Aqueous Synthesis of Au10Pt1 Nanorods Decorated with MnO2 Nanosheets for the Enhanced Electrocatalytic Oxidation of Methanol
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Pt/Au@MnO2 Nanostructures
2.2. Electrocatalytic Hydrogen Evolution Performance
3. Materials and Methods
3.1. Materials
3.2. Synthesis of Au NPs
3.3. Synthesis of Au10Pt1 HSNRs
3.4. Synthesis of Au10Pt1@MnO2 Composites
3.5. Materials Characterization
3.6. Evaluation of Electrocatalytic Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hu, S.; Wang, B.; Ma, Y.; Li, M.; Zhang, L.; Huang, Z. Ultrathin bismuth tungstate nanosheets as an effective photo-assisted support for electrocatalytic methanol oxidation. J. Colloid Interf. Sci. 2019, 552, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Selivanova, A.V.; Demina, V.G.; Aydakov, E.E.; Saraev, A.A.; Kaichev, V.V.; Bukhtiyarov, V.I. Mechanistic study of methanol oxidation on Pt(1 1 1) single crystal. Appl. Surf. Sci. 2022, 579, 152140–152147. [Google Scholar] [CrossRef]
- Wang, X.; Xi, S.; Lee, W.S.V.; Huang, P.; Cui, P.; Zhao, L.; Hao, W.; Zhao, X.; Wang, Z.; Wu, H.; et al. Materializing efficient methanol oxidation via electron delocalization in nickel hydroxide nanoribbon. Nat. Commun. 2020, 11, 4647. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Zou, L.; Song, W. Hierarchical Pt-In nanowires for efficient methanol oxidation electrocatalysis. Molecules 2023, 28, 1502. [Google Scholar] [CrossRef] [PubMed]
- Gong, W.; Jiang, Z.; Wu, R.; Liu, Y.; Huang, L.; Hu, N.; Tsiakaras, P.; Shen, P.K. Cross-double dumbbell-like Pt–Ni nanostructures with enhanced catalytic performance toward the reactions of oxygen reduction and methanol oxidation. Appl. Catal. B Environ. 2019, 246, 277–283. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, B.; Wu, S.; Wang, M.; Zhang, Z.; Cui, B.; He, L.; Du, M. Hierarchical nanocomposite electrocatalyst of bimetallic zeolitic imidazolate framework and MoS2 sheets for non-Pt methanol oxidation and water splitting. App. Catal. B Environ. 2019, 258, 117970. [Google Scholar] [CrossRef]
- Feng, Q.; Zhao, S.; He, D.; Tian, S.; Gu, L.; Wen, X.; Chen, C.; Peng, Q.; Wang, D.; Li, Y. Strain engineering to enhance the electrooxidation performance of atomic-layer Pt on intermetallic Pt3Ga. J. Am. Chem. Soc. 2018, 140, 2773–2776. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Zhang, X.; Wang, Q.; Han, Y.; Fang, Y.; Dong, S. Shape-control of Pt-Ru nanocrystals: Tuning surface structure for enhanced electrocatalytic methanol oxidation. J. Am. Chem. Soc. 2018, 140, 1142–1147. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Jin, Z.; Ning, P.; Gao, C.; Wu, Y.; Liu, X.; Xin, P.; Chen, Z.; Jiang, Y.; Hu, Z.; et al. Synergistically modulating electronic structure of NiS2 hierarchical architectures by phosphorus doping and sulfur-vacancies defect engineering enables efficient electrocatalytic water splitting. Chem. Eng. J. 2021, 420, 127630. [Google Scholar] [CrossRef]
