Polymer-Supported Heterogeneous Fenton Catalysts for the Environmental Remediation of Wastewater
Abstract
:1. Introduction
2. Polymer-Supported Heterogeneous Fenton Catalysts
2.1. Iron-Based Catalysts
2.2. Copper Complexes/Nanoparticles
2.3. Ruthenium
3. Synthesis Methods Employed in Preparing Polymer-Supported Heterogeneous Catalysts
4. Effect of Operational Parameters on the Fenton Process
4.1. Catalyst Dosage
4.2. Pollutant Concentration
4.3. Effect of pH
5. Recent Developments in Polymer-Supported Heterogeneous Fenton Catalysts
- -
- High specific surface area: Electrospun membranes have a high specific surface area, which provides more active sites for catalysis and increases reaction efficiency.
- -
- Controllable porosity: The diameter and porosity of the fibers can be adjusted during the electrospinning process, which allows for optimized adsorption of contaminants and diffusion of reagents.
- -
- Improved stability and reduced iron leaching: Since the iron ions are immobilized within the polymer matrix instead of being free in solution, the formation of iron hydroxide sludge is avoided, which is a significant advantage over homogeneous Fenton systems.
- -
- Reusability: Membranes produced by electrospinning can be used multiple times with sustained efficiency, reducing operating costs.
6. Conclusions and Final Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hanafi, M.F.; Sapawe, N.A. review on the water problem associate with organic pollutants derived from phenol, methyl orange, and remazol brilliant blue dyes. Mater. Today Proc. 2020, 31, A141–A150. [Google Scholar] [CrossRef]
- Orooji, Y.; Akbari, R.; Nezafat, Z.; Nasrollahzadeh, M.; Kamali, T.A. Recent signs of progress in polymer-supported silver complexes/nanoparticles for remediation of environmental pollutants. Mol. Liq. 2021, 329, 115583. [Google Scholar] [CrossRef]
- Mohan, D.; Shukla, S.P. Hazardous consequences of textile mill effluents on soil and their remediation approaches. Clean. Eng. Technol. 2022, 7, 100434. [Google Scholar]
- Miglani, R.; Parveen, N.; Kumar, A.; Ansari, M.A.; Khanna, S.; Rawat, G.; Panda, A.K.; Bisht, S.S.; Upadhyay, J.; Ansari, M.N. Degradation of Xenobiotic Pollutants: An Environmentally Sustainable Approach. Metabolites 2022, 12, 818. [Google Scholar] [CrossRef] [PubMed]
- Mishra, R.K.; Mentha, S.S.; Misra, Y.; Dwivedi, N. Emerging pollutants of severe environmental concern in water and wastewater: A comprehensive review on current developments and future research. Water-Energy Nexus 2023, 6, 74–95. [Google Scholar] [CrossRef]
- Ghosh, P.; Mukherji, S. Environmental contamination by heterocyclic Polynuclear aromatic hydrocarbons and their microbial degradation. Bioresour. Technol. 2021, 341, 125860. [Google Scholar] [CrossRef]
- Thanigaivel, S.; Vinayagam, S.; Gnanasekaran, L.; Suresh, R.; Soto-Moscoso, M.; Chen, W.H. Environmental fate of aquatic pollutants and their mitigation by phycoremediation for the clean and sustainable environment: A review. Environ. Res. 2024, 240 Pt 1, 117460. [Google Scholar] [CrossRef]
- Narwal, N.; Katyal, D.; Kataria, N.; Rose, P.K.; Warkar, S.G.; Pugazhendhi, A.; Ghotekar, S.; Khoo, K.S. Emerging micropollutants in aquatic ecosystems and nanotechnology-based removal alternatives: A review. Chemosphere 2023, 341, 139945. [Google Scholar] [CrossRef]
- Aravind Kumar, A.J.; Krithiga, T.; Sathish, S.; Renita, A.A.; Prabu, D.; Lokesh, S.; Geetha, R.; Namasivayam, S.K.R.; Sillanpaa, M. Persistent organic pollutants in water resources: Fate, occurrence, characterization and risk analysis. Sci. Total Environ. 2022, 831, 154808. [Google Scholar] [CrossRef]
- Rasheed, T.; Bilal, M.; Nabeel, F.; Adeel, M.; Iqbal, H.M.N. Environmentally-related contaminants of high concern: Potential sources and analytical modalities for detection, quantification, and treatment. Environ. Int. 2019, 122, 52–66. [Google Scholar] [CrossRef]
- Aksu, Z. Application of biosorption for the removal of organic pollutants: A review. Process. Biochem. 2005, 40, 997–1026. [Google Scholar] [CrossRef]
- Hanafi, M.F.; Sapawe, N. A review on the current techniques and technologies of organic pollutants removal from water/wastewater. Mater. Today Proc. 2020, 31, A158–A165. [Google Scholar] [CrossRef]
- Rayaroth, M.P.; Aravindakumar, C.T.; Shah, N.S.; Boczkaj, G. Advanced oxidation processes (AOPs) based wastewater treatment-unexpected nitration side reactions-a serious environmental issue: A review. J. Chem. Eng. 2022, 430, 133002. [Google Scholar] [CrossRef]
