Production of Omega-3 Fatty Acid Concentrates from Common Kilka Oil: Optimization of the Urea Complexation Process
Abstract
:1. Introduction
2. Results and Discussion
2.1. Fatty Acid Profile of Initial Fish Oil
2.2. Production of ω-3 PUFA Concentrates
2.3. Influence of the Independent Variables on the Response Variables: Regression Coefficients and Pareto Charts
2.4. Influence of the Independent Variables on EPA, DHA, and EPA + DHA Amounts of Kilka Concentrate
2.5. Process Parameters and Multiple Response Optimization
2.6. FA Composition of Optimized ω-3 PUFA Concentrates after Validation
3. Materials and Methods
3.1. Materials
3.2. Enzymatic Extraction of Fish Oil
3.3. Derivatization of the Extracted Oil to Fatty Acid Methyl Esters (FAMEs)
3.4. Gas Chromatography (GC) Analysis of FAMEs
3.5. Production of ω-3 PUFA Concentrates via Urea Adduction
3.5.1. Production of FFAs from Fish Oil
3.5.2. The Urea Complexation Procedure
3.6. Procedure Optimization for Production of High-ω-3 PUFA Concentrates
3.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shahidi, F.; Ambigaipalan, P. Omega-3 polyunsaturated fatty acids and their health benefits. Annu. Rev. Food Sci. Technol. 2018, 9, 345–381. [Google Scholar] [CrossRef] [PubMed]
- Yaghmur, A.; Ghayas, S.; Jan, H.; Kalaycioglu, G.D.; Moghimi, S.M. Omega-3 fatty acid nanocarriers: Characterization and potential applications. Curr. Opin. Colloid Interface Sci. 2023, 67, 101728. [Google Scholar] [CrossRef]
- Hosseini, S.F.; Rezaei, M.; McClements, D.J. Bioactive functional ingredients from aquatic origin: A review of recent progress in marine-derived nutraceuticals. Crit. Rev. Food Sci. Nutr. 2022, 62, 1242–1269. [Google Scholar] [CrossRef]
- Keivani, N.; Hosseini, S.F. Omega-3 Polyunsaturated Fatty Acids: Sources, Structural Features and Health Effects. In Handbook of Food Bioactive Ingredients: Properties and Applications; Springer International Publishing: Cham, Switzerland, 2023; pp. 967–995. [Google Scholar]
- Xu, Y.; Chen, Y.; Tang, X. Guidelines for the diagnosis and treatment of coronavirus disease 2019 (COVID-19) in China. Glob. Health Med. 2020, 2, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Das, U.N. Can bioactive lipids inactivate coronavirus (COVID-19)? Arch. Med. Res. 2020, 51, 282–286. [Google Scholar] [CrossRef]
- Kris-Etherton, P.M.; Grieger, J.A.; Etherton, T.D. Dietary reference intakes for DHA and EPA. Prostaglandins Leukot. Essent. Fat. Acids 2009, 81, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Kralovec, J.A.; Zhang, S.; Zhang, W.; Barrow, C.J. A review of the progress in enzymatic concentration and microencapsulation of omega-3 rich oil from fish and microbial sources. Food Chem. 2012, 131, 639–644. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, C.; Hong, P.; Ji, H. Concentration of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) of tuna oil by urea complexation: Optimization of process parameters. J. Food Eng. 2006, 73, 203–209. [Google Scholar] [CrossRef]
- Haq, M.; Park, S.K.; Kim, M.J.; Cho, Y.J.; Chun, B.S. Modifications of Atlantic salmon by-product oil for obtaining different ω-3 polyunsaturated fatty acids concentrates: An approach to comparative analysis. J. Food Drug Anal. 2018, 26, 545–556. [Google Scholar] [CrossRef]
- Ghasemifard, S.; Turchini, G.M.; Sinclair, A.J. Omega-3 long chain fatty acid “bioavailability”: A review of evidence and methodological considerations. Prog. Lipid Res. 2014, 56, 92–108. [Google Scholar] [CrossRef]
- Fazli, H.; Zhang, C.I.; Hay, D.E.; Lee, C.W. Stock assessment and management implications of anchovy kilka (Clupeonella engrauliformis) in Iranian waters of the Caspian Sea. Fish. Res. 2009, 100, 103–108. [Google Scholar] [CrossRef]
- IFO. Iranian Fisheries Organization Statistical Yearbook, 1st ed.; Iranian Fisheries Organization: Tehran, Iran, 2023; p. 30. Available online: https://www.fisheries.ir/Articlefile/18%D8%B3%D8%A7%D9%84%D9%86%D8%A7%D9%85%D9%87%20%D8%AC%D8%AF%DB%8C%D8%AF%20%D8%B4%D8%B4%D9%85%20%D8%A2%D8%A8%D8%A7%D9%86%20%D9%85%D8%A7%D9%87.pdf (accessed on 28 October 2023).