- Chen, G.; Dai, Z.; Sun, L.; Zhang, L.; Liu, S.; Bao, H.; Bi, J.; Yang, S.; Ma, F. Synergistic effects of platinum–cerium carbonate hydroxides–reduced graphene oxide on enhanced durability for methanol electro-oxidation. J. Mater. Chem. A 2019, 7, 6562–6571. [Google Scholar] [CrossRef]
- Wu, Y.P.; Tian, J.W.; Liu, S.; Li, B.; Zhao, J.; Ma, L.F.; Li, D.S.; Lan, Y.Q.; Bu, X. Bi-microporous metal-organic frameworks with cubane [M4(OH)4] (M=Ni, Co) clusters and pore-space partition for electrocatalytic methanol oxidation reaction. Angew. Chem. Int. Ed. Engl. 2019, 58, 12185–12189. [Google Scholar] [CrossRef] [PubMed]
- Szliszka, E.; Czuba, Z.P.; Domino, M.; Mazur, B.; Zydowicz, G.; Krol, W. Pt2CeO2 heterojunction supported on multiwalled carbon nanotubes for robust electrocatalytic oxidation of methanol. Molecules 2023, 14, 2995–3007. [Google Scholar]
- Chen, Z.; Wang, W.; Huang, S.; Ning, P.; Wu, Y.; Gao, C.; Le, T.T.; Zai, J.; Jiang, Y.; Hu, Z.; et al. Well-defined CoSe2@MoSe2 hollow heterostructured nanocubes with enhanced dissociation kinetics for overall water splitting. Nanoscale 2020, 12, 326–335. [Google Scholar] [CrossRef]
- Zhou, X.; Yu, X.; Peng, L.; Luo, J.; Ning, X.; Fan, X.; Zhou, X.; Zhou, X. Pd(II) coordination molecule modified g-C3N4 for boosting photocatalytic hydrogen production. J. Colloid Interf. Sci. 2024, 671, 134–144. [Google Scholar] [CrossRef] [PubMed]
- Bigiani, L.; Andreu, T.; Maccato, C.; Fois, E.; Gasparotto, A.; Sada, C.; Tabacchi, G.; Krishnan, D.; Verbeeck, J.; Morante, J.R.; et al. Engineering Au/MnO2 hierarchical nanoarchitectures for ethanol electrochemical valorization. J. Mater. Chem. A 2020, 8, 16902–16907. [Google Scholar] [CrossRef]
- Salarizadeh, P.; Azizi, S.; Beydaghi, H.; Bagheri, A.; Askari, M.B. Electrocatalytic performance of MnMoO4-rGO nano-electrocatalyst for methanol and ethanol oxidation. Molecules 2023, 28, 4613. [Google Scholar] [CrossRef]
- Feng, Y.-Y.; Song, G.H.; Zhang, Q.; Lv, J.-N.; Hu, X.-Y.; He, Y.-L.; Shen, X. Morphology effect of MnO2 promoter to the catalytic performance of Pt toward methanol electrooxidation reaction. Int. J. Hydrogen Energy 2019, 44, 3744–3750. [Google Scholar] [CrossRef]
- Liu, R.; Zhou, H.; Liu, J.; Yao, Y.; Huang, Z.; Fu, C.; Kuang, Y. Preparation of Pd/MnO2-reduced graphene oxide nanocomposite for methanol electro-oxidation in alkaline media. Electrochem. Commun. 2013, 26, 63–66. [Google Scholar] [CrossRef]
- Lu, Z.; Li, S.; Ning, L.; Tang, K.; Guo, Y.; You, L.; Chen, C.; Wang, G. Nickel–iron-layered double hydroxide electrocatalyst with nanosheets array for high performance of water splitting. Molecules 2024, 29, 2092. [Google Scholar] [CrossRef]
- González-Ingelmo, M.; Rocha, V.G.; González, Z.; Sierra, U.; Barriga, E.D.; Álvarez, P. Graphene materials from coke-like wastes as proactive support of Nickel–Iron electro-catalysts for water splitting. Molecules 2024, 29, 1391. [Google Scholar] [CrossRef]
- Zhao, Y.; Jiang, P. MnO2 nanosheets grown on the ZnO-nanorod-modified carbon fibers for supercapacitor electrode materials. Colloid Surf. A Physicochem. Eng. Asp. 2014, 444, 232–239. [Google Scholar] [CrossRef]
