Impact of Different Carbon Sources on Volatile Organic Compounds (VOCs) Produced during Fermentation by Levilactobacillus brevis WLP672 Measured Using Proton Transfer Reaction Time-of-Flight Mass Spectrometry (PTR-ToF-MS)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Physicochemical Properties after Fermentation
2.2. VOCs Produced during Fermentation
3. Materials and Methods
3.1. LAB Strain
3.2. Medium Composition
3.3. Fermentation
3.4. Determination of VOCs
3.4.1. PTR-ToF-MS
3.4.2. HS-SPME-GC-MS
3.4.3. FastGC-PTR-ToF-MS
3.5. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Clem, J.; Barthel, B. A look at plant-based diets. Mo. Med. 2021, 118, 233–238. [Google Scholar] [PubMed]
- Lea, E.J.; Crawford, D.; Worsley, A. Consumers’ readiness to eat a plant-based diet. Eur. J. Clin. Nutr. 2005, 60, 342–351. [Google Scholar] [CrossRef] [PubMed]
- Pointke, M.; Pawelzik, E. Plant-based alternative products: Are they healthy alternatives? Micro- and macronutrients and nutritional scoring. Nutrients 2022, 14, 601. [Google Scholar] [CrossRef] [PubMed]
- Alcorta, A.; Porta, A.; Tárrega, A.; Alvarez, M.D.; Vaquero, M.P. Foods for plant-based diets: Challenges and innovations. Foods 2021, 10, 293. [Google Scholar] [CrossRef] [PubMed]
- Aschemann-Witzel, J.; Gantriis, R.F.; Fraga, P.; Perez-Cueto, F.J.A. Plant-based food and protein trend from a business perspective: Markets, consumers, and the challenges and opportunities in the future. Crit. Rev. Food Sci. Nutr. 2020, 61, 3119–3128. [Google Scholar] [CrossRef]
- Michel, F.; Hartmann, C.; Siegrist, M. Consumers’ associations, perceptions and acceptance of meat and plant-based meat alternatives. Food Qual. Prefer. 2020, 87, 104063. [Google Scholar] [CrossRef]
- Szenderák, J.; Fróna, D.; Rákos, M. Consumer acceptance of plant-based meat substitutes: A narrative review. Foods 2022, 11, 1274. [Google Scholar] [CrossRef]
- Astray, G.; García-Río, L.; Mejuto, J.C.; Pastrana, L. Chemistry in food: Flavours. Electron. J. Environ. Agric. Food Chem. 2007, 6, 1742–1763. [Google Scholar]
- Lawless, H. The sense of smell in food quality and sensory evaluation. J. Food Qual. 1991, 14, 33–60. [Google Scholar] [CrossRef]
- Reineccius, G. Flavor Chemistry and Technology, 2nd ed.; Taylor & Francis Group: Florida, USA, 2006; pp. 1–489. [Google Scholar]
- van Ruth, S.M.; Roozen, J.P. Delivery of flavours from food matrices. In Food Flavour Technology, 2nd ed.; Blackwell Publishing: Hoboken, NJ, USA, 2010; pp. 190–206. [Google Scholar]
- Janssens, L.; De Pooter, H.; Schamp, N.; Vandamme, E. Production of flavours by microorganisms. Process. Biochem. 1992, 27, 195–215. [Google Scholar] [CrossRef]
- Petrovici, A.R.; Ciolacu, D.E. Natural flavours obtained by microbiological pathway. In Generation of Aromas and Flavours; InTech: London, UK, 2018; pp. 33–52. [Google Scholar]
- Longo, M.A.; Sanromán, M.A. Production of food aroma compounds: Microbial and enzymatic methodologies. Food Technol. Biotechnol. 2006, 44, 335–353. [Google Scholar]
- Bamforth, C.W.; Cook, D.J. Food, Fermentation, and Micro-Organisms; Wiley: Hoboken, NJ, USA, 2019; pp. 1–245. [Google Scholar]
- Szutowska, J. Functional properties of lactic acid bacteria in fermented fruit and vegetable juices: A systematic literature review. Eur. Food Res. Technol. 2020, 246, 357–372. [Google Scholar] [CrossRef]
