The Preparation of N, P-Doped NiSe Nanorod Electrode Materials on Nickel Foam Using the Microwave Method for High-Performance Supercapacitors
Abstract
:1. Introduction
2. Results
2.1. Morphology and Microstructure
2.2. Electrochemical Performance Analysis
2.2.1. Electrochemical Properties of the Three-Electrode System
2.2.2. Electrochemical Properties of the Two-Electrode System
3. Materials and Methods
3.1. Material Preparation
3.2. Preparation of N, P-NiSe/Ni
3.3. Preparation of N, P-NiSe/Ni//AC
3.4. Characterisation of N, P-NiSe
3.5. Electrochemical Testing
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, R.; Sharma, R.; Tan, Z.; Kautish, P. Do export diversification and stock market development drive carbon intensity? The role of renewable energy solutions in top carbon emitter countries. Renew. Energy 2022, 185, 1318–1328. [Google Scholar] [CrossRef]
- Kebede, A.A.; Kalogiannis, T.; Mierlo, J.M.; Berecibar, M. A comprehensive review of stationary energy storage devices for large scale renewable energy sources grid integration. Renew. Sustain. Energy Rev. 2022, 159, 112213. [Google Scholar] [CrossRef]
- Usman, F.O.; Ani, E.C.; Ebirim, W. Danny Jose Portillo Montero, Kehinde Andrew Olu-lawal, Nwakamma Ninduwezuor-Ehiobu. Integrating renewable energy solutions in the manufacturing industry: Challenges and opportunities: A review. Eng. Sci. Technol. J. 2024, 5, 674–703. [Google Scholar]
- Huang, J.; Xie, Y.; You, Y.; Yuan, J.; Xu, Q.; Xie, H.; Chen, Y. Rational Design of Electrode Materials for Advanced Supercapacitors: From Lab Research to Commercialization. Adv. Funct. Mater. 2023, 33, 2213095. [Google Scholar] [CrossRef]
- Zhao, H.; Hu, X.; Kang, H.; Feng, F.; Guo, Y.; Lu, Z. Microwave Construction of NiSb/NiTe Composites on Ni-Foam for High-Performance Supercapacitors. ACS Omega 2023, 9, 2597–2605. [Google Scholar] [CrossRef] [PubMed]
- Shahedi, M.; Hadi, A.R.; Salehghadimi, L.; Tabrizi, A.G.; Farhoudian, S.; Babapoor, A.; Pahlevani, M. Flexible all-solid-state supercapacitors with high capacitance, long cycle life, and wide operational potential window: Recent progress and future perspectives. J. Energy Storage 2022, 50, 104223. [Google Scholar]
- Lu, Z.; Zhao, H.; Luo, J.; Bi, R. Self-supporting lignin-based carbon material flexible supercapacitor prepared by the microwave method. Energy Fuels 2022, 36, 8480–8487. [Google Scholar] [CrossRef]
- Richard, L. McCreery. Advanced Carbon Electrode Materials for Molecular Electrochemistry. Chem. Rev. 2008, 108, 2646–2687. [Google Scholar]
- Mandal, S.; Thangarasu, S.; Thong, P.T.; Kim, S.-C.; Shim, J.-Y.; Jung, H.-Y. Positive electrode active material development opportunities through carbon addition in the lead-acid batteries: A recent progress. J. Power Sources 2021, 485, 229336. [Google Scholar] [CrossRef]
- Fang, B.; Binder, L. A Novel Carbon Electrode Material for Highly Improved EDLC Performance. J. Phys. Chem. B 2006, 110, 7877–7882. [Google Scholar] [CrossRef]
- Elumalai, P.; Charles, J. Investigation of structural and optical properties of ternary polyaniline-polypyrrole-nickel oxide (PANI-PPy-NiO) nanocomposite for optoelectronic devices. Polym. Int. 2023, 72, 176–188. [Google Scholar] [CrossRef]
- Kumar, A.; Ibraheem, S.; Ali, S.; Maiyalagan, T.; Javed, M.S.; Saad, R.K.G.A.; Yasin, G. Polypyrrole and polyaniline-based membranes for fuel cell devices: A review. Surf. Interfaces 2022, 29, 101738. [Google Scholar] [CrossRef]
- Cao, Y.; He, Y.; Gang, H.; Wu, B.; Yan, L.; Wei, D.; Wan, H. Stability study of transition metal oxide electrode materials. J. Power Sources 2023, 560, 232710. [Google Scholar] [CrossRef]
- Ahmed, F.; Umar, A.; Kumar, S.; Shaalan, N.M. Manganese dioxide nanoparticles/reduced graphene oxide nanocomposites for hybrid capacitive desalination. Adv. Compos. Hybrid Mater. 2023, 6, 19. [Google Scholar] [CrossRef]