- Li, J.; Peng, Y.; Zhang, W.; Shi, X.; Chen, M.; Wang, P.; Zhang, X.; Fu, H.; Lv, X.; Dong, F.; et al. Hierarchical Pd/MnO2 nanosheet array supported on Ni foam: An advanced electrode for electrocatalytic hydrodechlorination reaction. Appl. Surf. Sci. 2020, 509, 145369. [Google Scholar] [CrossRef]
- Bi, H.; Dai, Y.; Yang, P.; Xu, J.; Yang, D.; Gai, S.; He, F.; An, G.; Zhong, C.; Lin, J. Glutathione and H2O2 consumption promoted photodynamic and chemotherapy based on biodegradable MnO2–Pt@Au25 nanosheets. Chem. Eng. J. 2019, 356, 543–553. [Google Scholar] [CrossRef]
- Ma, E.; Wang, P.; Yang, Q.; Yu, H.; Pei, F.; Zheng, Y.; Liu, Q.; Dong, Y.; Li, Y. Electrochemical immunosensors for sensitive detection of neuron-specific enolase based on small-size trimetallic Au@Pd^Pt nanocubes functionalized on ultrathin MnO2 nanosheets as signal labels. ACS Biomater. Sci. Eng. 2020, 6, 1418–1427. [Google Scholar] [CrossRef]
- Begum, H.; Ahmed, M.S.; Jeon, S. δ-MnO2 nanoflowers on sulfonated graphene sheets for stable oxygen reduction and hydrogen evolution reaction. Electrochim. Acta 2019, 296, 235–242. [Google Scholar] [CrossRef]
- Hu, Q.; Liu, X.; Zhu, B.; Li, G.; Fan, L.; Chai, X.; Zhang, Q.; Liu, J.; He, C. Redox route to ultrathin metal sulfides nanosheet arrays-anchored MnO2 nanoparticles as self-supported electrocatalysts for efficient water splitting. J. Power Sources 2018, 398, 159–166. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, L.; Huang, W.; Zhou, Y.; Zhao, H.; Lv, J.; Tian, J.; Kan, X.; Shi, J. Pt/MnO2 nanosheets: Facile synthesis and highly efficient catalyst for ethylene oxidation at low temperature. RSC Adv. 2017, 7, 14809–14815. [Google Scholar] [CrossRef]
- Hu, X.; Chen, J.; Li, S.; Chen, Y.; Qu, W.; Ma, Z.; Tang, X. The Promotional Effect of Copper in Catalytic Oxidation by Cu-Doped α-MnO2 Nanorods. J. Phys. Chem. C 2019, 124, 701–708. [Google Scholar] [CrossRef]
- Du, H.; Wang, Y.; Wan, T.; Arandiyan, H.; Chu, D. Highly efficient and selective Cu/MnOx catalysts for carbon dioxide reduction. ACS Appl. Energy Mater. 2018, 1, 3035–3041. [Google Scholar] [CrossRef]
- Chen, D.; Zhang, G.; Wang, M.; Li, N.; Xu, Q.; Li, H.; He, J.; Lu, J. Pt/MnO2 nanoflowers anchored to boron nitride aerogels for highly efficient enrichment and catalytic oxidation of formaldehyde at room temperature. Angew. Chem. Int. Ed. Engl. 2021, 60, 6377–6381. [Google Scholar] [CrossRef]
- Liu, J.; Meng, L.; Fei, Z.; Dyson, P.J.; Zhang, L. On the origin of the synergy between the Pt nanoparticles and MnO2 nanosheets in wonton-like 3D nanozyme oxidase mimics. Biosens. Bioelectron. 2018, 121, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Gu, P.; Birch, D.J.S.; Chen, Y. Plasmon-promoted electrochemical oxygen evolution catalysis from gold decorated MnO2 nanosheets under green light. Adv. Funct. Mater. 2018, 28, 1801573–1801579. [Google Scholar] [CrossRef]
- Yusuf, A.; Sun, Y.; Ren, Y.; Snape, C.; Wang, C.; Jia, H.; He, J. Opposite effects of Co and Cu dopants on the catalytic activities of birnessite MnO2 catalyst for low-temperature formaldehyde oxidation. J. Phys. Chem. C 2020, 124, 26320–26331. [Google Scholar] [CrossRef]