- Kumari, P.; Kumar, A. ADVANCED OXIDATION PROCESS: A remediation technique for organic and non-biodegradable pollutant. Results Surf. Interfaces 2023, 11, 100122. [Google Scholar] [CrossRef]
- Wang, N.; Zheng, T.; Zhang, G.; Wang, P. A review on Fenton-like processes for organic wastewater treatment. J. Environ. Chem. Eng. 2016, 4, 762–787. [Google Scholar] [CrossRef]
- Ike, I.A.; Karanfil, T.; Cho, J.; Hur, J. Oxidation byproducts from the degradation of dissolved organic matter by advanced oxidation processes—A critical review. Water Res. 2019, 164, 114929. [Google Scholar] [CrossRef] [PubMed]
- Lima, V.B.; Goulart, L.A.; Rocha, R.S.; Steter, J.R.; Lanza, M.R.V. Degradation of antibiotic ciprofloxacin by different AOP systems using electrochemically generated hydrogen peroxide. Chemosphere 2020, 247, 125807. [Google Scholar] [CrossRef]
- Wang, S. A comparative study of Fenton and Fenton-like reaction kinetics in decolourisation of wastewater. Dyes Pigm. 2008, 76, 714–720. [Google Scholar] [CrossRef]
- Rivas, F.J.; Beltrán, F.J.; Gimeno, O.; Frades, J. Treatment of olive oil mill wastewater by Fenton’s reagent. J. Agric. Food Chem. 2001, 49, 1873–1880. [Google Scholar] [CrossRef]
- Xavier, S.; Gandhimathi, R.; Nidheesh, P.V.; Ramesh, S.T. Comparison of homogeneous and heterogeneous Fenton processes for the removal of reactive dye Magenta MB from aqueous solution. Desalin. Water Treat. 2015, 53, 10911. [Google Scholar] [CrossRef]
- Badawy, M.I.; Ghaly, M.Y.; Gad-Allah, T.A. Advanced oxidation processes for the removal of organophosphorus pesticides from wastewater. Desalination 2006, 194, 166–175. [Google Scholar] [CrossRef]
- Boukhemkhem, A.; Bedia, J.; Belver, C.; Molina, C.B. Degradation of pesticides by heterogeneous Fenton using iron-exchanged clays. Catal. Commun. 2023, 183, 106771. [Google Scholar] [CrossRef]
- Bautista, P.; Mohedano, A.F.; Gilarranz, M.A.; Casas, J.A.; Rodriguez, J.J. Application of Fenton oxidation to cosmetic wastewaters treatment. J. Hazard. Mater. 2007, 143, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Kušić, H.; Božić, A.L.; Koprivanac, N. Fenton type processes for minimization of organic content in coloured wastewaters: Part I: Processes optimization. Dyes Pigm. 2007, 74, 380–387. [Google Scholar] [CrossRef]
- Ramirez, J.H.; Costa, C.A.; Madeira, L.M. Experimental design to optimize the degradation of the synthetic dye Orange II using Fenton’s reagent. Catal. Today 2005, 107, 68–76. [Google Scholar] [CrossRef]
- Silva, M.; Baltrus, J.P.; Williams, C.; Knopf, A.; Zhang, L.; Baltrusaitis, J. Heterogeneous photo-Fenton-like degradation of emerging pharmaceutical contaminants in wastewater using Cu-doped MgO nanoparticles. Appl. Catal. A Gen. 2022, 630, 118468. [Google Scholar] [CrossRef]
- Tekin, H.; Bilkay, O.; Ataberk, S.S.; Balta, T.H.; Ceribasi, I.H.; Sanin, F.D.; Dilek, F.B.; Yetis, U. Use of Fenton oxidation to improve the biodegradability of a pharmaceutical wastewater. J. Hazard. Mater. 2006, 136, 258–265. [Google Scholar] [CrossRef] [PubMed]
- Pintor, A.M.; Vilar, V.J.; Boaventura, R.A. Decontamination of cork wastewaters by solar-photo-Fenton process using cork bleaching wastewater as H2O2 source. Sol. Energy 2011, 85, 579–587. [Google Scholar] [CrossRef]
- Catalkaya, E.C.; Kargi, F. Color, TOC and AOX removals from pulp mill effluent by advanced oxidation processes: A comparative study. J. Hazard. Mater. 2007, 139, 244–253. [Google Scholar] [CrossRef]
- Lopez, A.; Mascolo, G.; Detomaso, A.; Lovecchio, G.; Villani, G. Temperature activated degradation (mineralization) of 4-chloro-3-methyl phenol by Fenton’s reagent. Chemosphere 2005, 59, 397–403. [Google Scholar] [CrossRef]
- Yuan, S.; Gou, N.; Alshawabkeh, A.N.; Gu, A.Z. Efficient degradation of contaminants of emerging concerns by a new electro-Fenton process with Ti/MMO cathode. Chemosphere 2013, 93, 2796–2804. [Google Scholar] [CrossRef] [PubMed]
- Xiao, C.; Li, J.; Zhang, G. Synthesis of stable burger-like α-Fe2O3 catalysts: Formation mechanism and excellent photo-Fenton catalytic performance. J. Clean. Prod. 2018, 180, 550–559. [Google Scholar] [CrossRef]
- Xu, L.; Wang, J. Fenton-like degradation of 2, 4-dichlorophenol using Fe3O4 magnetic nanoparticles. Appl. Catal. B Environ. 2012, 123, 117–126. [Google Scholar] [CrossRef]
- Li, X.; Huang, Y.; Li, C.; Shen, J.; Deng, Y. Degradation of pCNB by Fenton like process using α-FeOOH. J. Chem. Eng. 2015, 260, 28–36. [Google Scholar] [CrossRef]
