Effects of Fermentation with Kombucha Symbiotic Culture of Bacteria and Yeasts on Antioxidant Activities, Bioactive Compounds and Sensory Indicators of Rhodiola rosea and Salvia miltiorrhiza Beverages
Abstract
:1. Introduction
2. Results and Discussion
2.1. FRAP Values
2.2. TEAC Values
2.3. TPC Values
2.4. Bioactive Compounds in New Kombucha
2.5. Correlation between Antioxidant Parameters and Compounds
2.6. Sensory Scores of Kombucha
3. Materials and Methods
3.1. Materials
3.2. Preparation of Kombucha Beverages from Rhodiola rosea and Salvia miltiorrhiza
3.3. Assessment of Antioxidant Activities and Total Polyphenol Contents
3.4. HPLC Analysis of Bioactive Compounds in Kombucha Beverages
3.5. Sensory Analysis
3.6. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vargas, B.K.; Fabricio, M.F.; Ayub, M.A.Z. Health effects and probiotic and prebiotic potential of kombucha: A bibliometric and systematic review. Food Biosci. 2021, 44, 101332. [Google Scholar] [CrossRef]
- Lee, C.; Kim, J.; Wang, S.; Sung, S.; Kim, N.; Lee, H.-H.; Seo, Y.-S.; Jung, Y. Hepatoprotective effect of kombucha tea in rodent model of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Int. J. Mol. Sci. 2019, 20, 2369. [Google Scholar] [CrossRef] [PubMed]
- Mendelson, C.; Sparkes, S.; Merenstein, D.J.; Christensen, C.; Sharma, V.; Desale, S.; Auchtung, J.M.; Kok, C.R.; Hallen-Adams, H.E.; Hutkins, R. Kombucha tea as an anti-hyperglycemic agent in humans with diabetes—A randomized controlled pilot investigation. Front. Nutr. 2023, 10, 1190248. [Google Scholar] [CrossRef] [PubMed]
- Jung, Y.; Kim, I.; Mannaa, M.; Kim, J.; Wang, S.; Park, I.; Kim, J.; Seo, Y.S. Effect of kombucha on gut-microbiota in mouse having non-alcoholic fatty liver disease. Food Sci. Biotechnol. 2019, 28, 261–267. [Google Scholar] [CrossRef] [PubMed]
- Bellassoued, K.; Ghrab, F.; Makni-Ayadi, F.; Van Pelt, J.; Elfeki, A.; Ammar, E. Protective effect of kombucha on rats fed a hypercholesterolemic diet is mediated by its antioxidant activity. Pharm. Biol. 2015, 53, 1699–1709. [Google Scholar] [CrossRef] [PubMed]
- Bortolomedi, B.M.; Paglarini, C.S.; Brod, F.C.A. Bioactive compounds in kombucha: A review of substrate effect and fermentation conditions. Food Chem. 2022, 385, 132719. [Google Scholar] [CrossRef] [PubMed]
- Emiljanowicz, K.E.; Malinowska-Panczyk, E. Kombucha from alternative raw materials—The review. Crit. Rev. Food Sci. Nutr. 2020, 60, 3185–3194. [Google Scholar] [CrossRef]
- Vazquez-Cabral, B.D.; Larrosa-Perez, M.; Gallegos-Infante, J.A.; Moreno-Jimenez, M.R.; Gonzalez-Laredo, R.F.; Rutiaga-Quinones, J.G.; Gamboa-Gomez, C.I.; Rocha-Guzman, N.E. Oak kombucha protects against oxidative stress and inflammatory processes. Chem.-Biol. Interact. 2017, 272, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.D.; Dai, Y.Q.; Wu, H.; Liu, X.L.; Wang, Y.; Yin, L.Q.; Wang, Z.; Li, X.N.; Zhou, J.Z. Kombucha fermentation enhances the health-promoting properties of soymilk beverage. J. Funct. Food. 2019, 62, 103549. [Google Scholar] [CrossRef]
