Optimization and Spectrum–Effect Analysis of Ultrasonically Extracted Antioxidant Flavonoids from Persicae Ramulus
Abstract
:1. Introduction
2. Results
2.1. Methodological Investigation
Content Determination Results
2.2. Optimization of Single-Factor Tests
2.2.1. Extraction Time
2.2.2. Solid–Liquid Ratio
2.2.3. Ethanol Volume Fraction
2.3. Optimization Test Results of BBD-RSM
2.3.1. Analysis of Variance
2.3.2. Verification Experiment
2.3.3. Determination of Flavonoid Content in Different Batches of PR
2.3.4. HCA of Flavonoid Content in PR from Different Areas
2.4. Antioxidant Activity
2.5. Establishment of UHPLC Fingerprinting
2.5.1. System Suitability Investigation Result
2.5.2. Methodology Validation of UHPLC
2.5.3. Establishment of the UHPLC Fingerprinting of PR Samples and Identification of Common Peaks
2.5.4. Similarity Analysis (SA)
2.5.5. Hierarchical Cluster Analysis (HCA) of UHPLC
2.5.6. Principal Component Analysis (PCA)
2.6. Studies on the Spectrum–Effect Relationship Analysis
2.6.1. Grey Relational Analysis
2.6.2. Pearson Correlation Analysis
2.6.3. Partial Least-Squares Discriminant Analysis (PLS-DA)
3. Discussion
3.1. Optimization of Extraction Process and Antioxidant Activity
3.2. Establishment of Fingerprinting and Relevant Stoichiometric Analysis
3.3. Spectrum–Effect Relationship Analysis
4. Materials and Methods
4.1. Reagents and Materials
4.2. Preparation of Working Solutions
4.3. Methods for Chromogenic Reaction and Content Determination
4.4. Method Validation
4.5. Determination of Single-Factor Experiment Conditions
4.6. Response Surface Methodology (RSM) Optimization Test
4.7. Determination of Antioxidant Activity
4.7.1. Determination of DPPH Radical-Scavenging Capacity
4.7.2. Determination of ABTS Radical-Scavenging Capacity
4.8. UHPLC Analysis
4.8.1. Chromatographic Analysis Conditions
4.8.2. Preparation of Standard Solution and Sample Solutions
4.8.3. System Suitability Investigation
4.8.4. Verification of Methodology of UHPLC Fingerprinting Analysis
4.9. Chemometrics Analysis
4.10. Spectrum–Effect Relationship
4.10.1. Data Preprocessing
4.10.2. Gray Relational Grade Calculation
4.11. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- National Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China; China Pharmaceutical Science and Technology Press: Beijing, China, 2020; p. 291.
- Guizhou Provincial Drug Administration. Quality Standards for Chinese Herbal Medicines and Ethnic Herbs in Guizhou Province; Guizhou Science and Technology Press: Guiyang, China, 2003; p. 296. [Google Scholar]
- Hao, J.J.; Wang, X.P.; Li, Y.S.; Li, Y.C.; Wu, L.J. GC-MS analysis of the volatile oil from persicae ramulus. Chin. J. Exp. Formul. 2010, 16, 45. [Google Scholar]
- Gao, L. Study on the Chemical Composition and Biological Activity of Seeds and Persicae Ramulus of Dioscorea Alata; University of Chinese Academy of Sciences (Shanghai Institute of Pharmaceutical Sciences, Chinese Academy of Sciences): Shanghai, China, 2017. [Google Scholar]
- Yang, L.Y.; Li, X.C.; Luo, K.; Long, J.Y.; Wu, H.M. Qualitative study on the chemical composition of persicae ramulus. J. Guiyang Coll. Tradit. Chin. Med. 2014, 36, 9–11. [Google Scholar]