- Hussain, I.; Sahoo, S.; Lamiel, C.; Nguyenc, T.T.; Ahmeda, M.; Xi, C.; Iqbal, S.; Ali, A.; Abbas, N.; Javedf, M.S.; et al. Research progress and future aspects: Metal selenides as effective electrodes. Energy Storage Mater. 2022, 47, 13–43. [Google Scholar] [CrossRef]
- Tang, G.; Liang, J.; Wu, W. Transition Metal Selenides for Supercapacitors. Adv. Funct. Mater. 2024, 34, 2310399. [Google Scholar] [CrossRef]
- Khan, S.; Ullah, N.; Mahmood, A.; Saad, M.; Ullah, Z.; Ahmad, W.; Ullah, S. Recent Advancements in the Synthetic Mechanism and Surface Engineering of Transition Metal Selenides for Energy Storage and Conversion Applications. Energy Technol. 2023, 11, 2201416. [Google Scholar] [CrossRef]
- Gao, M.-R.; Lin, Z.Y.; Zhuang, T.T.; Jiang, J.; Xu, Y.F.; Zheng, Y.R.; Yu, S.H. Mixed-solution synthesis of sea urchin-like NiSe nanofiber assemblies as economical Pt-free catalysts for electrochemical H2 production. J. Mater. Chem. 2012, 22, 13662–13668. [Google Scholar] [CrossRef]
- Tian, Y.; Ruan, Y.; Zhang, J.; Yang, Z.; Jiang, J.; Wang, C. Controllable growth of NiSe nanorod arrays via one-pot hydrothermal method for high areal-capacitance supercapacitors. Electrochim. Acta 2017, 250, 327–334. [Google Scholar] [CrossRef]
- Younas, W.; Naveed, M.; Cao, C.; Zhu, Y.; Du, C.; Ma, X.; Mushtaq, N.; Tahir, M.; Naeem, M. Facile One-Step Microwave-Assisted Method to Synthesize Nickel Selenide Nanosheets for High-Performance Hybrid Supercapacitor. J. Colloid Interface Sci. 2022, 608, 1005–1014. [Google Scholar] [CrossRef]
- Meenal Gupta1, P.K.; Singh Bhattacharya1, Y.M.; Shulga, N.Y.; Shulga, Y.K. Progress, status and prospects of non-porous, heteroatom-doped carbons for supercapacitors and other electrochemical applications. Appl. Phys. A 2019, 125, 1–15. [Google Scholar]
- Li, Z.; Lin, J.; Li, B.; Yu, C.; Wang, H.; Li, Q. Construction of heteroatom-doped and three-dimensional graphene materials for the applications in supercapacitors: A review. J. Energy Storage 2021, 44, 103437. [Google Scholar] [CrossRef]
- Feng, X.; Bai, Y.; Liu, M.; Li, Y.; Yang, H.; Wang, X.; Wu, C. Untangling the respective effects of heteroatom-doped carbon materials in batteries, supercapacitors and the ORR to design high performance materials. Energy Environ. Sci. 2021, 14, 2036–2089. [Google Scholar] [CrossRef]
- Liu, H.; Wang, K.; He, W.J.; Zheng, X.; Gong, T.; Li, Y.; Zhao, J.; Zhang, J.; Liang, L. Phosphorus-doped nickel selenides nanosheet arrays as highly efficient electrocatalysts for alkaline hydrogen evolution. Int. J. Hydrogen Energy 2021, 46, 1967–1975. [Google Scholar] [CrossRef]
- Yan, T.; Feng, J.; Zeng, P.; Zhao, G.; Wang, L.; Yuan, C.; Cheng, C.; Li, Y.; Zhang, L. Modulating eg orbitals through ligand engineering to boost the electrocatalytic activity of NiSe for advanced lithium-sulfur batteries. J. Energy Chem. 2022, 74, 317–323. [Google Scholar] [CrossRef]
- Wang, J.; Li, S.; Zhu, Y.; Zhai, S.; Liu, C.; Fu, N.; Hou, S.; Niu, Y. Metal-organic frameworks-derived NiSe@RGO composites for high-performance asymmetric supercapacitors. J. Electroanal. Chem. 2022, 919, 116548. [Google Scholar] [CrossRef]
- Chen, H.; Chen, S.; Fan, M.; Li, C.; Chen, D.; Tian, G.; Shu, K. Bimetallic nickel cobalt selenides: A new kind of electroactive material for high-power energy storage. J. Mater. Chem. A 2015, 3, 23653. [Google Scholar] [CrossRef]
- Kirubasankar, B.; Murugadoss, V.; Lin, J. In situ grown nickel selenide on graphene nanohybrid electrodes for high energy density asymmetric supercapacitors. Nanoscale 2018, 10, 20414–20425. [Google Scholar] [CrossRef] [PubMed]
- Gogotsi, Y.; Penne, R.M. Energy Storage in Nanomaterials-Capacitive, Pseudocapacitive, or Battery-like? ACS Nano 2018, 12, 2081–2083. [Google Scholar] [CrossRef]