- Ramezanzade, L.; Hosseini, S.F.; Akbari-Adergani, B.; Yaghmur, A. Cross-linked chitosan-coated liposomes for encapsulation of fish-derived peptide. LWT 2021, 150, 112057. [Google Scholar] [CrossRef]
- Park, J.S.; Kim, S.Y.; Lee, S.C.; Jeong, Y.R.; Roy, V.C.; Rizkyana, A.D.; Chun, B.S. Edible oil extracted from anchovies using supercritical CO2: Availability of fat-soluble vitamins and comparison with commercial oils. J. Food Process. Preserv. 2021, 45, e15441. [Google Scholar] [CrossRef]
- Gamez-Meza, N.; Noriega-Rodrıguez, J.A.; Medina-Juárez, L.A.; Ortega-Garcıa, J.; Monroy-Rivera, J.; Toro-Vázquez, F.J.; García, H.S.; Angulo-Guerrero, O. Concentration of eicosapentaenoic acid and docosahexaenoic acid from fish oil by hydrolysis and urea complexation. Food Res. Int. 2003, 36, 721–727. [Google Scholar] [CrossRef]
- Ratnayake, W.M.N.; Olsson, B.; Matthews, D.; Ackman, R.G. Preparation of omega-3 PUFA concentrates from fish oils via urea complexation. Lipid/Fett 1988, 90, 381–386. [Google Scholar] [CrossRef]
- Pando, M.E.; Rodríguez, A.; Galdames, A.; Berríos, M.M.; Rivera, M.; Romero, N.; Valenzuela, M.A.; Ortiz, J.; Aubourg, S.P. Maximization of the docosahexaenoic and eicosapentaenoic acids content in concentrates obtained from a by-product of rainbow trout (Oncorhynchus mykiss) processing. Eur. Food Res. Technol. 2018, 244, 937–948. [Google Scholar] [CrossRef]
- Zheng, Z.; Dai, Z.; Shen, Q. Enrichment of polyunsaturated fatty acids from seal oil through urea adduction and the fatty acids change rules during the process. J. Food Process. Preserv. 2018, 42, e13593. [Google Scholar] [CrossRef]
- Dovale-Rosabal, G.; Rodríguez, A.; Contreras, E.; Ortiz-Viedma, J.; Muñoz, M.; Trigo, M.; Aubourg, S.P.; Espinosa, A. Concentration of EPA and DHA from refined salmon oil by optimizing the urea–fatty acid adduction reaction conditions using response surface methodology. Molecules 2019, 24, 1642. [Google Scholar] [CrossRef] [PubMed]
- Thammapat, P.; Siriamornpun, S.; Raviyan, P. Concentration of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) of Asian catfish oil by urea complexation: Optimization of reaction conditions. Songklanakarin J. Sci. Technol. 2016, 38, 21. [Google Scholar]
- Wanasundara, U.N.; Shahidi, F. Concentration of omega 3-polyunsaturated fatty acids of seal blubber oil by urea complexation: Optimization of reaction conditions. Food Chem. 1999, 65, 41–49. [Google Scholar] [CrossRef]
- FAME Standard (GLC 68D). Available online: http://www.nu-chekprep.com/s.htm (accessed on 28 October 2023).