- Bae, S.; Kim, D.; Lee, W. Degradation of diclofenac by pyrite catalyzed Fenton oxidation. Appl. Catal. B Environ. 2013, 134, 93–102. [Google Scholar] [CrossRef]
- Segura, Y.; Martínez, F.; Melero, J.A.; Fierro, J.L.G. Zero valent iron (ZVI) mediated Fenton degradation of industrial wastewater: Treatment performance and characterization of final composites. J. Chem. Eng. 2015, 269, 298–305. [Google Scholar] [CrossRef]
- Yang, Z.Z.; Zhang, C.; Zeng, G.M.; Tan, X.F.; Wang, H.; Huang, D.L.; Yang, K.H.; Wei, J.J.; Ma, C.; Nie, K. Design and engineering of layered double hydroxide based catalysts for water depollution by advanced oxidation processes: A review. J. Mater. Chem. A 2020, 8, 4141–4173. [Google Scholar] [CrossRef]
- Rache, M.L.; García, A.R.; Zea, H.R.; Silva, A.M.; Madeira, L.M.; Ramírez, J.H. Azo-dye orange II degradation by the heterogeneous Fenton-like process using a zeolite Y-Fe catalyst—Kinetics with a model based on the Fermi’s equation. Appl. Catal. B Environ. 2014, 146, 192–200. [Google Scholar] [CrossRef]
- Cleveland, V.; Bingham, J.P.; Kan, E. Heterogeneous Fenton degradation of bisphenol A by carbon nanotube-supported Fe3O4. Sep. Purif. Technol. 2014, 133, 388–395. [Google Scholar] [CrossRef]
- Gao, W.; Tian, J.; Fang, Y.; Liu, T.; Zhang, X.; Xu, X.; Zhang, X. Visible-light-driven photo-Fenton degradation of organic pollutants by a novel porphyrin-based porous organic polymer at neutral pH. Chemosphere 2020, 243, 125334. [Google Scholar] [CrossRef]
- Bai, Z.; Yang, Q.; Wang, J. Degradation of sulfamethazine antibiotics in Fenton-like system using Fe3O4 magnetic nanoparticles as catalyst. Environ. Prog. Sustain. Energy 2017, 36, 1743–1753. [Google Scholar] [CrossRef]
- Lama, G.; Meijide, J.; Sanromán, A.; Pazos, M. Heterogeneous advanced oxidation processes: Current approaches for wastewater treatment. Catalysts 2022, 12, 344. [Google Scholar] [CrossRef]
- Soler, M.A. Layer-by-layer assembled iron oxide based polymeric nanocomposites. J. Magn. Magn. Mater. 2018, 467, 37–48. [Google Scholar] [CrossRef]
- Gao, M.; Zhang, D.; Li, W.; Chang, J.; Lin, Q.; Xu, D. Degradation of methylene blue in a heterogeneous Fenton reaction catalyzed by chitosan crosslinked ferrous complex. J. Taiwan Inst. Chem. Eng. 2016, 67, 355–361. [Google Scholar] [CrossRef]
- Mehdaoui, R.; Agren, S.; El Haskouri, J.; Beyou, E.; Lahcini, M.; Baouab, M.H.V. An optimized sono-heterogeneous Fenton degradation of olive-oil mill wastewater organic matter by new magnetic glutarlaldehyde-crosslinked developed cellulose. Environ. Sci. Pollut. Res. 2023, 30, 20450–20468. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Ma, G.; Duan, X.; Zhuo, H.; Xu, J.; Chen, H. Poly (acrylic acid–butyl acrylate)-based physical hydrogel for adsorption and microwave-assisted fenton degradation of cationic dye. ACS Appl. Polym. Mater. 2023, 5, 6390–6398. [Google Scholar] [CrossRef]
- Morshed, M.N.; Bouazizi, N.; Behary, N.; Guan, J.; Nierstrasz, V. Stabilization of zero valent iron (Fe0) on plasma/dendrimer functionalized polyester fabrics for Fenton-like removal of hazardous water pollutants. J. Chem. Eng. 2019, 374, 658–673. [Google Scholar] [CrossRef]
- Romanazzi, G.; Mastrorilli, P.; Latronico, M.; Mali, M.; Nacci, A.; DelľAnna, M.M. Catalytic activities of heterogeneous catalysts obtained by copolymerization of metal-containing 2-(acetoacetoxy) ethyl methacrylate. Open Chem. 2018, 16, 520–534. [Google Scholar] [CrossRef]
- Qin, L.; Ru, R.; Mao, J.; Meng, Q.; Fan, Z.; Li, X.; Zhang, G. Assembly of MOFs/polymer hydrogel derived Fe3O4-CuO@ hollow carbon spheres for photochemical oxidation: Freezing replacement for structural adjustment. Appl. Catal. B Environ. 2020, 269, 118754. [Google Scholar] [CrossRef]
- Li, J.; Chen, X.; Xu, D.; Pan, K. Immobilization of horseradish peroxidase on electrospun magnetic nanofibers for phenol removal. Ecotoxicol. Environ. Saf. 2019, 170, 716–721. [Google Scholar] [CrossRef]
- Guo, Z.; Zhang, D.; Wei, S.; Wang, Z.; Karki, A.B.; Li, Y.; Bernazzani, P.; Young, D.P.; Gomes, J.A.; Cocke, D.L.; et al. Effects of iron oxide nanoparticles on polyvinyl alcohol: Interfacial layer and bulk nanocomposites thin film. J. Nanopart. Res. 2010, 12, 2415–2426. [Google Scholar] [CrossRef]
- Mossmann, A.; Dotto, G.L.; Hotza, D.; Jahn, S.L.; Foletto, E.L. Preparation of polyethylene–supported zero–valent iron buoyant catalyst and its performance for Ponceau 4R decolorization by photo–Fenton process. J. Environ. Chem. Eng. 2019, 7, 102963. [Google Scholar] [CrossRef]