- Xie, H.; Liu, C.; Gao, J.; Shi, J.; Ni, F.; Luo, X.; He, Y.; Ren, G.; Luo, Z. Fabrication of Zein-Lecithin-EGCG complex nanoparticles: Characterization, controlled release in simulated gastrointestinal digestion. Food Chem. 2021, 365, 130542. [Google Scholar] [CrossRef] [PubMed]
- Maran, P.J.; Priya, B.; Al-Dhabi, A.N.; Ponmurugan, K.; Moorthy, I.G.; Sivarajasekar, N. Ultrasound assisted citric acid mediated pectin extraction from industrial waste of Musa balbisiana. Ultrason. Sonochemistry 2017, 35, 204–209. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Wang, D.; Belwal, T.; Xie, J.; Xu, Y.; Li, L.; Zou, L.; Zhang, L.; Luo, Z. Natural deep eutectic solvent enhanced pulse-ultrasonication assisted extraction as a multi-stability protective and efficient green strategy to extract anthocyanin from blueberry pomace. LWT 2021, 144, 111220. [Google Scholar] [CrossRef]
- González-Centeno, R.M.; Knoerzer, K.; Sabarez, H.; Simal, S.; Rosselló, C.; Femenia, A. Effect of acoustic frequency and power density on the aqueous ultrasonic-assisted extraction of grape pomace (Vitis vinifera L.)-A response surface approach. Ultrason. Sonochemistry 2014, 21, 2176–2184. [Google Scholar] [CrossRef] [PubMed]
- Cui, T.T.; Li, J.H.; Li, N.; Li, F.; Song, Y.Q.; Li, L.L. Optimization of ultrasonic-assisted extraction of arbutin from pear fruitlets using response surface methodology. J. Food Meas. Charact. 2022, 16, 3130–3139. [Google Scholar] [CrossRef]
- Behnaz, A.; Namdar, B.; Manochehr, B.; Fatemeh, M.A. The role of plant-derived natural antioxidants in reduction of oxidative stress. BioFactors 2022, 48, 611–633. [Google Scholar]
- Aslani, A.B.; Ghobadi, S. Studies on oxidants and antioxidants with a brief glance at their relevance to the immune system. Life Sci. 2016, 146, 163–173. [Google Scholar] [CrossRef]
- Priya, C.; Pracheta, J.; Oana, A.D.; Balakyz, Y.; Ahmad, F.A.; Abdull, R.; Babagana, M.; Daniela, C.; Javad, S. Oxidative stress, free radicals and antioxidants: Potential crosstalk in the pathophysiology of human diseases. Front. Chem. 2023, 11, 1158198. [Google Scholar]
- Anushruti, A.; Suhail, S.A.; Saffar, M.; Youzhi, K.; Brian, K.K.; Vinod, L. Antioxidant Therapy in Oxidative Stress-Induced Neurodegenerative Diseases: Role of Nanoparticle Based Drug Delivery Systems in Clinical Translation. Antioxidants 2022, 11, 408. [Google Scholar] [CrossRef]
- Ilhami, G. Antioxidants and antioxidant methods: An updated overview. Arch. Toxicol. 2020, 94, 651–715. [Google Scholar]
- Huang, H.; Zhu, Y.; Fu, X.; Zou, Y.; Li, Q.; Luo, Z. Integrated natural deep eutectic solvent and pulse-ultrasonication for efficient extraction of crocins from gardenia fruits (Gardenia jasminoides Ellis) and its bioactivities. Food Chem. 2022, 380, 132216. [Google Scholar] [CrossRef]
- Chen, G.L.; Xia, M.; Wu, J.L.; Li, N.; Guo, M.Q. Antioxidant and anti-inflammatory properties of flavonoids from lotus plumule. Food Chem. 2018, 277, 706–712. [Google Scholar] [CrossRef] [PubMed]
