NiS2/NiS/Mn2O3 Nanofibers with Enhanced Oxygen Evolution Reaction Activity
Abstract
:1. Introduction
2. Result and Discussion
3. Experimental Section
3.1. Materials
3.2. Synthesis of MnNi2O4 Nanofibers
3.3. Synthesis of NiS2/NiS/Mn2O3 Nanofibers
3.4. Materials Characterization
3.5. Electrochemical Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, J.S.; Ren, J.; Shalom, M.; Fellinger, T.; Antonietti, M. Stainless Steel Mesh-Supported NiS Nanosheet Array as Highly Efficient Catalyst for Oxygen Evolution Reaction. ACS Appl. Mater. Interfaces 2016, 88, 5509–5516. [Google Scholar] [CrossRef] [PubMed]
- Zang, Y.; Huang, S.; Yang, B.; Chen, G.; Liu, X.; Zhang, N. Constructing collaborative interface between Mo2N and NiS as efficient bifunctional electrocatalysts for overall water splitting. Appl. Surf. Sci. 2023, 611, 155656. [Google Scholar] [CrossRef]
- Prakash, C.; Sahoo, P.; Yadav, R.; Pandey, A.; Singh, V.K.; Dixit, A. Nanoengineered Zn-modified Nickel Sulfide (NiS) as a bifunctional electrocatalyst for overall water splitting. Int. J. Hydrogen Energy 2023, 48, 21969–21980. [Google Scholar] [CrossRef]
- Yang, C.; Dong, K.; Zhang, L.; He, X.; Chen, J.; Sun, S.; Yue, M.; Zhang, H.; Zhang, M.; Zheng, D.; et al. Improved Alkaline Seawater Splitting of NiS Nanosheets by Iron Doping. Inorg. Chem. 2023, 62, 7976–7981. [Google Scholar] [CrossRef]
- Thiyagarajan, D.; Thirumurugan, A.; Lee, B.-K. Construction of NiS@CoFeMoO4/NF nanosheet heterostructures for efficient overall water splitting. J. Alloys Compd. 2023, 936, 168340. [Google Scholar] [CrossRef]
- Wan, Z.; Zhang, Y.; Ren, Q.; Li, X.; Yu, H.; Zhou, W.; Ma, X.; Xuan, C. Interface engineering of NiS/NiCo2S4 heterostructure with charge redistribution for boosting overall water splitting. J. Colloid Interface Sci. 2024, 653, 795–806. [Google Scholar] [CrossRef]
- Khan, N.A.; Rashid, N.; Junaid, M.; Zafar, M.N.; Faheem, M.; Ahmad, I. NiO/NiS Heterostructures: An Efficient and Stable Electrocatalyst for Oxygen Evolution Reaction. ACS Appl. Energy Mater. 2019, 25, 3587–3594. [Google Scholar] [CrossRef]
- Abdelghafar, F.; Xu, X.; Guan, D.; Lin, Z.; Hu, Z.; Ni, M.; Huang, H.; Bhatelia, T.; Jiang, S.P.; Shao, Z. New Nanocomposites Derived from Cation-Nonstoichiometric Bax(Co, Fe, Zr, Y)O3−δ as Efficient Electrocatalysts for Water Oxidation in Alkaline Solution. ACS Mater. Lett. 2024, 6, 2985–2994. [Google Scholar] [CrossRef]
- Xu, X.M.; Shao, Z.P.; Jiang, S.P. High-Entropy Materials for Water Electrolysis. Energy Technol. 2022, 10, 2200573. [Google Scholar] [CrossRef]
- Xu, X.M.; Pan, Y.L.; Lei Ge, L.; Chen, Y.B.; Xin Mao, X.; Guan, D.Q.; Li, M.R.; Zhong, Y.J.; Hu, Z.W.; Peterson, V.K.; et al. High-Performance Perovskite Composite Electrocatalysts Enabled by Controllable Interface Engineering. Small 2021, 17, 2101573. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, S.; Wang, Z.; Mo, Y.; Luo, X.; Yang, F.; Lv, M.; Li, Z.; Liu, X. Manganese-based oxide electrocatalysts for the oxygen evolution reaction: A review. J. Mater. Chem. A 2023, 11, 5476–5494. [Google Scholar] [CrossRef]
- Ou, W.; Ye, X.; Zhou, Y. Recent advances in Ni (oxy) hydroxides and Ni sulfides catalysts for oxygen evolution reactions. Coordin. Chem. Rev. 2023, 493, 215274. [Google Scholar] [CrossRef]
- Cao, W.; Shen, Q.; Men, D.; Ouyang, B.; Sun, Y.; Xu, K. Phase engineering of iron group transition metal selenides for water splitting. Mater. Chem. Front. 2023, 7, 4865–4879. [Google Scholar] [CrossRef]
- Kavinkumar, T.; Yang, H.; Sivagurunathan, A.T.; Jeong, H.; Han, J.W.; Kim, D.-H. Regulating Electronic Structure of Iron Nitride by Tungsten Nitride Nanosheets for Accelerated Overall Water Splitting. Small 2023, 19, 2300963. [Google Scholar] [CrossRef]