- Shin, S.; Yoon, H.; Jang, J. Polymer-encapsulated iron oxide nanoparticles as highly efficient Fenton catalysts. Catal. Commun. 2008, 10, 178–182. [Google Scholar] [CrossRef]
- Quadrado, R.F.; Fajardo, A.R. Fast decolorization of azo methyl orange via heterogeneous Fenton and Fenton-like reactions using alginate-Fe2+/Fe3+ films as catalysts. Carbohydr. Polym. 2017, 177, 443–450. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.; Zhang, C.; Li, J.; Pan, X.; Zhai, X.; Jiao, Y.; Li, Y.; Dong, W.; Qi, X. Highly efficient removal of antibiotic from biomedical wastewater using Fenton-like catalyst magnetic pullulan hydrogels. Carbohydr. Polym. 2021, 262, 117951. [Google Scholar] [CrossRef] [PubMed]
- Zhong, H.; Duan, L.; Ye, P.; Li, X.; Xu, A.; Peng, Q.A. Synthesis of cobalt–nitrogen-doped mesoporous carbon from chitosan and its performance for pollutant degradation as Fenton-like catalysts. Res. Chem. Intermed. 2019, 45, 907–918. [Google Scholar] [CrossRef]
- Kuntail, J.; Pal, S.; Sinha, I. Interfacial phenomena during Fenton reaction on starch stabilized magnetite nanoparticles: Molecular dynamics and experimental investigations. J. Mol. Liq. 2020, 318, 114037. [Google Scholar] [CrossRef]
- Wang, G.; Xiang, J.; Lin, J.; Xiang, L.; Chen, S.; Yan, B.; Fan, H.; Zhang, S.; Shi, X. Sustainable advanced Fenton-like catalysts based on mussel-inspired magnetic cellulose nanocomposites to effectively remove organic dyes and antibiotics. ACS Appl. Mater. Interfaces 2020, 12, 51952–51959. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Barnard, A.S. Naturally occurring iron oxide nanoparticles: Morphology, surface chemistry and environmental stability. J. Mater. Chem. A 2013, 1, 27–42. [Google Scholar] [CrossRef]
- Zhu, H.Y.; Jiang, R.; Fu, Y.Q.; Li, R.R.; Yao, J.; Jiang, S.T. Novel multifunctional NiFe2O4/ZnO hybrids for dye removal by adsorption, photocatalysis and magnetic separation. Appl. Surf. Sci. 2016, 369, 1–10. [Google Scholar] [CrossRef]
- Zhu, H.Y.; Jiang, R.; Huang, S.H.; Yao, J.; Fu, F.Q.; Li, J.B. Novel magnetic NiFe2O4/multi-walled carbon nanotubes hybrids: Facile synthesis, characterization, and application to the treatment of dyeing wastewater. Ceram. Int. 2015, 41, 11625–11631. [Google Scholar] [CrossRef]
- Ahmad, N.; Sultana, S.; Faisal, S.M.; Ahmed, A.; Sabir, S.; Khan, M.Z. Zinc oxide-decorated polypyrrole/chitosan bionanocomposites with enhanced photocatalytic, antibacterial and anticancer performance. RSC Adv. 2019, 9, 41135–41150. [Google Scholar] [CrossRef] [PubMed]
- Jiang, R.; Zhu, H.Y.; Fu, Y.Q.; Jiang, S.T.; Zong, E.M.; Zhu, J.Q.; Zhu, Y.Y.; Chen, L.F. Colloidal CdS sensitized nano-ZnO/chitosan hydrogel with fast and efficient photocatalytic removal of congo red under solar light irradiation. Int. J. Biol. Macromol. 2021, 174, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Marks, T.J.; Facchetti, A. Metal oxides for optoelectronic applications. Nat. Mater. 2016, 15, 383–396. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Zeng, G.M.; Huang, D.L.; Feng, C.L.; Hu, S.; Zhao, M.H.; Lai, C.; Wei, Z.; Huang, C.; Xie, G.X.; et al. Use of iron oxide nanomaterials in wastewater treatment: A review. Sci. Total Environ. 2012, 424, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Ganjali, F.; Kashtiaray, A.; Zarei-Shokat, S.; Taheri-Ledari, R.; Maleki, A. Functionalized hybrid magnetic catalytic systems on micro-and nanoscale utilized in organic synthesis and degradation of dyes. Nanoscale Adv. 2022, 4, 1263–1307. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.K.; Dutta, S.; Sharma, S.; Zboril, R.; Varma, R.S.; Gawande, M.B. Fe3O4 (iron oxide)-supported nanocatalysts: Synthesis, characterization and applications in coupling reactions. Green Chem. 2016, 18, 3184–3209. [Google Scholar] [CrossRef]
- Lupínková, S.; Benkocká, M.; Ryšánek, P.; Kolská, Z. Enhancing immobilization of iron oxide particles on various polymer surfaces. Polym. Eng. Sci. 2022, 62, 1463–1472. [Google Scholar] [CrossRef]
- Mijone, P.D.; Bôas, R.N.V.; Bento, H.B.; Reis, C.E.R.; de Castro, H.F. Coating and incorporation of iron oxides into a magnetic-polymer composite to be used as lipase support for ester syntheses. J. Renew. Energy 2020, 149, 1167–1173. [Google Scholar] [CrossRef]
- Sarkar, S.; Guibal, E.; Quignard, F.; SenGupta, A.K. Polymer-supported metals and metal oxide nanoparticles: Synthesis, characterization, and applications. J. Nanopart. Res. 2012, 14, 715. [Google Scholar] [CrossRef]
