; Pana, J. Understanding the difference in combustion and flame propagation characteristics between ammonia and methane using an optical SI engine. Fuel 2022, 324, 124794. [Google Scholar] [CrossRef]
- Nozari, H.; Karabeyouglu, A. Numerical study of combustion characteristics of ammonia as a renewable fuel and establishment of reduced reaction mechanisms. Fuel 2015, 159, 223–233. [Google Scholar] [CrossRef]
- Charles, L.; Pierre, B.; Francesco, C.; Christine, M. Experimental investigation on ammonia combustion behavior in a spark-ignition engine by means of laminar and turbulent expanding flames. Proc. Combust. Inst. 2021, 38, 5859–5868. [Google Scholar]
- Chen, D.; Li, J.; Li, X.; Deng, L.; He, Z.; Huang, H.; Noriyuki, K. Study on combustion characteristics of hydrogen addition on ammonia flame at a porous burner. Energy 2022, 263, 125613. [Google Scholar] [CrossRef]
- Wang, S.; Li, Y.; Lv, J.; Liu, Z.; Gao, S.; Hu, J.; Zhang, J.; Zhong, J.; Zhao, Z. Evaluation of hydrogen addition on combustion and emission characteristics of dual-fuel diesel engines with different compression ratios. Processes 2023, 11, 2675. [Google Scholar] [CrossRef]
- Kurien, C.; Mittal, M. Review on the production and utilization of green ammonia as an alternate fuel in dual-fuel compression ignition engines. Energy Convers. Manag. 2022, 251, 114990. [Google Scholar]
- Wang, W.; Herreros, J.; Tsolakis, A.; York, A. Ammonia as hydrogen carrier for transportation; investigation of the ammonia exhaust gas fuel reforming. Int. J. Hydrogen Energy 2013, 38, 9907–9917. [Google Scholar] [CrossRef]
- Alam, M.; Goto, M.; Sugiyama, S.; Kajiwara, K.; Mori, M.; Konno, M.; Motohashi, M.; Oyama, K. Performance and emissions of a DI diesel engine operated with LPG and ignition improving additives. SAE Int. J. Engines 2001, 01, 3680. [Google Scholar]
- Miller, J.; Nagarajan, G.; Renganarayanan, S. LPG fueled diesel engine using diethyl ether with exhaust gas recirculation. Int. J. Therm. Sci. 2008, 47, 450–457. [Google Scholar] [CrossRef]
- Karabektas, M.; Ergen, G.; Hosoz, M. The effects of using diethylether as additive on the performance and emissions of a diesel engine fuelled with CNG. Fuel 2014, 115, 855–860. [Google Scholar] [CrossRef]
- Tomislav, P.; Martina, P.; Franjo, S.; Larisa, Z.; Tomaz, U. A Simple two-dimensional model of methanol. J. Mol. Liq. 2018, 262, 46–57. [Google Scholar]
- Liu, M.; Dong, D.; Wei, F.; Long, W.; Wang, Y.; Cong, L.; Dong, P.; Tian, H.; Wang, P. Chemical mechanism of ammonia-methanol combustion and chemical reaction kinetics analysis for different methanol blends. Fuel 2023, 314, 127697. [Google Scholar] [CrossRef]
- Wei, F.; Wang, Q.; Cao, J.; Cui, Z.; Long, W.; Tian, H. Experimental study of the ignition chamber with accelerating cavity applying to methanol lean combustion. Fuel 2024, 355, 129358. [Google Scholar] [CrossRef]
- Li, X.; Ma, Z.; Jin, Y.; Wang, X.; Xi, Z.; Hu, S.; Chu, X. Effect of methanol blending on the high-temperature auto-ignition of ammonia: An experimental and modeling study. Fuel 2023, 339, 126911. [Google Scholar] [CrossRef]