- Tangyu, M.; Fritz, M.; Tan, J.P.; Ye, L.; Bolten, C.J.; Bogicevic, B.; Wittmann, C. Flavour by design: Food-grade lactic acid bacteria improve the volatile aroma spectrum of oat milk, sunflower seed milk, pea milk, and faba milk towards improved flavour and sensory perception. Microb. Cell Factories 2023, 22, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Cocaign-Bousquet, M.; Garrigues, C.; Novak, L.; Lindley, N.; Loublere, P. Rational development of a simple synthetic medium for the sustained growth of Lactococcus lactis. J. Appl. Bacteriol. 1995, 79, 108–116. [Google Scholar] [CrossRef]
- Kwoji, I.D.; Okpeku, M.; Adeleke, M.A.; Aiyegoro, O.A. Formulation of chemically defined media and growth evaluation of Ligilactobacillus salivarius ZJ614 and Limosilactobacillus reuteri ZJ625. Front. Microbiol. 2022, 13, 865493. [Google Scholar] [CrossRef]
- Niven, C.F. Nutrition of Streptococcus lactis. J. Bacteriol. 1944, 47, 343–350. [Google Scholar] [CrossRef] [PubMed]
- van Niel, E.W.J.; Hahn-Hägerdal, B. Nutrient requirements of Lactococci in defined growth media. Appl. Microbiol. Biotechnol. 1999, 52, 617–627. [Google Scholar] [CrossRef]
- Wegkamp, A.; Teusink, B.; De Vos, W.; Smid, E. Development of a minimal growth medium for Lactobacillus plantarum. Lett. Appl. Microbiol. 2010, 50, 57–64. [Google Scholar] [CrossRef]
- Zacharof, M.-P.; Lovitt, R.W. Partially chemically defined liquid medium development for intensive propagation of industrial fermentation lactobacilli strains. Ann. Microbiol. 2012, 63, 1235–1245. [Google Scholar] [CrossRef]
- Elshaghabee, F.M.F.; Bockelmann, W.; Meske, D.; de Vrese, M.; Walte, H.-G.; Schrezenmeir, J.; Heller, K.J. Ethanol production by selected intestinal microorganisms and lactic acid bacteria growing under different nutritional conditions. Front. Microbiol. 2016, 7, 47. [Google Scholar] [CrossRef]
- Petrut, S.; Rusu, E.; Tudorache, I.S.; Pelinescu, D.; Sarbu, I.; Stoica, I.; Vassu, T. Influence of various carbon sources on growth and biomass accumulation of some lactic acid bacteria strains. Rev. Chim. 2019, 70, 2434–2438. [Google Scholar] [CrossRef]
- Song, X.; Hou, C.; Yang, Y.; Ai, L.; Xia, Y.; Wang, G.; Yi, H.; Xiong, Z. Effects of different carbon sources on metabolic profiles of carbohydrates in Streptococcus thermophilus during fermentation. J. Sci. Food Agric. 2022, 102, 4820–4829. [Google Scholar] [CrossRef] [PubMed]
- Pastink, M.I.; Sieuwerts, S.; de Bok, F.A.; Janssen, P.W.; Teusink, B.; Vlieg, J.E.v.H.; Hugenholtz, J. Genomics and high-throughput screening approaches for optimal flavour production in dairy fermentation. Int. Dairy J. 2008, 18, 781–789. [Google Scholar] [CrossRef]
- Teixeira, P. Lactobacillus, Lactobacillus brevis. In Encyclopedia of Food Microbiology, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 418–424. [Google Scholar]
- Rajendran, S.; Silcock, P.; Bremer, P. Volatile organic compounds (VOCs) produced by Levilactobacillus brevis WLP672 fermentation in defined media supplemented with different amino acids. Molecules 2024, 29, 753. [Google Scholar] [CrossRef]
- Starowicz, M. Analysis of volatiles in food products. Separations 2021, 8, 157. [Google Scholar] [CrossRef]