- Luna, D.F.C.F.; Ferreira, S.A.W.; Casseb, M.M.S.; Oliveira, E.H.C. Anticancer Potential of Flavonoids: An Overview with an Emphasis on Tangeretin. Pharmaceuticals 2023, 16, 1229. [Google Scholar] [CrossRef]
- Sheng, Z.L.; Jiang, Y.M.; Liu, J.M.; Yang, B. UHPLC-MS/MS Analysis on Flavonoids Composition in Astragalus membranaceus and Their Antioxidant Activity. Antioxidants 2021, 10, 1852. [Google Scholar] [CrossRef]
- Zou, C.C.; Yan, H.Y. Research progress on chromatographic fingerprint similarity evaluation method for traditional Chinese medicine in the past 30 years (1988–2017) and its prospect. China J. Chin. Mater. Medica 2018, 43, 1969–1977. [Google Scholar]
- Wang, R.; Wang, X.C.; Xia, M.Q.; Yang, L.X.; Cheng, W.K.; Song, Q.Q. Combining network pharmacology with chromatographic fingerprinting and multicomponent quantitative analysis for the quality evaluation of Moutan Cortex. Biomed. Chromatogr. BMC 2022, 36, e5434. [Google Scholar] [CrossRef] [PubMed]
- Si, L.; Xi, H.; Yuan, L.; Ding, R.; Wu, X.M.; Li, L.; Li, C.L.; Gu, R. Spectrum-Effect Relationship in Chinese Herbal Medicine: Current Status and Future Perspectives. Crit. Rev. Anal. Chem. 2023, 1–22, 21–22. [Google Scholar] [CrossRef]
- Lu, T.L.; Zhu, P.X.; Li, Y.J.; Li, H.Y.; Yang, A.M. Progress in the chemical composition and biological activity of peach. South. Hortic. 2022, 33, 62–68. [Google Scholar]
- Zhang, H.T.; Wei, Z.Y.; Tong, Y.C.; Song, X.P.; Li, X.Y.; Sun, Y.F.; Liu, C.; Han, F.; Yu, J. Spectrum-effect relationship study to reveal the pharmacodynamic substances in Flos Puerariae-Semen Hoveniae medicine pair for the treatment of alcohol-induced liver damage. J. Ethnopharmacol. 2023, 314, 116628. [Google Scholar] [CrossRef]
- Sedem, C.D.; Yuqing, D.; Haihui, Z.; Chaoting, W.; Jixian, Z.; Guangying, C.; Haile, M. The effects of ultrasound assisted extraction on yield, antioxidant, anticancer and antimicrobial activity of polyphenol extracts: A review. Food Biosci. 2020, 35, 100547. [Google Scholar]
- Dhiman, A.; Nanda, A.; Ahmad, S. A quest for staunch effects of flavonoids: Utopian protection against hepatic ailments. Arab. J. Chem. 2016, 9, S1813–S1823. [Google Scholar] [CrossRef]
- Xie, J.; Chen, M.G.; Ren, T.Y.; Zheng, Q.J. Optimization of ellagic acid extraction from blueberry pulp through enzymatic hydrolysis combined with ultrasound-assisted organic solvent. Environ. Technol. Innov. 2023, 31, 103147. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, M.; Cao, B.; Che, L.Y.; Su, Y.Y.; Zhou, X.F.; Li, X.; Chen, C.; Li, G.S.; Bai, C.K. Optimization of extraction, separation and purification of baicalin in Scutellaria baicalensis using response surface methodology. Ind. Crops Prod. 2024, 214, 118555. [Google Scholar] [CrossRef]
- Wang, X.; Guo, J.; Zang, S.; Liu, B.D.; Wu, Y.H. Comparison of Flavonoid Content, Antioxidant Potential, Acetylcholinesterase Inhibition Activity and Volatile Components Based on HS-SPME-GC-MS of Different Parts from Matteuccia struthiopteris (L.) Todaro. Molecules 2024, 29, 1142. [Google Scholar] [CrossRef]