- Li, M.; He, X.; Hashemi, H.; Glarborg, P.; Lowe, V.; Marshall, P.; Fernandes, R.; Shu, B. An experimental and modeling study on auto-ignition kinetics of ammonia/methanol mixtures at intermediate temperature and high pressure. Combust. Flame 2022, 242, 112160. [Google Scholar] [CrossRef]
- Hong, C.; Ji, C.; Wang, S.; Xin, G.; Wang, Z.; Meng, H.; Yang, J. An experimental study of various load control strategies for an ammonia/hydrogen dual-fuel engine with the Miller cycle. Fuel Process Technol. 2023, 247, 107780. [Google Scholar] [CrossRef]
- van Duin, A.; Dasgupta, S.; Lorant, F.; Goddard, W.A. ReaxFF: A reactive force field for hydrocarbons. J. Phys. Chem. A 2001, 105, 9396–9409. [Google Scholar] [CrossRef]
- Gao, M.; Li, X.; Guo, L. Pyrolysis simulations of Fugu coal by large-scale ReaxFF molecular dynamics. Fuel Process Technol. 2018, 178, 197–205. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhao, Y.; Zhao, F.; Xu, S.; Ju, X.; Ye, C. ReaxFF simulations on the combustion of Al and n-butanol nanofluid. Fuel 2022, 330, 125465. [Google Scholar] [CrossRef]
- Zhang, M.; Zhou, B.; Chen, Y.; Gong, H. Mechanism and safety analysis of acetylene decomposition explosion: A combined ReaxFF MD with DFT study. Fue 2022, 3227, 124996. [Google Scholar] [CrossRef]
- Li, Y.; Li, G.; Zhang, H.; Wang, J.; Li, A.; Liang, Y. ReaxFF study on nitrogen-transfer mechanism in the oxidation process of lignite. Fuel 2017, 193, 331–342. [Google Scholar] [CrossRef]
- Li, Z.; Yang, Q.; Li, T.; Ma, X.; Zhou, J.; Ye, T.; Wu, J.; Wu, R.; Ben, H. Formation mechanism of hydrogen production from catalytic pyrolysis of waste tires: A ReaxFF molecular dynamics and experimental study. Fuel 2023, 341, 127664. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, X.; Luo, K. Exploring reaction mechanism for ammonia/methane combustion via reactive molecular dynamics simulations. Fuel 2023, 331, 125806. [Google Scholar] [CrossRef]
- Kwon, H.; Shabnam, S.; van Duin, A.; Xuan, Y. Numerical simulations of yield-based sooting tendencies of aromatic fuels using ReaxFF molecular dynamics. Fuel 2020, 262, 116545. [Google Scholar] [CrossRef]
- Mortier, W.; Ghosh, S.; Shankar, S. Electronegativity equalization method for the calculation of atomic charges in molecules. Cheminform 1986, 108, 4315–4320. [Google Scholar] [CrossRef]
- Chenoweth, K.; van Duin, A.; Goddard, W. ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation. J. Phys. Chem. A 2008, 112, 1040–1053. [Google Scholar] [CrossRef]
- Bhoi, S.; Banerjee, T.; Mohanty, K. Molecular dynamic simulation of spontaneous combustion and pyrolysis of brown coal using ReaxFF. Fuel 2014, 136, 326–333. [Google Scholar] [CrossRef]
- Lele, A.; Kwon, H.; Ganeshan, K.; Xuan, Y.; van Duin, A. ReaxFF molecular dynamics study on pyrolysis of bicyclic compounds for aviation fuel. Fuel 2021, 297, 120724. [Google Scholar] [CrossRef]
- Senda, T.; Yamada, Y.; Morimoto, M.; Nono, N.; Sogabe, T.; Kubo, S.; Sato, S. Analyses of oxidation process for isotropic pitch-based carbon fibers using model compounds. Carbon 2019, 142, 311–326. [Google Scholar] [CrossRef]