- Tholl, D.; Boland, W.; Hansel, A.; Loreto, F.; Röse, U.S.R.; Schnitzler, J.-P. Practical approaches to plant volatile analysis. Plant J. 2006, 45, 540–560. [Google Scholar] [CrossRef] [PubMed]
- Bartle, K.D.; Myers, P. History of gas chromatography. TrAC Trends Anal. Chem. 2002, 21, 547–557. [Google Scholar] [CrossRef]
- Yuriy, P. Methods of analysis of volatile organic compounds. In Methods of Measuring Environmental Parameters; Wiley: Hoboken, NJ, USA, 2014; pp. 229–243. [Google Scholar]
- Vivekanandan-Giri, A.; Byun, J.; Pennathur, S. Quantitative analysis of amino acid oxidation markers by tandem mass spectrometry. In The Unfolded Protein Response and Cellular Stress, Part C. Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 2011; pp. 73–89. [Google Scholar]
- Lubes, G.; Goodarzi, M. Analysis of volatile compounds by advanced analytical techniques and multivariate chemometrics. Chem. Rev. 2017, 117, 6399–6422. [Google Scholar] [CrossRef]
- Blake, R.S.; Monks, P.S.; Ellis, A.M. Proton-transfer reaction mass spectrometry. Chem. Rev. 2009, 109, 861–896. [Google Scholar] [CrossRef]
- Lindinger, W.; Jordan, A. Proton-transfer-reaction mass spectrometry (PTR–MS): On-line monitoring of volatile organic compounds at pptv levels. Chem. Soc. Rev. 1998, 27, 347–375. [Google Scholar] [CrossRef]
- Biasioli, F.; Gasperi, F.; Yeretzian, C.; Märk, T.D. PTR-MS monitoring of VOCs and BVOCs in food science and technology. TrAC Trends Anal. Chem. 2011, 30, 968–977. [Google Scholar] [CrossRef]
- Wang, Y.; Shen, C.; Li, J.; Jiang, H.; Chu, Y. Proton transfer reaction-mass spectrometry (PTR-MS). In Mass Spectrometry Handbook; Wiley: Hoboken, NJ, USA, 2012; pp. 605–630. [Google Scholar]
- Pallozzi, E.; Guidolotti, G.; Ciccioli, P.; Brilli, F.; Feil, S.; Calfapietra, C. Does the novel fast-GC coupled with PTR-TOF-MS allow a significant advancement in detecting VOC emissions from plants? Agric. For. Meteorol. 2016, 216, 232–240. [Google Scholar] [CrossRef]
- Li, T.; Jiang, T.; Liu, N.; Wu, C.; Xu, H.; Lei, H. Biotransformation of phenolic profiles and improvement of antioxidant capacities in jujube juice by select lactic acid bacteria. Food Chem. 2021, 339, 127859. [Google Scholar] [CrossRef]
- Hugenholtz, J. Citrate metabolism in lactic acid bacteria. FEMS Microbiol. Rev. 1993, 12, 165–178. [Google Scholar] [CrossRef]
- Quintans, N.G.; Blancato, V.; Repizo, G.; Magni, C.; López, P. Citrate metabolism and aroma compound production in lactic acid bacteria. In Molecular Aspects of Lactic Acid Bacteria for Traditional and NEW Applications; Research signpost: Kerala, India, 2008; pp. 1–24. [Google Scholar]
- Chen, C.; Zhao, S.; Hao, G.; Yu, H.; Tian, H.; Zhao, G. Role of lactic acid bacteria on the yogurt flavour: A review. Int. J. Food Prop. 2017, 20, S316–S330. [Google Scholar] [CrossRef]
- Zaunmüller, T.; Eichert, M.; Richter, H.; Unden, G. Variations in the energy metabolism of biotechnologically relevant heterofermentative lactic acid bacteria during growth on sugars and organic acids. Appl. Microbiol. Biotechnol. 2006, 72, 421–429. [Google Scholar] [CrossRef]
- Fernández, M.; Zúñiga, M. Amino acid catabolic pathways of lactic acid bacteria. Crit. Rev. Microbiol. 2006, 32, 155–183. [Google Scholar] [CrossRef]
- Christensen, J.E.; Dudley, E.G.; Pederson, J.A.; Steele, J.L. Peptidases and amino acid catabolism in lactic acid bacteria. Antonie Van Leeuwenhoek 1999, 76, 217–246. [Google Scholar] [CrossRef]