- Kiran, G.K.; Sreekanth, T.V.M.; Yoo, K.; Kim, J. Bifunctional electrocatalytic activity of two-dimensional multilayered vanadium carbide (MXene) for ORR and OER. Mater. Chem. Phys. 2023, 296, 127272. [Google Scholar] [CrossRef]
- Li, Q.; Wang, D.; Han, C.; Ma, X.; Lu, Q.; Xing, Z.; Yang, X. Construction of amorphous interface in an interwoven NiS/NiS2 structure for enhanced overall water splitting. J. Mater. Chem. A 2018, 6, 8233–8237. [Google Scholar] [CrossRef]
- Liu, H.; Liu, Z.; Wang, F.; Feng, L. Efficient catalysis of N doped NiS/NiS2 heterogeneous structure. Chem. Eng. J. 2020, 397, 125507. [Google Scholar] [CrossRef]
- Shi, M.; Li, N.; Zuo, S.; Sun, G.; Shen, W.; Wu, M.; Li, Q.; Ma, J. MOF nanosheet array-derived NiS with Co, N-doped carbon layer: A highly efficient oxygen evolution electrocatalyst. Ceram. Int. 2023, 495, 7613–7622. [Google Scholar] [CrossRef]
- Xue, Z.; Li, X.; Liu, Q.; Cai, M.; Liu, K.; Liu, M.; Ke, Z.; Liu, X.; Li, G. Interfacial Electronic Structure Modulation of NiTe Nanoarrays with NiS Nanodots Facilitates Electrocatalytic Oxygen Evolution. Adv. Mater. 2019, 31, 1900430. [Google Scholar] [CrossRef]
- Lu, X.; Wang, C.; Wei, Y. One-Dimensional Composite Nanomaterials: Synthesis by Electrospinning and Their Applications. Small 2009, 5, 2349–2370. [Google Scholar] [CrossRef] [PubMed]
- Nie, G.; Zhang, Z.; Wang, T.; Wang, C.; Kou, Z. Electrospun One-Dimensional Electrocatalysts for Oxygen Reduction Reaction: Insights into Structure–Activity Relationship. ACS Appl. Mater. Interfaces 2021, 13, 37961–37978. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Chang, X.; Ding, X.; Ma, X.; Zhang, M. One-dimensional Ni2P/Mn2O3 nanostructures with enhanced oxygen evolution reaction activity. J. Colloid Interface Sci. 2022, 623, 196–204. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Nie, L. Progress in fabrication of one-dimensional catalytic materials by electrospinning technology. J. Ind. Eng. Chem. 2021, 93, 28–56. [Google Scholar] [CrossRef]
- Guan, B.; Li, Y.; Yin, B.Y.; Liu, K.F.; Wang, D.W.; Zhang, H.H.; Cheng, C.J. Synthesis of hierarchical NiS microflowers for high performance asymmetric supercapacitor. Chem. Eng. J. 2017, 308, 1165–1173. [Google Scholar] [CrossRef]
- Zhang, X.D.; Li, H.X.; Hou, F.L.; Yang, Y.; Dong, H.; Liu, N.; Wang, Y.X.; Cui, L.F. Synthesis of highly efficient Mn2O3 catalysts for CO oxidation derived from Mn-MIL-100. Appl. Surf. Sci. 2017, 411, 27–33. [Google Scholar] [CrossRef]
- Luo, P.; Zhang, H.; Liu, L.; Zhang, Y.; Deng, J.; Xu, C.; Hu, N.; Wang, Y. Targeted Synthesis of Unique Nickel Sulfide (NiS, NiS2) Microarchitectures and the Applications for the Enhanced Water Splitting System. ACS Appl. Mater. Interfaces 2017, 93, 2500–2508. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.-T.; Yuan, Z.-Y. Hierarchical Nickel Sulfide Nanosheets Directly Grown on Ni Foam: A Stable and Efficient Electrocatalyst for Water Reduction and Oxidation in Alkaline Medium. ACS Sustain. Chem. Eng. 2017, 58, 7203–7210. [Google Scholar] [CrossRef]
- Yang, Y.; Kang, Y.; Zhao, H.; Dai, X.; Cui, M.; Luan, X.; Zhang, X.; Nie, F.; Ren, Z.; Song, W. An Interfacial Electron Transfer on Tetrahedral NiS2/NiSe2 Heterocages with Dual-Phase Synergy for Efficiently Triggering the Oxygen Evolution Reaction. Small 2020, 161, 1905083. [Google Scholar] [CrossRef]
- Wang, X.; Li, L.; Xu, L.; Wang, Z.; Wu, Z.; Liu, Z.; Yangs, P. An efficient and stable MnCo@NiS catalyst for oxygen evolution reaction constructed by a step-by-step electrodeposition way. J. Power Sources 2021, 489, 229525. [Google Scholar] [CrossRef]