- Shifrina, Z.B.; Matveeva, V.G.; Bronstein, L.M. Role of polymer structures in catalysis by transition metal and metal oxide nanoparticle composites. Chem. Rev. 2019, 120, 1350–1396. [Google Scholar] [CrossRef] [PubMed]
- Kobyliukh, A.; Olszowska, K.; Szeluga, U.; Pusz, S. Iron oxides/graphene hybrid structures–Preparation, modification, and application as fillers of polymer composites. Adv. Colloid Interface Sci. 2020, 285, 102285. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.; Rehman, F.; Rafeeq, H.; Waqas, M.; Asghar, A.; Afsheen, N.; Rahdar, A.; Bilal, M.; Iqbal, H.M. In-situ, Ex-situ, and nano-remediation strategies to treat polluted soil, water, and air—A review. Chemosphere 2022, 289, 133252. [Google Scholar] [CrossRef] [PubMed]
- Soon, A.N.; Hameed, B.H. Heterogeneous catalytic treatment of synthetic dyes in aqueous media using Fenton and photo-assisted Fenton process. Desalination 2011, 269, 1–16. [Google Scholar] [CrossRef]
- González-Bahamón, L.F.; Mazille, F.; Benítez, L.N.; Pulgarín, C. Photo-Fenton degradation of resorcinol mediated by catalysts based on iron species supported on polymers. J. Photochem. Photobiol. A 2011, 217, 201–206. [Google Scholar] [CrossRef]
- Ratvijitvech, T. Fe-Immobilised Catechol-Based Hypercrosslinked Polymer as Heterogeneous Fenton Catalyst for Degradation of Methylene Blue in Water. Polym. J. 2022, 14, 2749. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Zhou, Y.; Li, S.; Gu, P.; Xue, G. Hydrogel-coated Fe3O4 nanoparticles as an efficient heterogeneous Fenton catalyst for degradation of phenol. J. Mater. Sci. 2019, 54, 10684–10694. [Google Scholar] [CrossRef]
- Wang, S.; Vincent, T.; Roux, J.C.; Faur, C.; Guibal, E. Pd (II) and Pt (IV) sorption using alginate and algal-based beads. J. Chem. Eng. 2017, 313, 567–579. [Google Scholar] [CrossRef]
- Gao, C.; An, Q.; Xiao, Z.; Zhai, S.; Zhai, B.; Shi, Z. Alginate and polyethyleneimine dually mediated synthesis of nanosilver-containing composites for efficient p-nitrophenol reduction. Carbohydr. Polym. 2018, 181, 744–751. [Google Scholar] [CrossRef]
- Chtchigrovsky, M.; Lin, Y.; Ouchaou, K.; Chaumontet, M.; Robitzer, M.; Quignard, F.; Taran, F. Dramatic effect of the gelling cation on the catalytic performances of alginate-supported palladium nanoparticles for the Suzuki–Miyaura reaction. Chem. Mater. 2012, 24, 1505–1510. [Google Scholar] [CrossRef]
- Iglesias, O.; Gómez, J.; Pazos, M.; Sanromán, M.Á. Electro-Fenton oxidation of imidacloprid by Fe alginate gel beads. Appl. Catal. B Environ. 2014, 144, 416–424. [Google Scholar] [CrossRef]
- Iglesias, O.; Meijide, J.; Bocos, E.; Sanromán, M.Á.; Pazos, M. New approaches on heterogeneous electro-Fenton treatment of winery wastewater. Electrochim. Acta 2015, 169, 134–141. [Google Scholar] [CrossRef]
- Bocos, E.; Pazos, M.; Sanromán, M.Á. Electro-Fenton treatment of imidazolium-based ionic liquids: Kinetics and degradation pathways. RSC Adv. 2016, 6, 1958–1965. [Google Scholar] [CrossRef]
- Iglesias, O.; Fernández de Dios, M.A.; Rosales, E.; Pazos, M.; Sanromán, M.A. Optimisation of decolourisation and degradation of Reactive Black 5 dye under electro-Fenton process using Fe alginate gel beads. Environ. Sci. Pollut. Res. 2013, 20, 2172–2183. [Google Scholar] [CrossRef] [PubMed]
- Titouhi, H.; Belgaied, J.E. Heterogeneous Fenton oxidation of ofloxacin drug by iron alginate support. Environ. Technol. 2016, 37, 2003–2015. [Google Scholar] [CrossRef] [PubMed]
- Hammouda, S.B.; Adhoum, N.; Monser, L. Synthesis of magnetic alginate beads based on Fe3O4 nanoparticles for the removal of 3-methylindole from aqueous solution using Fenton process. J. Hazard. Mater. 2015, 294, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Biswas, S.; Pal, A. Iron oxide-loaded alginate-bentonite hydrogel beads as a green and sustainable catalyst for 4-nitrophenol reduction. Mater. Today Commun. 2021, 28, 102588. [Google Scholar] [CrossRef]
- Ben Ayed, S.; Mansour, L.; Vaiano, V.; Halim Harrath, A.; Ayari, F.; Rizzo, L. Magnetic Fe3O4-natural iron ore/calcium alginate beads as heterogeneous catalyst for Novacron blue dye degradation in water by (photo)Fenton process. J. Photochem. Photobiol. A Chem. 2023, 438, 114566. [Google Scholar] [CrossRef]
- Hua, Y.; Wang, C.; Wang, S.; Xiao, J. Poly (catechol) modified Fe3O4 magnetic nanocomposites with continuous high Fenton activity for organic degradation at neutral pH. Environ. Sci. Pollut. Res. 2021, 28, 62690–62702. [Google Scholar] [CrossRef]