- Ardö, Y. Flavour formation by amino acid catabolism. Biotechnol. Adv. 2006, 24, 238–242. [Google Scholar] [CrossRef]
- Marsili, R. Flavors and off-flavors in dairy foods. In Encyclopedia of Dairy Sciences, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 560–578. [Google Scholar]
- Chen, C.; Lu, Y.; Yu, H.; Chen, Z.; Tian, H. Influence of 4 lactic acid bacteria on the flavor profile of fermented apple juice. Food Biosci. 2018, 27, 30–36. [Google Scholar] [CrossRef]
- Resconi, V.C.; Escudero, A.; Campo, M.M. The Development of aromas in ruminant meat. Molecules 2013, 18, 6748–6781. [Google Scholar] [CrossRef] [PubMed]
- Smit, G.; Smit, B.A.; Engels, W.J. Flavour formation by lactic acid bacteria and biochemical flavour profiling of cheese products. FEMS Microbiol. Rev. 2005, 29, 591–610. [Google Scholar] [CrossRef] [PubMed]
- Kranenburg, R.; Kleerebezem, M.; Van Hylckama Vlieg, J.; Ursing, B.M.; Boekhorst, J.; Smit, B.A.; Ayad, E.H.E.; Smit, G.; Siezen, R.J. Flavour formation from amino acids by lactic acid bacteria: Predictions from genome sequence analysis. Int. Dairy J. 2002, 12, 111–121. [Google Scholar] [CrossRef]
- Marilley, L.; Casey, M. Flavours of cheese products: Metabolic pathways, analytical tools and identification of producing strains. Int. J. Food Microbiol. 2004, 90, 139–159. [Google Scholar] [CrossRef] [PubMed]
- McSweeney, P.L.H.; Sousa, M.J. Biochemical pathways for the production of flavour compounds in cheeses during ripening: A review. Lait 2000, 80, 293–324. [Google Scholar] [CrossRef]
- Laëtitia, G.; Pascal, D.; Yann, D. The citrate metabolism in homo- and heterofermentative LAB: A selective means of becoming dominant over other microorganisms in complex ecosystems. Food Nutr. Sci. 2014, 05, 953–969. [Google Scholar] [CrossRef]
- Le Bars, D.; Yvon, M. Formation of diacetyl and acetoin by Lactococcus lactis via aspartate catabolism. J. Appl. Microbiol. 2007, 104, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Vincenti, S.; Mariani, M.; Alberti, J.-C.; Jacopini, S.; Brunini-Bronzini De Caraffa, V.; Berti, L.; Maury, J. Biocatalytic synthesis of natural green leaf volatiles using the lipoxygenase metabolic pathway. Catalysts 2019, 9, 873. [Google Scholar] [CrossRef]
- Aguedo, M.; Ly, M.H.; Belo, I.; Teixeira, J.A.; Belin, J. The use of enzymes and microorganisms for the production of aroma compounds from lipids. Food Technol. Biotech. 2004, 42, 327–336. [Google Scholar]
- Gutsche, K.A.; Tran, T.B.T.; Vogel, R.F. Production of volatile compounds by Lactobacillus sakei from branched chain α-keto acids. Food Microbiol. 2012, 29, 224–228. [Google Scholar] [CrossRef]
- Tavaria, F.K.; Dahl, S.; Carballo, F.J.; Malcata, F.X. Amino acid catabolism and generation of volatiles by lactic acid bacteria. J. Dairy Sci. 2002, 85, 2462–2470. [Google Scholar] [CrossRef] [PubMed]
- Pastink, M.I.; Teusink, B.; Hols, P.; Visser, S.; de Vos, W.M.; Hugenholtz, J. Genome-scale model of Streptococcus thermophilus LMG18311 for metabolic comparison of lactic acid bacteria. Appl. Environ. Microbiol. 2009, 75, 3627–3633. [Google Scholar] [CrossRef] [PubMed]
- De Man, J.C.; Rogosa, M.; Sharpe, M.E. A medium for the cultivation of lactobacilli. J. Appl. Bacteriol. 1960, 23, 130–135. [Google Scholar] [CrossRef]