- Peng, X.; Chen, Y.; Mi, Y.; Zhuo, L.; Qi, G.; Ren, J.; Qiu, Y.; Liu, X.; Luo, J. Efficient electroreduction CO2 to CO over MnO2 Nanosheets. Inorg. Chem. 2019, 58, 8910–8914. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Liu, Y.; Huang, S.; Jia, R.; Shi, L.; Huang, L. Photochemical fabrication of bimetal wormlike heterostructured nanorods for enhanced electrochemical hydrogen evolution reaction. J. Alloys Compd. 2022, 910, 164913–195921. [Google Scholar] [CrossRef]
- Liu, B.; Mosa, I.M.; Song, W.; Zheng, H.; Kuo, C.H.; Rusling, J.F.; Suib, S.L.; He, J. Unconventional structural and morphological transitions of nanosheets, nanoflakes and nanorods of AuNP@MnO2. J. Mater. Chem. A 2016, 4, 6447–6455. [Google Scholar] [CrossRef]
- Hong, W.; Shang, C.; Wang, J.; Wang, E. Bimetallic PdPt nanowire networks with enhanced electrocatalytic activity for ethylene glycol and glycerol oxidation. Energy Environ. Sci. 2015, 8, 2910–2915. [Google Scholar] [CrossRef]
- Yang, S.; Song, X.; Zhang, P.; Gao, L. Facile synthesis of nitrogen-doped graphene-ultrathin MnO2 sheet composites and their electrochemical performances. ACS Appl. Mater. Interfaces 2013, 5, 3317–3322. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.-X.; Cao, M.-Z.; Xiao, K.; Guo, X.-P.; Ye, S.-Y.; Liu, Z.-Q. In situ confining Pt clusters in ultrathin MnO2 nanosheets for highly efficient hydrogen evolution reaction. Small Struct. 2021, 2, 2100047–2100055. [Google Scholar] [CrossRef]
- Zhang, W.; Yang, Y.; Huang, B.; Lv, F.; Wang, K.; Li, N.; Luo, M.; Chao, Y.; Li, Y.; Sun, Y.; et al. Ultrathin PtNiM (M = Rh, Os, and Ir) nanowires as efficient fuel oxidation electrocatalytic materials. Adv. Mater. 2019, 31, 1805833–1805841. [Google Scholar] [CrossRef]
- Li, T.; Jiang, W.; Liu, Y.; Jia, R.; Shi, L.; Huang, L. Localized surface plasmon resonance induced assembly of bimetal nanochains. J. Colloid Interf. Sci. 2022, 607, 1888–1897. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, T.; Liu, Y.; Huang, Y.; Yu, Z.; Huang, L. Aqueous Synthesis of Au10Pt1 Nanorods Decorated with MnO2 Nanosheets for the Enhanced Electrocatalytic Oxidation of Methanol. Molecules 2024, 29, 3753. https://doi.org/10.3390/molecules29163753
Li T, Liu Y, Huang Y, Yu Z, Huang L. Aqueous Synthesis of Au10Pt1 Nanorods Decorated with MnO2 Nanosheets for the Enhanced Electrocatalytic Oxidation of Methanol. Molecules. 2024; 29(16):3753. https://doi.org/10.3390/molecules29163753
Chicago/Turabian StyleLi, Ting, Yidan Liu, Yibin Huang, Zhong Yu, and Lei Huang. 2024. "Aqueous Synthesis of Au10Pt1 Nanorods Decorated with MnO2 Nanosheets for the Enhanced Electrocatalytic Oxidation of Methanol" Molecules 29, no. 16: 3753. https://doi.org/10.3390/molecules29163753
APA StyleLi, T., Liu, Y., Huang, Y., Yu, Z., & Huang, L. (2024). Aqueous Synthesis of Au10Pt1 Nanorods Decorated with MnO2 Nanosheets for the Enhanced Electrocatalytic Oxidation of Methanol. Molecules, 29(16), 3753. https://doi.org/10.3390/molecules29163753