- Girard, H.-L.; Wang, H.; d’Entremont, A.; Pilon, L. Physical Interpretation of Cyclic Voltammetry for Hybrid Pseudocapacitors. J. Phys. Chem. C 2015, 119, 11349–11361. [Google Scholar] [CrossRef]
- Eftekhari, A. Surface Diffusion and Adsorption in Supercapacitors. ACS Sustain. Chem. Eng. 2019, 7, 3692–3701. [Google Scholar] [CrossRef]
- Guo, K.L.; Yang, F.F.; Cui, S.Z.; Chen, W.; Mi, L. Controlled synthesis of 3D hierarchical NiSe microspheres for high-performance supercapacitor design. RSC Adv. 2016, 6, 46523–46530. [Google Scholar] [CrossRef]
- Lu, Z.; Zhao, H.; Luo, J.; Wang, J. Reduced-graphene-oxide-modified selfsupported NiSe2 nanospheres on nickel foam as a battery-type electrode material for high efficiency supercapacitors. J. Phys. Chem. Solids 2022, 163, 110593. [Google Scholar] [CrossRef]
- Peng, H.; Zhou, J.Z.; Sun, K.J.; Ma, G.; Zhang, Z.; Feng, E.; Lei, Z. High-performance asymmetric supercapacitor designed with a novel NiSe@MoSe2 nanosheet array and nitrogen-doped carbon nanosheet. ACS Sustain. Chem. Eng. 2017, 5, 5951–5963. [Google Scholar] [CrossRef]
- Peng, H.; Wei, C.; Wang, K.; Meng, T.; Ma, G.; Lei, Z.; Gong, X. Ni0.85Se@MoSe2 Nanosheet Arrays as the Electrode for High Performance Supercapacitors. ACS Appl. Mater. Interfaces 2017, 9, 17067–17075. [Google Scholar] [CrossRef] [PubMed]
- Dai, C.S.; Chien, P.Y.; Lin, J.Y.; Chou, S.W.; Wu, W.K.; Li, P.H.; Wu, K.Y.; Lin, T.W. Hierarchically Structured Ni3S2/Carbon Nanotube Composites as High-Performance Cathode Materials for Asymmetric Supercapacitors. ACS Appl. Mater. Interfaces 2013, 5, 12168–12174. [Google Scholar] [CrossRef]
- Yun, X.; Lu, T.; Zhou, R.; Lu, Z.; Li, J.; Zhu, Y. Heterostructured NiSe2/CoSe2 hollow microspheres as battery-type cathode for hybrid supercapacitors: Electrochemical kinetics and energy storage mechanism. Chem. Eng. J. 2021, 426, 131328. [Google Scholar] [CrossRef]
Material | Method | Specific Capacity | Retention Rate | Ref. |
---|---|---|---|---|
NiSe microspheres | Hydrothermal | 492 F g−1 (0.5 A g−1) | 200 cycles, 84.6% | [32] |
NiSe2@rGO | Microwave | 580 F g−1 (1 A g−1) | 5000 cycles, 78.13% | [33] |
NiSe@MoSe2 | Hydrothermal | 223 Fg−1 (1 g−11) | 1000 cycles, 93.7% | [34] |
Ni0.85Se@MoSe2 | Hydrothermal | 774 g−1 (1 A g−1) | 5000 cycles, 88% | [35] |
NiSe@RGO | Hydrothermal | 781 C g−1 (1 A g−1) | 5000 cycles, 90% | [26] |
N, P-NiSe | Microwave | 3184 F g−1 (1 Ag−1) | 4000 cycles, 72% | This Work |
Sample | Microwave Watts/W | Microwave Duration/s | Duration/s Capacitance/F g−1 (1 A g −1) |
---|---|---|---|
W1 | 800 W | 90 S | 1816 F g−1 |
W2 | 800 W | 120 S | 3184 F g−1 |
W3 | 800 W | 150 S | 2130 F g−1 |
W4 | 1000 W | 120 S | 2242 F g−1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Z.; Kang, H.; Duan, Q.; Lv, C.; Liu, R.; Feng, F.; Zhao, H. The Preparation of N, P-Doped NiSe Nanorod Electrode Materials on Nickel Foam Using the Microwave Method for High-Performance Supercapacitors. Molecules 2024, 29, 3224. https://doi.org/10.3390/molecules29133224
Lu Z, Kang H, Duan Q, Lv C, Liu R, Feng F, Zhao H. The Preparation of N, P-Doped NiSe Nanorod Electrode Materials on Nickel Foam Using the Microwave Method for High-Performance Supercapacitors. Molecules. 2024; 29(13):3224. https://doi.org/10.3390/molecules29133224
Chicago/Turabian StyleLu, Zhen, Hongjie Kang, Qianwen Duan, Chao Lv, Rui Liu, Feng Feng, and Haidong Zhao. 2024. "The Preparation of N, P-Doped NiSe Nanorod Electrode Materials on Nickel Foam Using the Microwave Method for High-Performance Supercapacitors" Molecules 29, no. 13: 3224. https://doi.org/10.3390/molecules29133224
APA StyleLu, Z., Kang, H., Duan, Q., Lv, C., Liu, R., Feng, F., & Zhao, H. (2024). The Preparation of N, P-Doped NiSe Nanorod Electrode Materials on Nickel Foam Using the Microwave Method for High-Performance Supercapacitors. Molecules, 29(13), 3224. https://doi.org/10.3390/molecules29133224