- Henderson, L.; Snell, E.E. A uniform medium for determination of amino acids with various microorganisms. J. Biol. Chem. 1948, 172, 15–29. [Google Scholar] [CrossRef]
- MacLeod, R.A.; Snell, E.E. Some mineral requirements of the lactic acid bacteria. J. Biol. Chem. 1947, 170, 351–365. [Google Scholar] [CrossRef]
- Russell, C.; Bhandari, R.R.; Walker, T.K. Vitamin requirements of thirty-four lactic acid bacteria associated with brewery products. J. Gen. Microbiol. 1954, 10, 371–376. [Google Scholar] [CrossRef] [PubMed]
- Di Pierro, E.A.; Franceschi, P.; Endrizzi, I.; Farneti, B.; Poles, L.; Masuero, D.; Khomenko, I.; Trenti, F.; Marrano, A.; Vrhovsek, U.; et al. Valorization of traditional Italian walnut (Juglans regia L.) production: Genetic, nutritional and sensory characterization of locally grown varieties in the Trentino region. Plants 2022, 11, 1986. [Google Scholar] [CrossRef] [PubMed]
- Cappellin, L.; Biasioli, F.; Fabris, A.; Schuhfried, E.; Soukoulis, C.; Märk, T.D.; Gasperi, F. Improved mass accuracy in PTR-ToF-MS: Another step towards better compound identification in PTR-MS. Int. J. Mass Spectrom. 2010, 290, 60–63. [Google Scholar] [CrossRef]
- Cappellin, L.; Biasioli, F.; Granitto, P.M.; Schuhfried, E.; Soukoulis, C.; Costa, F.; Märk, T.D.; Gasperi, F. On data analysis in PTR-ToF-MS: From raw spectra to data mining. Sens. Actuators B Chem. 2010, 155, 183–190. [Google Scholar] [CrossRef]
- Lindinger, W.; Hansel, A.; Jordan, A. On-line monitoring of volatile organic compounds at pptv levels by means of proton-transfer-reaction mass spectrometry (PTR-MS) medical applications, food control and environmental research. Int. J. Mass Spectrom. Ion Process. 1998, 173, 191–241. [Google Scholar] [CrossRef]
- Pico, J.; Khomenko, I.; Capozzi, V.; Navarini, L.; Bernal, J.; Gómez, M.; Biasioli, F. Analysis of volatile organic compounds in crumb and crust of different baked and toasted gluten-free breads by direct PTR-ToF-MS and fast-GC-PTR-ToF-MS. J. Mass Spectrom. 2018, 53, 893–902. [Google Scholar] [CrossRef] [PubMed]
- Alboukadel, K.; Fabian, M. Package ‘Factoextra’. 2019. Available online: http://www.sthda.com/english/rpkgs/factoextra (accessed on 29 April 2024).
Medium | Initial pH | at 25 °C | at 35 °C | ||
---|---|---|---|---|---|
pH | OD600 | pH | OD600 | ||
DM | 5.67 ± 0.035 a | 4.47 ± 0.011 b | 1.40 ± 0.005 a | 4.44 ± 0.1 b | 1.20 ± 0.005 b |
DMFr | 5.68 ± 0.025 a | 4.72 ± 0.03 b | 1.26 ± 0.06 a | 4.65 ± 0.04 b | 1.06 ± 0.04 b |
DMCi | 6.27 ± 0.005 a | 6.27 ± 0.0045 a | 0.07 ± 0.005 a | 6.27 ± 0.0005 a | 0.05 ± 0.0025 a |
No | VOCs | Formula | RT | RI.cal | RI.lit |
---|---|---|---|---|---|
Acids | |||||
1 | Acetic acid | C2H4O2 | 15.29 | 1467 | 1449 |
2 | Butyric acid | C4H8O2 | 19.626 | 1646 | 1625 |
3 | Hexanoic acid | C6H12O2 | 24.439 | 1862 | 1846 |
4 | Octanoic acid | C8H16O2 | 28.755 | 2035 | 2060 |
5 | Decanoic acid | C10H20O2 | 32.698 | 2154 | 2276 |
Alcohols | |||||
6 | 2-Propanol | C3H8O | 3.068 | 934 | 927 |
7 | Ethanol | C2H6O | 3.162 | 941 | 932 |
8 | 2-Pentanol | C5H12O | 6.687 | 1134 | 1119 |
9 | 1-Butanol | C4H10O | 7.271 | 1158 | 1142 |
10 | 2/3-Methyl-1-butanol | C5H12O | 8.862 | 1220 | 1208/1209 |
11 | 3-Methyl-3-buten-1-ol | C5H10O | 9.99 | 1263 | 1248 |
12 | 2-Heptanol | C7H16O | 11.784 | 1332 | 1320 |