- Elieh-Ali-Komi, D.; Hamblin, M.R. Chitin and chitosan: Production and application of versatile biomedical nanomaterials. Int. J. Adv. Res. 2016, 4, 411. [Google Scholar]
- Meijide, J.; Pazos, M.; Sanromán, M.Á. Heterogeneous electro-Fenton catalyst for 1-butylpyridinium chloride degradation. Environ. Sci. Pollut. Res. 2019, 26, 3145–3156. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, Y.; Shi, B. Polymer hydrogels with enhanced stability and heterogeneous Fenton activity in organic pollutant removal. J. Environ. Sci. 2019, 85, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Khalid, N.; Kalsoom, U.; Ahsan, Z.; Bilal, M. Non-magnetic and magnetically responsive support materials immobilized peroxidases for biocatalytic degradation of emerging dye pollutants—A review. Int. J. Biol. Macromol. 2022, 207, 387–401. [Google Scholar] [CrossRef] [PubMed]
- Borhani, M.; Dadpour, S.; Haghighizadeh, A.; Etemad, L.; Soheili, V.; Memar, B.; Vafaee, F.; Rajabi, O. Crosslinked hydrogel loaded with chitosan-supported iron oxide and silver nanoparticles as burn wound dressing. Pharm. Develop. Technol. 2023, 28, 962–977. [Google Scholar] [CrossRef]
- Ul-Islam, M.; Alabbosh, K.F.; Manan, S.; Khan, S.; Ahmad, F.; Ullah, M.W. Chitosan-based nanostructured biomaterials: Synthesis, properties, and biomedical applications. Adv. Ind. Eng. Polym. Res. 2024, 7, 79–99. [Google Scholar] [CrossRef]
- Li, X.; Cui, K.; Guo, Z.; Yang, T.; Cao, Y.; Xiang, Y.; Chen, H.; Xi, M. Heterogeneous Fenton-like degradation of tetracyclines using porous magnetic chitosan microspheres as an efficient catalyst compared with two preparation methods. J. Chem. Eng. 2020, 379, 122324. [Google Scholar] [CrossRef]
- Farinelli, G.; Di Luca, A.; Kaila, V.R.; MacLachlan, M.J.; Tiraferri, A. Fe-Chitosan complexes for oxidative degradation of emerging contaminants in water: Structure, activity, and reaction mechanism. J. Hazard. Mater. 2021, 408, 124662. [Google Scholar] [CrossRef] [PubMed]
- Cruz, P.; Perez, Y.; del Hierro, I.; Fajardo, M. Copper, copper oxide nanoparticles and copper complexes supported on mesoporous SBA-15 as catalysts in the selective oxidation of benzyl alcohol in aqueous phase. Microporous Mesoporous Mater. 2016, 220, 136–147. [Google Scholar] [CrossRef]
- Savva, I.; Kalogirou, A.S.; Chatzinicolaou, A.; Papaphilippou, P.; Pantelidou, A.; Vasile, E.; Vasile, E.; Koutines, P.A.; Krasia-Christoforou, T. PVP-crosslinked electrospun membranes with embedded Pd and Cu2O nanoparticles as effective heterogeneous catalytic supports. RSC Adv. 2014, 4, 44911–44921. [Google Scholar] [CrossRef]
- Martínez, J.M.L.; Denis, M.F.L.; Piehl, L.L.; de Celis, E.R.; Buldain, G.Y.; Dall’Orto, V.C. Studies on the activation of hydrogen peroxide for color removal in the presence of a new Cu (II)-polyampholyte heterogeneous catalyst. Appl. Catal. B Environ. 2008, 82, 273–283. [Google Scholar] [CrossRef]
- Nagarajan, D.; Venkatanarasimhan, S. Copper (II) oxide nanoparticles coated cellulose sponge—An effective heterogeneous catalyst for the reduction of toxic organic dyes. Environ. Sci. Pollut. Res. 2019, 26, 22958–22970. [Google Scholar] [CrossRef] [PubMed]
- Zayed, M.F.; Eisa, W.H.; Abd ElHameed, M.H.; Abou Zeid, A.M. Spectroscopic investigation of chitosan-supported Cu2O/CuO nanocomposite; a separable catalyst for water-pollutants degradation. J. Alloys Compd. 2020, 835, 155306. [Google Scholar] [CrossRef]
- Castro, I.U.; Stüber, F.; Fabregat, A.; Font, J.; Fortuny, A.; Bengoa, C. Supported Cu(II) polymer catalysts for aqueous phenol oxidation. J. Hazard. Mater. 2009, 163, 809–815. [Google Scholar] [CrossRef] [PubMed]
- Malynych, S.; Luzinov, I.; Chumanov, G. Poly(vinyl pyridine) as a universal surface modifier for immobilization of nanoparticles. J. Phys. Chem. B. 2002, 106, 1280–1285. [Google Scholar] [CrossRef]
- Lyu, L.; Han, M.; Cao, W.; Gao, Y.; Zeng, Q.; Yu, G.; Huang, X.; Hu, C. Efficient Fenton-like process for organic pollutant degradation on Cu-doped mesoporous polyimide nanocomposites. Environ. Sci. Nano 2019, 6, 798–808. [Google Scholar] [CrossRef]
- Rashid, S.; Shen, C.; Chen, X.; Li, S.; Chen, Y.; Wen, Y.; Liu, J. Enhanced catalytic ability of chitosan–Cu–Fe bimetal complex for the removal of dyes in aqueous solution. RSC Adv. 2015, 5, 90731–90741. [Google Scholar] [CrossRef]
- Bokare, A.D.; Choi, W. Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. J. Hazard. Mater. 2014, 275, 121–135. [Google Scholar] [CrossRef] [PubMed]