- Ramezanzade, L.; Hosseini, S.F.; Nikkhah, M. Biopolymer-coated nanoliposomes as carriers of rainbow trout skin-derived antioxidant peptides. Food Chem. 2017, 234, 220–229. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, A.P.; Malcata, F.X. Preparation of fatty acid methyl esters for gas-chromatographic analysis of marine lipids: Insight studies. J. Agric. Food Chem. 2005, 53, 5049–5059. [Google Scholar] [CrossRef] [PubMed]
- Metcalfe, L.D.; Schmitz, A.A.; Pelka, J.R. Rapid preparation of fatty acid esters from lipids for gas chromatographic analysis. Anal. Chem. 1966, 38, 514–515. [Google Scholar] [CrossRef]
- Berríos, M.M.; Rodriguez, A.; Rivera, M.; Pando, M.E.; Valenzuela, M.A.; Aubourg, S.P. Optimisation of rancidity stability in long-chain PUFA concentrates obtained from a rainbow trout (Oncorhynchus mykiss) by-product. Int. J. Food Sci. Technol. 2017, 52, 1463–1472. [Google Scholar] [CrossRef]
- Walfish, S. A review of statistical outlier methods. Pharm. Technol. 2006, 30, 82. [Google Scholar]
Fatty Acid | Crude Oil | Optimized Concentrate |
---|---|---|
Myristic acid (C14:0) | 2.57 ± 0.2 | 1.85 ± 0.88 |
Palmitic acid (C16:0) | 18.23 ± 1.48 | 1.15 ± 0.33 |
Stearic acid (C18:0) | 3.70 ± 0.95 | 1.54 ± 0.64 |
Behenic acid (C22:0) | 1.10 ± 0.28 | 1.96 ± 0.44 |
∑SFAs | 25.60 | 6.50 |
Palmitoleic acid (C16:1n-7) | 4.07 ± 0.33 | 2.32 ± 0.80 |
Oleic acid (C18:1n-9) | 33.47 ± 2.28 | 2.32 ± 0.84 |
Eicosenoic acid (C20:1n-9) | 1.98 ± 0.21 | 1.11 ± 0.16 |
Erucic acid (C22:1n-9) | 1.20 ± 0.55 | 1.75 ± 0.43 |
∑MUFAs | 40.72 | 12.02 |
Linoleic acid (C18:2n-6) | 2.65 ± 0.21 | 9.63 ± 1.14 |
α-Linolenic acid (C18:3n-3)/ALA | 1.64 ± 0.21 | 0.23 ± 0.02 |
Arachidonic acid (C20:4n-6) | 1.47 ± 0.17 | 0.37 ± 0.04 |
Eicosapentaenoic acid (C20:5n-3)/EPA | 5.39 ± 0.20 | 12.07 ± 0.85 |
Docosahexaenoic acid (C22:6n-3)/DHA | 13.32 ± 0.56 | 58.36 ± 4.04 |
∑PUFAs | 24.47 | 80.66 |
∑EPA + DHA | 18.71 | 70.43 |
∑ω-3 PUFAs | 20.35 | 70.66 |
Run | Variable Levels | Responses | ||||
---|---|---|---|---|---|---|
A: Urea–FA (w/w) | B: Temperature (°C) | C: Time (h) | R1: EPA (%) | R2: DHA (%) | R3: EPA + DHA (%) | |
1 | 4 | −8 | 40 | 14.67 | ||
2 | 3 | −16 | 16 | 10.5 | 51.77 | |
3 | 4 | −24 | 24 | 12.76 | 59.67 | 72.43 |
4 | 4 | −8 | 24 | 15.37 | 71.72 | |
5 | 5 | −16 | 32 | 15.4 | 51.3 | 66.7 |
6 | 3 | −16 | 32 | 12.59 | 38.72 | 51.31 |
7 | 4 | −8 | 24 | 15.71 | 50.8 | 66.51 |
8 | 5 | −16 | 16 | 12.6 | 58.05 | 70.65 |
9 | 4 | −8 | 24 | 17.32 | 50.8 | 68.12 |
10 | 4 | −8 | 24 | 17 | 46.47 | 63.47 |
11 | 4 | −8 | 8 | 9.86 | 44.11 | 53.97 |
12 | 5 | 0 | 32 | 16.15 | 49.97 | 66.12 |
13 | 3 | 0 | 16 | 12.14 | 37.26 | 49.4 |
14 | 5 | 0 | 16 | 15.61 | 54.17 | 69.78 |
15 | 4 | −8 | 24 | 16.67 | 49.36 | 66.03 |
16 | 4 | 8 | 24 | 42.51 | 54.84 | |
17 | 4 | −8 | 24 | 16.56 | 51.2 | 67.76 |
18 | 3 | 0 | 32 | 15.41 | 36.63 | 52.04 |