13 | Hexanol | C6H14O | 12.671 | 1365 | 1355 |
14 | 2,3-Butanediol | C4H10O2 | 17.438 | 1554 | 1543 |
15 | 1-Octanol | C8H18O | 17.858 | 1571 | 1557 |
16 | Menthol | C10H20O | 19.806 | 1653 | 1637 |
17 | 2-Decen-1-ol | C10H20O | 23.788 | 1832 | 1806 |
18 | Benzyl alcohol | C7H8O | 25.143 | 1895 | 1870 |
19 | Phenylethyl alcohol | C8H10O | 25.853 | 1930 | 1906 |
20 | 2-Tridecanol | C13H28O | 25.9 | 1933 | 1903 |
21 | P-cresol | C7H8O | 29.452 | 2051 | 2080 |
Aldehydes | |||||
22 | Butanal | C4H8O | 2.752 | 911 | 877 |
23 | 2-Methyl butanal | C5H10O | 2.898 | 922 | 914 |
24 | 3-Methyl butanal | C5H10O | 2.958 | 926 | 918 |
25 | 2-Methyl-2-butenal | C5H8O | 6.174 | 1114 | 1095 |
26 | 3-Methyl-2-butenal | C5H8O | 8.765 | 1216 | 1215 |
27 | 2-Methyl pentanal | C6H12O | 13.655 | 1403 | - |
28 | Benzaldehyde | C7H6O | 17.154 | 1542 | 1520 |
29 | Benzeneacetaldehyde | C8H8O | 20.033 | 1663 | 1640 |
Esters | |||||
30 | Ethyl acetate | C4H8O2 | 2.608 | 901 | 888 |
31 | Isoamyl acetate | C7H14O2 | 6.811 | 1139 | 1122 |
32 | 2-Phenylethyl acetate | C10H12O2 | 23.892 | 1836 | 1813 |
Furans | |||||
33 | Furfural | C5H4O2 | 15.723 | 1484 | 1461 |
34 | 2-Furanmethanol | C5H6O2 | 20.403 | 1679 | 1660 |
Ketones | |||||
35 | Acetone | C3H6O | 1.971 | 823 | 819 |
36 | 2-Heptanone | C7H14O | 8.285 | 1198 | 1182 |
Sulphur compounds | |||||
37 | Dimethyl disulfide | C2H6S2 | 5.727 | 1095 | 1077 |
38 | Methional | C4H8OS | 15.467 | 1474 | 1454 |
39 | Cyclohexyl isothiocyanate | C7H11NS | 20.607 | 1687 | 1667 |
40 | 3-(methylthio)-1-propanol (methionol) | C4H10OS | 21.644 | 1734 | 1719 |
Pyrazine | |||||
41 | Pyrazine | C4H4N2 | 9.076 | 1228 | 1212 |
Unknown compounds | |||||
42 | Unknown 1 | 6.04 | |||
43 | Unknown 2 | 12.528 |
No | m/z | Sum Formula (Protonated Ion) | Tentative Identification | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|
M | T | Temp | M × T | M × Temp | T × Temp | M × T × Temp | ||||
1 | 26.016 | C2H2+ | Common fragment | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
2 | 27.025 | C2H3+ | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
3 | 28.031 | C2H4+ | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
4 | 31.018 | CH2OH+ | Formaldehyde | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
5 | 33.033 | CH4OH+ | 0.969 | <0.0001 | <0.0001 | 0.005 | 0.001 | <0.0001 | 0.003 | |
6 | 34.996 | H2SH+ | Hydrogen sulfide | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.008 | <0.0001 | 0.012 |
7 | 41.039 | C3H5+ | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.005 | <0.0001 | <0.0001 | |
8 | 42.010 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | ||
9 | 43.018 | C2H3O+ | Common fragment | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
10 | 43.054 | C3H7+ | Propanol fragment 1 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
11 | 45.033 | C2H4OH+ | Acetaldehyde | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
12 | 47.049 | C2H6OH+ | Ethanol 1 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
13 | 49.011 | CH4SH+ | Methanethiol | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.037 | <0.0001 | 0.057 |
14 | 53.006 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | ||
15 | 55.057 | C4H7+ | 0.986 | <0.0001 | 0.276 | 0.009 | 0.723 | 0.422 | 0.668 | |
16 | 57.036 | C3H4OH+ | 0.885 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