- Saimaiti, A.; Huang, S.Y.; Xiong, R.G.; Wu, S.X.; Zhou, D.D.; Yang, Z.J.; Luo, M.; Gan, R.Y.; Li, H.B. Antioxidant capacities and polyphenol contents of kombucha beverages based on vine tea and sweet tea. Antioxidants 2022, 11, 1655. [Google Scholar] [CrossRef]
- Wu, Y.R.; Wang, Q.; Liu, H.P.; Niu, L.L.; Li, M.Y.; Jia, Q. A heteropolysaccharide from Rhodiola rosea L.: Preparation, purification and anti-tumor activities in H22-bearing mice. Food Sci. Human Wellness 2023, 12, 536–545. [Google Scholar] [CrossRef]
- Sun, Y.P.; Li, N.J. Effect and mechanism of action of Rhodiola rosea L on diabetic peripheral neuropathy in rats based on Synapsin-I. Trop. J. Pharm. Res. 2023, 22, 1211–1218. [Google Scholar]
- Lekomtseva, Y.; Zhukova, I.; Wacker, A. Rhodiola rosea in subjects with prolonged or chronic fatigue symptoms: Results of an open-label clinical trial. Complement. Med. Res. 2017, 24, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Mao, J.J.; Xie, S.X.; Zee, J.; Soeller, I.; Li, Q.S.; Rockwell, K.; Amsterdam, J.D. Rhodiola rosea versus sertraline for major depressive disorder: A randomized placebo-controlled trial. Phytomedicine 2015, 22, 394–399. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Wu, X.; Zhang, X.; Hong, Y.L.; Yan, H.Y. Ameliorative effect of salidroside from Rhodiola Rosea L. on the gut microbiota subject to furan-induced liver injury in a mouse model. Food Chem. Toxicol. 2019, 125, 333–340. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.Q.; Hu, T.; Wu, G.L.; Qiao, L.J.; Cai, Y.F.; Wang, Q.; Zhang, S.J. Tanshinone IIA, the key compound in Salvia miltiorrhiza, improves cognitive impairment by upregulating Aβ-degrading enzymes in APP/PS1 mice. Int. J. Biol. Macromol. 2024, 254, 127923. [Google Scholar] [CrossRef]
- Mu, X.Y.L.; Yu, H.Z.; Li, H.F.; Feng, L.; Ta, N.; Ling, L.; Bai, L.; Borjigidai, A.; Pan, Y.P.; Fu, M.H. Metabolomics analysis reveals the effects of Salvia miltiorrhiza Bunge extract on ameliorating acute myocardial ischemia in rats induced by isoproterenol. Heliyon 2024, 10, e30488. [Google Scholar] [CrossRef] [PubMed]
- Qi, L.M.; Wu, S.; Liu, N.N.; Zhang, X.; Ping, L.; Xia, L.N. Salvia miltiorrhiza bunge extract improves the Th17/Treg imbalance and modulates gut microbiota of hypertensive rats induced by high-salt diet. J. Funct. Food. 2024, 117, 106211. [Google Scholar] [CrossRef]
- Yuan, Z.; Zhao, C.S.; Zhang, Q.; Gao, Z.R. Protective effect of Salvia miltiorrhizain rheumatoid arthritis patients: A randomized, single-blind, placebo-controlled trial. Trop. J. Pharm. Res. 2020, 19, 2235–2241. [Google Scholar] [CrossRef]