- Wang, Y.; Gong, S.; Wang, H.; Li, L.; Liu, G. High-temperature pyrolysis of isoprenoid hydrocarbon p-menthane using ReaxFF molecular dynamics simulation. J. Anal. Appl. Pyrol. 2021, 155, 105045. [Google Scholar] [CrossRef]
- Zhang, L.; Zybin, S.; van Duin, A.; Dasgupta, S.; GoddardIII, W. Carbon cluster formation during thermal decomposition of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine and 1,3,5-Triamino-2,4,6-trinitrobenzene high explosives from ReaxFF reactive molecular dynamics simulations. J. Phys. Chem. A 2009, 113, 10619–10640. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.; Jiang, Y.; Liu, C.; Chen, L.; Zhang, W.; Ding, J.; Li, J. Controllable NO emission and high flame performance of ammonia combustion assisted by non-equilibrium plasma. Fuel 2022, 319, 123818. [Google Scholar] [CrossRef]
- Wang, Y.; Gu, M.; Zhu, Y.; Cao, L.; Wu, J.; Lin, Y.; Huang, X. Analysis of soot formation of CH4 and C2H4 with H2 addition via ReaxFF molecular dynamics and pyrolysis–gas chromatography/mass spectrometry. J. Energy Inst. 2022, 100, 177–188. [Google Scholar] [CrossRef]
- Chen, Z.; Sun, W.; Zhao, L. High-temperature and high-pressure pyrolysis of hexadecane: Molecular dynamic simulation based on reactive force field (ReaxFF). J. Phys. Chem. A 2017, 121, 2069–2078. [Google Scholar] [CrossRef]
- Senftle, T.; Hong, S.; Islam, M.; Kylasa, S.; Zheng, Y.; Shin, Y.; Junkermeier, C.; Engel-Herbert, R.; Janik, J.; Aktulga, H.M.; et al. The ReaxFF reactive force-field: Development, applications and future directions. NPJ Comput. Mater. 2016, 2, 15011. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, X.; Ding, J. Chemical effect of NO on CH4 oxidation during combustion in O2/NO environments. Chem. Phys. Lett. 2019, 727, 59–65. [Google Scholar] [CrossRef]
Case | CH4O | H2 | NH3 | O2 | N2 | ρ, g/cm3 | T, K | Φ |
---|---|---|---|---|---|---|---|---|
1 | 40 | 40 | 40 | 220 | 832 | 0.1 | 2000 | 0.5 |
2 | 40 | 40 | 40 | 110 | 416 | 0.1 | 2000 | 1 |
3 | 40 | 40 | 40 | 165 | 624 | 0.1 | 2000 | 0.66 |
4 | 40 | 40 | 40 | 375 | 1040 | 0.1 | 2000 | 0.4 |
5 | 40 | 40 | 40 | 330 | 1248 | 0.1 | 2000 | 0.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, J.; Liu, Q.; Gu, M.; Wang, Y. Effect of Equivalence Ratio on Pollutant Formation in CH4O/H2/NH3 Blend Combustion. Molecules 2024, 29, 176. https://doi.org/10.3390/molecules29010176
Sun J, Liu Q, Gu M, Wang Y. Effect of Equivalence Ratio on Pollutant Formation in CH4O/H2/NH3 Blend Combustion. Molecules. 2024; 29(1):176. https://doi.org/10.3390/molecules29010176
Chicago/Turabian StyleSun, Jingyun, Qianqian Liu, Mingyan Gu, and Yang Wang. 2024. "Effect of Equivalence Ratio on Pollutant Formation in CH4O/H2/NH3 Blend Combustion" Molecules 29, no. 1: 176. https://doi.org/10.3390/molecules29010176
APA StyleSun, J., Liu, Q., Gu, M., & Wang, Y. (2024). Effect of Equivalence Ratio on Pollutant Formation in CH4O/H2/NH3 Blend Combustion. Molecules, 29(1), 176. https://doi.org/10.3390/molecules29010176