17 | 57.070 | C4H9+ | 1-Butanol fragment 1 | <0.0001 | <0.0001 | <0.0001 | 0.242 | <0.0001 | <0.0001 | 0.066 |
18 | 61.028 | C2H4O2H+ | Acetic acid 1,2,3 | 0.324 | <0.0001 | <0.0001 | 0.036 | <0.0001 | <0.0001 | 0.001 |
19 | 63.009 | CO2*H3O+ | <0.0001 | <0.0001 | 0.190 | <0.0001 | 0.122 | 0.200 | 0.128 | |
20 | 63.944 | 0.082 | <0.0001 | <0.0001 | 0.144 | 0.200 | <0.0001 | 0.426 | ||
21 | 64.005 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.032 | <0.0001 | 0.062 | ||
22 | 71.085 | C5H11+ | 3-Methyl-butanol fragment 1,2 | <0.0001 | <0.0001 | <0.0001 | 0.998 | 0.183 | 0.004 | 0.540 |
23 | 77.011 | 0.002 | <0.0001 | 0.001 | 0.045 | 0.425 | <0.0001 | 0.905 | ||
24 | 77.030 | 0.004 | <0.0001 | 0.196 | 0.051 | 0.009 | 0.465 | 0.005 | ||
25 | 78.967 | CH2S2H+ | 0.006 | <0.0001 | <0.0001 | 0.019 | 0.090 | <0.0001 | 0.148 | |
26 | 81.016 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | ||
27 | 81.041 | C4H4N2H+ | Pyrazine1 | 0.046 | <0.0001 | <0.0001 | 0.036 | 0.566 | 0.732 | 0.868 |
28 | 83.069 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | ||
29 | 89.060 | C4H8O2H+ | Ethyl acetate 1,2,4 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
30 | 91.027 | C3H6OSH+ | Methyl thiolacetate/Mercaptoacetone | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
31 | 91.072 | C4H10O2H+ | 2,3-Butanediol 1 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
32 | 93.996 | <0.0001 | <0.0001 | <0.0001 | 0.079 | 0.365 | <0.0001 | 0.365 | ||
33 | 95.004 | C2H6S2H+ | Dimethyl disulfide 1 | 0.004 | <0.0001 | <0.0001 | 0.010 | 0.031 | <0.0001 | 0.050 |
34 | 95.093 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | ||
35 | 97.063 | C6H8OH+ | 2,5-Dimethylfuran/Cyclohexen-2-one | <0.0001 | <0.0001 | <0.0001 | 0.144 | <0.0001 | <0.0001 | <0.0001 |
36 | 99.119 | C7H15+ | 2-Heptanol fragment 1 | 0.059 | <0.0001 | <0.0001 | 0.076 | 0.700 | <0.0001 | 0.447 |
37 | 103.074 | C5H10O2H+ | C5 esters and acids (pentanoic acid/3-methyl butanoic acid) | 0.027 | <0.0001 | <0.0001 | <0.0001 | 0.017 | 0.544 | 0.002 |
38 | 107.066 | C4H10OSH+ | Methionol 1 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
39 | 107.107 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | ||
40 | 109.059 | C7H8OH+ | Benzyl alcohol 1 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
41 | 111.099 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | ||
42 | 115.112 | C7H14OH+ | 2-Heptanone 1,2 | 0.916 | 0.009 | 0.004 | 0.069 | 0.717 | 0.023 | 0.256 |
43 | 117.091 | C6H12O2H+ | Hexanoic acid 1 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
44 | 121.057 | C8H8OH+ | Benzeneacetaldehyde 1 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
45 | 121.119 | <0.0001 | 0.070 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | ||
46 | 123.045 | C7H6O2H+ | Benzoic acid | 0.006 | <0.0001 | 0.201 | 0.002 | 0.004 | 0.257 | 0.005 |
47 | 126.967 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.004 | <0.0001 | 0.004 | ||
48 | 131.105 | C7H14O2H+ | Isoamyl acetate 1 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
49 | 135.100 | C6H14O3H+ | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
50 | 135.134 | 0.315 | 0.033 | <0.0001 | 0.044 | 0.285 | 0.012 | 0.250 | ||
51 | 139.064 | <0.0001 | 0.009 | 0.005 | 0.002 | <0.0001 | 0.005 | 0.001 | ||