- Chang, P.N.; Mao, J.C.; Huang, S.H.; Ning, L.; Wang, Z.J.; On, T.; Duan, W.; Zhu, Y.Z. Analysis of cardioprotective effects using purified Salvia miltiorrhiza extract on isolated rat hearts. J. Pharmacol. Sci. 2006, 101, 245–249. [Google Scholar] [CrossRef]
- Gong, Y.; Li, Y.L.; Lu, Y.; Li, L.L.; Abdolmaleky, H.; Blackburn, G.L.; Zhou, J.R. Bioactive tanshinones in Salvia miltiorrhiza inhibit the growth of prostate cancer cells in vitro and in mice. Int. J. Cancer 2011, 129, 1042–1052. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, J.; Yan, J.; Qi, X.; Wang, Y.; Zheng, Z.; Liang, J.; Ling, J.; Chen, Y.; Tang, X.; et al. Application of fermented Chinese herbal medicines in food and medicine field: From an antioxidant perspective. Trends Food Sci. Technol. 2024, 148, 104410. [Google Scholar] [CrossRef]
- Zhou, D.D.; Saimaiti, A.; Luo, M.; Huang, S.Y.; Xiong, R.G.; Shang, A.; Gan, R.Y.; Li, H.B. Fermentation with tea residues enhances antioxidant activities and polyphenol contents in kombucha beverages. Antioxidants 2022, 11, 155. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Zhou, D.D.; Shang, A.; Gan, R.Y.; Li, H.B. Influences of microwave-assisted extraction parameters on antioxidant activity of the extract from Akebia trifoliata peels. Foods 2021, 10, 1432. [Google Scholar] [CrossRef] [PubMed]
- Hur, S.J.; Lee, S.Y.; Kim, Y.C.; Choi, I.; Kim, G.B. Effect of fermentation on the antioxidant activity in plant-based foods. Food Chem. 2014, 160, 346–356. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Tang, G.Y.; Zhao, C.N.; Feng, X.L.; Xu, X.Y.; Cao, S.Y.; Meng, X.; Li, S.; Gan, R.Y.; Li, H.B. Comparison of antioxidant activities of different grape varieties. Molecules 2018, 23, 2432. [Google Scholar] [CrossRef] [PubMed]
- Abdullahi, A.D.; Kodchasee, P.; Unban, K.; Pattananandecha, T.; Saenjum, C.; Kanpiengjai, A.; Shetty, K.; Khanongnuch, C. Comparison of phenolic contents and scavenging activities of miang extracts derived from filamentous and non-filamentous fungi-based fermentation processes. Antioxidants 2021, 10, 1144. [Google Scholar] [CrossRef] [PubMed]
- Adebo, O.A.; Gabriela Medina-Meza, I. Impact of fermentation on the phenolic compounds and antioxidant activity of whole cereal grains: A mini review. Molecules 2020, 25, 927. [Google Scholar] [CrossRef] [PubMed]
- Jayabalan, R.; Marimuthu, S.; Swaminathan, K. Changes in content of organic acids and tea polyphenols during kombucha tea fermentation. Food Chem. 2007, 102, 392–398. [Google Scholar] [CrossRef]
- Shi, S.; Wei, Y.; Lin, X.; Liang, H.; Zhang, S.; Chen, Y.; Dong, L.; Ji, C. Microbial metabolic transformation and antioxidant activity evaluation of polyphenols in kombucha. Food Biosci. 2023, 51, 102287. [Google Scholar] [CrossRef]
- Antolak, H.; Piechota, D.; Kucharska, A. Kombucha tea-a double power of bioactive compounds from tea and symbiotic culture of bacteria and yeasts (SCOBY). Antioxidants 2021, 10, 1541. [Google Scholar] [CrossRef] [PubMed]