- Pagliaro, M.; Campestrini, S.; Ciriminna, R. Ru-based oxidation catalysis. Chem. Soc. Rev. 2005, 34, 837–845. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Leung, C.F.; Tsang, Y.K.; Du, H.; Liang, H.; Qiu, Y.; Lau, T.C. A recyclable polymer-supported ruthenium catalyst for the oxidative degradation of bisphenol A in water using hydrogen peroxide. New J. Chem. 2011, 35, 149–155. [Google Scholar] [CrossRef]
- Wu, X.; Chen, Y.; Liu, Y. Supramolecular Crosslinked Polymer for Efficient Organic Dye Removal from Aqueous Solution. Adv. Sustain. Syst. 2019, 3, 1800165. [Google Scholar] [CrossRef]
- Ghanbari, D.; Salavati-Niasari, M.; Ghasemi-Kooch, M. In situ and ex situ synthesis of poly (vinyl alcohol)–Fe3O4 nanocomposite flame retardants. Particuology 2016, 26, 87–94. [Google Scholar] [CrossRef]
- Guibal, E.; Vincent, T.; Jouannin, C. Immobilization of extractants in biopolymer capsules for the synthesis of new resins: A focus on the encapsulation of tetraalkyl phosphonium ionic liquids. J. Mater. Chem. 2009, 19, 8515–8527. [Google Scholar] [CrossRef]
- Manju, G.N.; Krishnan, K.A.; Vinod, V.P.; Anirudhan, T.S. An investigation into the sorption of heavy metals from wastewaters by polyacrylamide-grafted iron (III) oxide. J. Hazard. Mater. 2002, 91, 221–238. [Google Scholar] [CrossRef] [PubMed]
- Baker, C.; Shah, S.I.; Hasanain, S.K. Magnetic behavior of iron and iron-oxide nanoparticle/polymer composites. J. Magn. Magn. Mater. 2004, 280, 412–418. [Google Scholar] [CrossRef]
- Ma, H.L.; Xu, Y.F.; Qi, X.R.; Maitani, Y.; Nagai, T. Superparamagnetic iron oxide nanoparticles stabilized by alginate: Pharmacokinetics, tissue distribution, and applications in detecting liver cancers. Int. J. Pharm. 2008, 354, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Escudero, C.; Fiol, N.; Villaescusa, I.; Bollinger, J.C. Arsenic removal by a waste metal (hydr) oxide entrapped into calcium alginate beads. J. Hazard. Mater. 2009, 164, 533–541. [Google Scholar] [CrossRef]
- Godiya, C.B.; Xiao, Y.; Lu, X. Amine functionalized sodium alginate hydrogel for efficient and rapid removal of methyl blue in water. Int. J. Biol. Macromol. 2020, 144, 671–681. [Google Scholar] [CrossRef] [PubMed]
- Rubina, S.; Vineetha, P.K.; Anas, S. An efficient polymer supported Fenton type catalyst for photodegradation of organic dyes. J. Photochem. Photobiol. A 2024, 449, 115410. [Google Scholar] [CrossRef]
- Gopinath, A.; Pisharody, L.; Popat, A.; Nidheesh, P.V. Supported catalysts for heterogeneous electro-Fenton processes: Recent trends and future directions. Curr. Opin. Solid State Mater. Sci. 2022, 26, 100981. [Google Scholar] [CrossRef]
- Zhang, L.P.; Liu, Z.; Faraj, Y.; Zhao, Y.; Zhuang, R.; Xie, R.; Ju, X.J.; Wang, W.; Chu, L.Y. High-flux efficient catalytic membranes incorporated with iron-based Fenton-like catalysts for degradation of organic pollutants. J. Membr. Sci. 2019, 573, 493–503. [Google Scholar] [CrossRef]
- Wang, C.; Jiang, R.; Yang, J.; Wang, P. Enhanced heterogeneous fenton degradation of organic pollutants by CRC/Fe3O4 catalyst at neutral pH. Front. Chem. 2022, 10, 892424. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Gu, Y.; Li, F. Heterogeneous Fenton system with dual working mechanisms for aqueous pollutants degradation. J. Environ. Chem. Eng. 2022, 10, 107686. [Google Scholar] [CrossRef]
- Zhou, Y.; Shen, J.; Bai, Y.; Li, T.; Xue, G. Enhanced degradation of Acid Red 73 by using cellulose-based hydrogel coated Fe3O4 nanocomposite as a Fenton-like catalyst. Int. J. Biol. Macromol. 2020, 152, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Liu, Y.; Li, T.; Zhou, M. Heterogeneous Fenton catalytic degradation of phenol based on controlled release of magnetic nanoparticles. J. Chem. Eng. 2014, 242, 1–9. [Google Scholar] [CrossRef]
- Fdez-Sanromán, A.; Pazos, M.; Rosales, E.; Sanromán, M.A. Pushing the Operational Barriers for g-C3N4: A Comprehensive Review of Cutting-Edge Immobilization Strategies. Catalysts 2024, 14, 175. [Google Scholar] [CrossRef]
- Ahmed, F.E.; Lalia, B.S.; Hashaikeh, R. A review on electrospinning for membrane fabrication: Challenges and applications. Desalination 2015, 356, 15–30. [Google Scholar] [CrossRef]
- Keshavarz, S.; Okoro, O.V.; Hamidi, M.; Derakhshankhah, H.; Azizi, M.; Mohammad Nabavi, S.; Gholizadeh, S.; Amini, S.M.; Shavandi, A.; Luque, R.; et al. Synthesis, surface modifications, and biomedical applications of carbon nanofibers: Electrospun vs vapor-grown carbon nanofibers. Coord. Chem. Rev. 2022, 472, 214770. [Google Scholar] [CrossRef]