19 | 2 | −8 | 24 | 40.63 | 40.63 | |
20 | 6 | −8 | 24 | 58.6 | 68.17 |
Process Variables a | Response Variables | |||||
---|---|---|---|---|---|---|
R1 (%EPA) | R2 (%DHA) | R3 (%EPA + DHA) | ||||
Coefficient | p Value | Coefficient | p Value | Coefficient | p Value | |
Intercept | 16.44 | 49.77 | 67.3 | |||
Linear | ||||||
A | 1.14 | 0 | 5.27 | 0 | 7.74 | 0 |
B | 1.03 | 0.01 | −3.56 | 0 | −2.39 | 0.02 |
C | 1.15 | 0 | −3.11 | 0.01 | −0.63 | 0.61 |
Quadratic | ||||||
A*A | −1.19 | 0.03 | −1 | 0.99 | −3.2 | 0 |
B*B | −0.4 | 0.15 | 0.36 | 0.53 | −0.89 | 0.24 |
C*C | −1.04 | 0 | −2.91 | 0.01 | −3.59 | 0.01 |
Interaction | ||||||
A*B | −0.09 | 0.76 | 1.52 | 0.2 | 0.02 | 0.98 |
A*C | −0.25 | 0.39 | 0.44 | 0.7 | −1.22 | 0.36 |
B*C | −0.13 | 0.64 | 1.97 | 0.12 | 0.42 | 0.74 |
Lack of fit | 0.34 | 0.17 | 0.16 | |||
R2 | 0.95 | 0.94 | 0.93 | |||
Adjusted R2 | 0.8818 | 0.8731 | 0.8543 |
Part (a) Optimization of Process Variables | |||||
---|---|---|---|---|---|
Independent Variables | Process Variables a | Stationary Point | Optimum Value b | ||
A | B | C | |||
EPA | 4.67 | 1.62 | 27.48 | Maximum | 17.4 |
DHA | 5.76 | −13.35 | 20.92 | Maximum | 60.76 |
EPA + DHA | 5.31 | −13.97 | 21.52 | Maximum | 73.66 |
Part (b) Multiple Response Optimization of Response Variables | |||||
Independent Variables | Process Variables | Stationary Point | Predicted Value b | ||
A | B | C | |||
EPA | 15.93 | ||||
DHA | 5.17 | −9.1 | 23.37 | Maximum | 56.37 |
EPA + DHA | 72.43 | ||||
Maximum desirability | 0.907 | ||||
Part (c) Experimental Validation of the Multiple Response Optimization of the Dependent Variables | |||||
Independent Variables | Process Variables | Stationary Point | Experimental Value b | ||
A | B | C | |||
EPA | 12.07 | ||||
DHA | 5 | −9 | 24 | Maximum | 58.36 |
EPA + DHA | 70.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eskandari, Z.; Hosseini, S.F.; Yaghmur, A. Production of Omega-3 Fatty Acid Concentrates from Common Kilka Oil: Optimization of the Urea Complexation Process. Molecules 2024, 29, 2430. https://doi.org/10.3390/molecules29112430
Eskandari Z, Hosseini SF, Yaghmur A. Production of Omega-3 Fatty Acid Concentrates from Common Kilka Oil: Optimization of the Urea Complexation Process. Molecules. 2024; 29(11):2430. https://doi.org/10.3390/molecules29112430
Chicago/Turabian StyleEskandari, Zahra, Seyed Fakhreddin Hosseini, and Anan Yaghmur. 2024. "Production of Omega-3 Fatty Acid Concentrates from Common Kilka Oil: Optimization of the Urea Complexation Process" Molecules 29, no. 11: 2430. https://doi.org/10.3390/molecules29112430
APA StyleEskandari, Z., Hosseini, S. F., & Yaghmur, A. (2024). Production of Omega-3 Fatty Acid Concentrates from Common Kilka Oil: Optimization of the Urea Complexation Process. Molecules, 29(11), 2430. https://doi.org/10.3390/molecules29112430