- Bishop, P.; Pitts, E.R.; Budner, D.; Thompson-Witrick, K.A. Chemical composition of kombucha. Beverages 2022, 8, 45. [Google Scholar] [CrossRef]
- Karkovic Markovic, A.; Toric, J.; Barbaric, M.; Jakobusic Brala, C. Hydroxytyrosol, tyrosol and derivatives and their potential effects on human health. Molecules 2019, 24, 2001. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, Q.; Zhang, J.; Zhang, N. Preventive but nontherapeutic effect of danshensu on hypoxic pulmonary hypertension. J. Int. Med. Res. 2020, 48, 0300060520914218. [Google Scholar] [CrossRef] [PubMed]
- Qi, T.; Ge, B.K.; Zhao, L.; Ma, Y.; Li, X.R.; Xu, P.X.; Xue, M. Cytosolic beta-glucosidase inhibition and renal blood flow suppression are leading causes for the enhanced systemic exposure of salidroside in hypoxic rats. RSC Adv. 2018, 8, 8469–8483. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Leng, P.; Li, X.; Guo, Q.; Zhao, J.; Liang, Y.; Zhang, X.; Yang, X.; Li, J. Salvianolic acid A promotes mitochondrial biogenesis and mitochondrial function in 3T3-L1 adipocytes through regulation of the AMPK-PGC1alpha signalling pathway. Adipocyte 2022, 11, 562–571. [Google Scholar] [CrossRef]
- Saimaiti, A.; Zhou, D.D.; Li, J.H.; Xiong, R.G.; Gan, R.Y.; Huang, S.Y.; Shang, A.; Zhao, C.N.; Li, H.Y.; Li, H.B. Dietary sources, health benefits, and risks of caffeine. Crit. Rev. Food Sci. Nutr. 2022, 63, 9648–9666. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.N.; Tang, G.Y.; Cao, S.Y.; Xu, X.Y.; Gan, R.Y.; Liu, Q.; Mao, Q.Q.; Shang, A.; Li, H.B. Phenolic profiles and antioxidant activities of 30 tea infusions from green, black, oolong, white, yellow and dark teas. Antioxidants 2019, 8, 215. [Google Scholar] [CrossRef]
- Shang, A.; Luo, M.; Gan, R.Y.; Xu, X.Y.; Xia, Y.; Guo, H.; Liu, Y.; Li, H.B. Effects of microwave-assisted extraction conditions on antioxidant capacity of sweet tea (Lithocarpus polystachyus Rehd.). Antioxidants 2020, 9, 678. [Google Scholar] [CrossRef]
- Zou, C.; Li, R.Y.; Chen, J.X.; Wang, F.; Gao, Y.; Fu, Y.Q.; Xu, Y.Q.; Yin, J.F. Zijuan tea- based kombucha: Physicochemical, sensorial, and antioxidant profile. Food Chem. 2021, 363, 130322. [Google Scholar] [CrossRef]
Compound (mg/L) | Kombucha Beverage Type | Day 0 | Day 3 | Day 6 | Day 9 | Day 12 | Day 15 |
---|---|---|---|---|---|---|---|
Gallic acid | Without residue | 86.59 ± 4.29 | 82.16 ± 8.00 | 83.62 ± 8.26 | 83.71 ± 6.56 | 87.47 ± 8.40 | 90.40 ± 6.73 |
With residue | 90.53 ± 3.84 | 152.43 ± 5.20 | 153.13 ± 7.68 | 155.65 ± 5.72 | 155.29 ± 7.84 | 157.29 ± 7.95 | |
Salidroside | Without residue | 44.50 ± 2.40 | 45.38 ± 2.99 | 45.35 ± 2.22 | 43.68 ± 2.50 | 40.20 ± 7.82 | 40.76 ± 4.09 |
With residue | 46.21 ± 2.78 | 94.70 ± 4.06 | 101.80 ± 4.66 | 109.84 ± 8.66 | 106.00 ± 4.80 | 105.08 ± 4.32 | |