- Mehmood, A.; Rahman, G.; Shah, A.U.H.A.; Joo, O.-S.; Mian, S.A. Template-Free Hydrothermal Growth of Nickel Sulfide Nanorods as High-Performance Electroactive Materials for Oxygen Evolution Reaction and Supercapacitors. Energy Fuel 2021, 358, 6868–6879. [Google Scholar] [CrossRef]
- He, P.; Xie, Y.; Dou, Y.; Zhou, J.; Zhou, A.; Wei, X.; Li, J.-R. Partial Sulfurization of a 2D MOF Array for Highly Efficient Oxygen Evolution Reaction. ACS Appl. Mater. Interfaces 2019, 1144, 41595–41601. [Google Scholar] [CrossRef] [PubMed]
- Tong, L.; Song, C.; Liu, Y.; Xing, R.; Sekar, K.; Liu, S. Open and porous NiS2 nanowrinkles grown on non-stoichiometric MoOx nanorods for high-performance alkaline water electrolysis and supercapacitor. Int. J. Hydrogen Energy 2022, 4732, 14404–14413. [Google Scholar] [CrossRef]
- Xue, Y.; Wang, H.; Zhang, X.; Zhao, C.; Yao, J.; Yan, Q.; Zhao, J.; Zhu, K.; Cao, D.; Wang, G. Construction of tubular carbon matrix-supported NiCoP-NiS2 nanowires with heterointerfaces for overall water splitting. Colloids Surf. A Physicochem. Eng. Asp. 2023, 656, 130516. [Google Scholar] [CrossRef]
- Peng, L.; Shah, S.S.A.; Wei, Z. Recent developments in metal phosphide and sulfide electrocatalysts for oxygen evolution reaction. Chin. J. Catal. 2018, 10, 1575–1593. [Google Scholar] [CrossRef]
- Manjunatha, C.; Srinivasa, N.; Chaitra, S.K.; Sudeep, M.; Chandra Kumar, R.; Ashoka, S. Controlled synthesis of nickel sulfide polymorphs: Studies on the effect of morphology and crystal structure on OER performance. Mater. Today Energy 2020, 12, 100414. [Google Scholar] [CrossRef]
- Ma, X.; Ma, M.; Liu, D.; Hao, S.; Qu, F.; Du, F.; Asiri, A.M.; Sun, X. Core–Shell-Structured NiS2@Ni-Bi Nanoarray for Efficient Water Oxidation at Near-Neutral pH. ChemCatChem 2017, 9, 3138–3143. [Google Scholar] [CrossRef]
- Du, H.; Pu, W.; Yang, C. Morphology control of Co3O4 with nickel incorporation for highly efficient oxygen evolution reaction. Appl. Surf. Sci. 2021, 541, 148221. [Google Scholar] [CrossRef]
- Wang, L.; Li, M.C.; Lyu, Y.X.; Liu, J.W.; Du, J.M. Cu2S Nanoflakes Decorated with NiS Nanoneedles for Enhanced Oxygen Evolution Activity. Micromachines 2022, 13, 278. [Google Scholar] [CrossRef]
- Tan, C.T.; Wang, F.H.; Lv, K.; Shi, Y.Y.; Dong, B.B.; Hao, L.Y.; Yin, L.J.; Xu, X.; Xian, Y.X.; Agathopoulos, X. TiN ceramic membrane supported nitrogen-incorporating NiCo2 nanowires as bifunctional electrode for overall water splitting in alkaline solution. Sep. Purif. Technol. 2022, 298, 121582. [Google Scholar] [CrossRef]
- Nguyen, C.D.; Nguyen, V.; Tuyen, P.N.K.; Pham, L.M.T.; Vu, T. Snowflake Co3O4-CuO heteroanode arrays supported on three-dimensional framework for enhanced oxygen evolution. J. Electroanal. Chem. 2020, 871, 114235. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, B.; Ding, X.; Feng, L.; Zhang, M. NiS2/NiS/Mn2O3 Nanofibers with Enhanced Oxygen Evolution Reaction Activity. Molecules 2024, 29, 3892. https://doi.org/10.3390/molecules29163892
Yang B, Ding X, Feng L, Zhang M. NiS2/NiS/Mn2O3 Nanofibers with Enhanced Oxygen Evolution Reaction Activity. Molecules. 2024; 29(16):3892. https://doi.org/10.3390/molecules29163892
Chicago/Turabian StyleYang, Bin, Xinyao Ding, Lifeng Feng, and Mingyi Zhang. 2024. "NiS2/NiS/Mn2O3 Nanofibers with Enhanced Oxygen Evolution Reaction Activity" Molecules 29, no. 16: 3892. https://doi.org/10.3390/molecules29163892
APA StyleYang, B., Ding, X., Feng, L., & Zhang, M. (2024). NiS2/NiS/Mn2O3 Nanofibers with Enhanced Oxygen Evolution Reaction Activity. Molecules, 29(16), 3892. https://doi.org/10.3390/molecules29163892