- Zheng, H.; Lu, H.; Li, S.; Niu, J.; Leong, Y.K.; Zhang, W.; Lee, D.-J.; Chang, J.-S. Recent advances in electrospinning-nanofiber materials used in advanced oxidation processes for pollutant degradation. Environ. Pollut. 2024, 344, 123223. [Google Scholar] [CrossRef] [PubMed]
- Behroozi, A.H.; Al-Shaeli, M.; Vatanpour, V. Fabrication and modification of nanofiltration membranes by solution electrospinning technique: A review of influential factors and applications in water treatment. Desalination 2023, 558, 116638. [Google Scholar] [CrossRef]
- Pavithran, P.; John, R.M.; George, S.C.; Raju, N.M. Highly efficient removal of chromium, methylene blue and methyl orange using electrospun polyurethane as a support in heterogeneous Fenton reaction. Environ. Process. 2024, 11, 17. [Google Scholar] [CrossRef]
- Jatoi, A.W. Polyurethane nanofibers incorporated with ZnAg composite nanoparticles for antibacterial wound dressing applications. Compos. Commun. 2020, 19, 103–107. [Google Scholar] [CrossRef]
- Fdez-Sanromán, A.; Pazos, M.; Sanromán, M.A.; Rosales, E. Heterogeneous electro-Fenton system using Fe-MOF as catalyst and electrocatalyst for degradation of pharmaceuticals. Chemosphere 2023, 340, 139942. [Google Scholar] [CrossRef] [PubMed]
- Fdez-Sanromán, A.; Rosales, E.; Pazos, M.; Sanromán, A. One-pot synthesis of bimetallic Fe–Cu metal–organic frameworks composite for the elimination of organic pollutants via peroxymonosulphate activation. Environ. Sci. Pollut. Res. 2023, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.; Zeng, X.; Chen, H.; Li, Z.; Zeng, W.; Mei, L.; Zhao, Y. Versatile polydopamine platforms: Synthesis and promising applications for surface modification and advanced nanomedicine. ACS Nano 2019, 13, 8537–8565. [Google Scholar] [CrossRef]
- Wang, L.; Rao, L.; Ran, M.; Shentu, Q.; Wu, Z.; Song, W.; Zhang, Z.; Li, H.; Yao, Y.; Lv, W.; et al. A polymer tethering strategy to achieve high metal loading on catalysts for Fenton reactions. Nat. Commun. 2023, 14, 7841. [Google Scholar] [CrossRef]
Metal/or Metal Oxide | Polymer Matrix | Pollutant | Removal (%) | Ref. |
---|---|---|---|---|
Ferrous ions | Chitosan | MB | 99% (30 min) | [44] |
PEDOT | RB5 | 90% (10 min) | [53] | |
Pullulan hydrogels | Tetracycline hydrochloride | 91.36% (180 min) | [55] | |
Poly(catechol) | MB | 100% (120 min) | [89] | |
Chitosan | Tetracyclines | 96.0% (20 min) | [90] | |
Goethite | PVA-alginate | 1-butyl pyridinium chloride | 100% (60 min) | [91] |
α-Fe2O3 | PVA | Tetracycline | 100% (60 min) | [92] |
NP | Polymer Designation | Procedure of Fabrication | Ref. |
---|---|---|---|
(magnetite) | Carboxylated polyacrylamide | NPs were combined with N,N-methylenebisacrylamide and potassium peroxydisulphate before the addition of acrylamide monomers. Following polymerization, the resulting PSNPs were functionalized using succinic anhydride dissolved in dioxane at pH 4. | [113] |
Fe/Fe oxide | Poly(methylmethacrylate) (PMMA) | A suspension of NPs and PMMA in acetone was spin-cast and dried to produce magnetically active films. | [114] |
Magnetite | Chitosan and alginate | Chitosan with was blended with NPs before introducing an alginate solution to create hydrogels, which were subsequently dried for use as an adsorbent. | [115] |
/ oxides and hydroxides | Alginate | NPs were blended with an acidified alginate solution and subsequently introduced into a calcium chloride solution. | [116] |
Poly(3,4-ethylenedioxythiophene) | Magnetite NPs in PVA were combined with 3,4-ethylene-dioxythiophene, followed by the addition of HCl. The acid exposes some ions, initiating polymerization and catalyzing the formation of PSNPs. | [53] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouzayani, B.; Sanromán, M.Á. Polymer-Supported Heterogeneous Fenton Catalysts for the Environmental Remediation of Wastewater. Molecules 2024, 29, 2188. https://doi.org/10.3390/molecules29102188
Bouzayani B, Sanromán MÁ. Polymer-Supported Heterogeneous Fenton Catalysts for the Environmental Remediation of Wastewater. Molecules. 2024; 29(10):2188. https://doi.org/10.3390/molecules29102188
Chicago/Turabian StyleBouzayani, Bakhta, and Maria Ángeles Sanromán. 2024. "Polymer-Supported Heterogeneous Fenton Catalysts for the Environmental Remediation of Wastewater" Molecules 29, no. 10: 2188. https://doi.org/10.3390/molecules29102188
APA StyleBouzayani, B., & Sanromán, M. Á. (2024). Polymer-Supported Heterogeneous Fenton Catalysts for the Environmental Remediation of Wastewater. Molecules, 29(10), 2188. https://doi.org/10.3390/molecules29102188