52 | 145.123 | C8H16O2H+ | Octanoic acid 1 | 0.001 | <0.0001 | 0.001 | 0.003 | 0.018 | 0.022 | 0.006 |
53 | 173.154 | C10H20O2H+ | Decanoic acid 1 | <0.0001 | <0.0001 | 0.001 | <0.0001 | 0.003 | <0.0001 | <0.0001 |
54 | 201.185 | C12H24O2H+ | Decanoic acid ethyl ester | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.001 | <0.0001 |
Compound Name | Molecular Formula | Main/fragment Ions Checked | |||
---|---|---|---|---|---|
m/z | m/z | m/z | m/z | ||
Ethyl acetate | C4H8O2 | 89.060 (C4H8O2)H+ | 61.028 (C2H4O2)H+ | 43.018 (C2H3O)H+ | |
Butyric acid | C4H8O2 | 89.060 (C4H8O2)H+ | 71.049 (C4H6O)H+ | 43.054 (C3H7)H+ | 29.039 (C2H5)H+ |
No | Flavour Standards | Molecular Formula | Molecular Weight | RI | RT (s) | Main/Fragment Ions Checked |
---|---|---|---|---|---|---|
1 | Ethyl acetate | C4H8O2 | 88 | 888 | 58 | 89.060, 61.028, 43.018 |
2 | 2-Butanone | C4H8O | 72 | 918 | 60 | 73.065 |
3 | Ethanol | C2H6O | 46 | 932 | 59 | 47.049 |
4 | Ethyl butanoate | C6H12O2 | 116 | 1023 | 68 | 117.091, 89.060, 43.054 |
5 | 2-Methyl propanol | C4H10O | 74 | 1092 | 69 | 57.07 |
6 | 2-Hexanone | C6H12O | 100 | 1100 | 78 | 101.096 |
7 | 2-Heptanone | C7H14O | 114 | 1182 | 84.5 | 115.112 |
8 | 3-Methyl butanol | C5H12O | 88 | 1209 | 82.2 | 71.086 |
9 | Ethyl hexanoate | C8H16O2 | 144 | 1233 | 89 | 145.122, 117.091 |
10 | 2-Nonanone | C9H18O | 142 | 1390 | 109 | 143.143 |
11 | Ethyl octanoate | C10H20O2 | 172 | 1435 | 111.5 | 127.112, 145.122 |
12 | Acetic acid | C2H4O2 | 60 | 1449 | 112.5 | 61.028, 43.018 |
13 | Benzaldehyde | C7H6O | 106 | 1520 | 115.5 | 107.049 |
14 | Ethyl decanoate | C12H24O2 | 200 | 1638 | 146 | 201.233, 155.107 |
15 | Phenylethyl alcohol | C8H10O | 122 | 1906 | 218 | 105.070 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajendran, S.; Khomenko, I.; Silcock, P.; Betta, E.; Biasioli, F.; Bremer, P. Impact of Different Carbon Sources on Volatile Organic Compounds (VOCs) Produced during Fermentation by Levilactobacillus brevis WLP672 Measured Using Proton Transfer Reaction Time-of-Flight Mass Spectrometry (PTR-ToF-MS). Molecules 2024, 29, 3275. https://doi.org/10.3390/molecules29143275
Rajendran S, Khomenko I, Silcock P, Betta E, Biasioli F, Bremer P. Impact of Different Carbon Sources on Volatile Organic Compounds (VOCs) Produced during Fermentation by Levilactobacillus brevis WLP672 Measured Using Proton Transfer Reaction Time-of-Flight Mass Spectrometry (PTR-ToF-MS). Molecules. 2024; 29(14):3275. https://doi.org/10.3390/molecules29143275
Chicago/Turabian StyleRajendran, Sarathadevi, Iuliia Khomenko, Patrick Silcock, Emanuela Betta, Franco Biasioli, and Phil Bremer. 2024. "Impact of Different Carbon Sources on Volatile Organic Compounds (VOCs) Produced during Fermentation by Levilactobacillus brevis WLP672 Measured Using Proton Transfer Reaction Time-of-Flight Mass Spectrometry (PTR-ToF-MS)" Molecules 29, no. 14: 3275. https://doi.org/10.3390/molecules29143275
APA StyleRajendran, S., Khomenko, I., Silcock, P., Betta, E., Biasioli, F., & Bremer, P. (2024). Impact of Different Carbon Sources on Volatile Organic Compounds (VOCs) Produced during Fermentation by Levilactobacillus brevis WLP672 Measured Using Proton Transfer Reaction Time-of-Flight Mass Spectrometry (PTR-ToF-MS). Molecules, 29(14), 3275. https://doi.org/10.3390/molecules29143275