Tyrosol | Without residue | 23.12 ± 2.28 | 24.13 ± 4.17 | 23.61 ± 3.83 | 26.33 ± 3.80 | 27.26 ± 4.62 | 24.73 ± 3.47 |
With residue | 24.57 ± 2.12 | 44.45 ± 3.21 | 53.36 ± 4.15 | 66.68 ± 3.96 | 54.41 ± 3.12 | 42.64 ± 4.40 | |
EGCG | Without residue | 36.81 ± 0.92 | 37.19 ± 0.75 | 37.66 ± 0.98 | 38.09 ± 1.15 | 39.05 ± 0.20 | 38.40 ± 1.17 |
With residue | 37.10 ± 0.93 | 29.41 ± 1.60 | 22.25 ± 0.77 | 21.02 ± 0.43 | 20.46 ± 0.26 | 19.97 ± 0.65 |
Compound (mg/L) | Kombucha Beverage Type | Day 0 | Day 3 | Day 6 | Day 9 | Day 12 | Day 15 |
---|---|---|---|---|---|---|---|
Danshensu | Without residue | 7.72 ± 0.49 | 7.58 ± 0.48 | 7.79 ± 0.64 | 7.67 ± 0.56 | 7.77 ± 0.51 | 7.74 ± 0.52 |
With residue | 7.83 ± 0.26 | 10.32 ± 0.29 | 10.73 ± 0.28 | 9.77 ± 0.28 | 9.79 ± 0.29 | 9.70 ± 0.15 | |
Salvianolic acid B | Without residue | 191.58 ± 6.94 | 199.31 ± 3.99 | 189.57 ± 6.93 | 159.53 ± 4.64 | 149.21 ± 5.49 | 131.84 ± 6.90 |
With residue | 194.47 ± 7.65 | 334.77 ± 8.91 | 227.84 ± 5.68 | 187.97 ± 5.89 | 161.47 ± 6.21 | 134.55 ± 7.75 | |
Salvianolic acid A | Without residue | 2.89 ± 0.07 | 2.93 ± 0.05 | 2.71 ± 0.04 | 2.53 ± 0.09 | 2.41 ± 0.11 | 2.39 ± 0.18 |
With residue | 2.92 ± 0.08 | 4.19 ± 0.14 | 3.01 ± 0.02 | 2.54 ± 0.15 | 2.43 ± 0.15 | 2.41 ± 0.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, J.; Zhou, D.-D.; Xiong, R.-G.; Wu, S.-X.; Huang, S.-Y.; Saimaiti, A.; Xu, X.-Y.; Tang, G.-Y.; Li, H.-B.; Li, S. Effects of Fermentation with Kombucha Symbiotic Culture of Bacteria and Yeasts on Antioxidant Activities, Bioactive Compounds and Sensory Indicators of Rhodiola rosea and Salvia miltiorrhiza Beverages. Molecules 2024, 29, 3809. https://doi.org/10.3390/molecules29163809
Cheng J, Zhou D-D, Xiong R-G, Wu S-X, Huang S-Y, Saimaiti A, Xu X-Y, Tang G-Y, Li H-B, Li S. Effects of Fermentation with Kombucha Symbiotic Culture of Bacteria and Yeasts on Antioxidant Activities, Bioactive Compounds and Sensory Indicators of Rhodiola rosea and Salvia miltiorrhiza Beverages. Molecules. 2024; 29(16):3809. https://doi.org/10.3390/molecules29163809
Chicago/Turabian StyleCheng, Jin, Dan-Dan Zhou, Ruo-Gu Xiong, Si-Xia Wu, Si-Yu Huang, Adila Saimaiti, Xiao-Yu Xu, Guo-Yi Tang, Hua-Bin Li, and Sha Li. 2024. "Effects of Fermentation with Kombucha Symbiotic Culture of Bacteria and Yeasts on Antioxidant Activities, Bioactive Compounds and Sensory Indicators of Rhodiola rosea and Salvia miltiorrhiza Beverages" Molecules 29, no. 16: 3809. https://doi.org/10.3390/molecules29163809
APA StyleCheng, J., Zhou, D. -D., Xiong, R. -G., Wu, S. -X., Huang, S. -Y., Saimaiti, A., Xu, X. -Y., Tang, G. -Y., Li, H. -B., & Li, S. (2024). Effects of Fermentation with Kombucha Symbiotic Culture of Bacteria and Yeasts on Antioxidant Activities, Bioactive Compounds and Sensory Indicators of Rhodiola rosea and Salvia miltiorrhiza Beverages. Molecules, 29(16), 3809. https://doi.org/10.3390/molecules29163809