- Muñiz-Márquez, D.B.; Wong-Paz, J.E.; Aguilar-Zárate, P.; Sepúlveda, L.; Buenrostro-Figueroa, J.; Ascacio-Valdés, J.A.; Aguilar, C.N. Effect of ultrasound on the extraction of ellagic acid and hydrolysis of ellagitannins from pomegranate husk. Environ. Technol. Innov. 2021, 24, 102063. [Google Scholar] [CrossRef]
- Hong, C.; Wang, X.; Xu, J.J.; Guo, J.X.; Peng, H.L.; Zhang, Y. A Review: Pharmacological Effect of Natural Compounds in Diospyros kaki Leaves from the Perspective of Oxidative Stress. Molecules 2023, 29, 215. [Google Scholar] [CrossRef]
- Tao, Y.; Gu, X.H.; Li, W.D.; Wu, H.; Cai, B.C.; Zhang, B. Techniques for biological fingerprinting of traditional Chinese medicine. Trends Anal. Chem. 2017, 97, 272–282. [Google Scholar] [CrossRef]
- Ma, Y.; Hu, X.K.; Zhao, Y.D.; Meng, X.B.; Wang, C.Y.; Dai, C.M. Study on bio quality evaluation of Bupleuru chinensis based on COX2 enzyme activity. Pharmacol. Clin. Stud. Tradit. Chin. Med. 2019, 35, 91–95. [Google Scholar]
- Li, Y.R.; Zhou, W.W.; Wang, Z.Y.; Zhao, S.N.; Pan, H.F. Relationship between antioxidant acticity and spectrum-effect of hawthorn leaf extracts. China Pharm. J. 2020, 55, 16731679. [Google Scholar]
- Zhang, K.X.; Shen, X.; Yang, L.; Chen, Q.; Wang, N.N.; Li, Y.M.; Song, P.S.; Jiang, M.; Bai, G.; Yang, P.Y.; et al. Exploring the Q-markers of Angelica sinensis (Oliv.) Diels of anti-platelet aggregation activity based on spectrum-effect relationships. Biomed. Chromatogr. BMC 2022, 36, e5422. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.L.; Cao, Y.T.; Pan, H.Y.; Wang, L.H. Identification of Antitumor Constituents in Toad Venom by Spectrum-Effect Relationship Analysis and Investigation on Its Pharmacologic Mechanism. Molecules 2020, 25, 4269. [Google Scholar] [CrossRef] [PubMed]
- Qin, H.Z.; Lin, S.; Xie, F.F.; Zhang, M.; Zhu, H. Spectrum-effect relationship between HPLC fingerprint and anti-inflammatory activity of Viola in conspicua. Pharmacol. Clin. Pract. Tradit. Chin. Med. 2023, 39, 6874. [Google Scholar]
- Shen, L.; Li, C.; Wang, W.X.; Wang, X.R.; Tang, D.Q.; Xiao, F.; Xia, T. Buckwheat extracts rich in flavonoid aglycones and flavonoid glycosides significantly reduced blood glucose in diabetes mice. J. Funct. Foods 2024, 113, 106029. [Google Scholar] [CrossRef]
- Shraim, A.M.; Ahmed, T.A.; Rahman, M.M.; Hijji, Y.M. Determination of total flavonoid content by aluminum chloride assay: A critical evaluation. LWT 2021, 150, 111932. [Google Scholar] [CrossRef]
- Liu, W.; Yu, Y.; Yang, R.; Wang, C.P.; Xu, B.B.; Cao, S.W. Optimization of Total Flavonoid Compound Extraction from Gynura medica Leaf Using Response Surface Methodology and Chemical Composition Analysis. Int. J. Mol. Sci. 2010, 11, 4750. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.J.; Ang, C.; Hailin, M.; Cheng, Y.Y.; Song, K.D. Optimization of Flavonoid Extraction from Eucommia ulmoides pollen using Respond Surface Methodology and its biological activities. Chem. Biodivers. 2024, 21, e202301308. [Google Scholar] [CrossRef]
- Alara, R.O.; Abdurahman, H.N.; Olalere, A.O. Optimization of microwave-assisted extraction of flavonoids and antioxidants from Vernonia amygdalina leaf using response surface methodology. Food Bioprod. Process. 2018, 107, 36–48. [Google Scholar] [CrossRef]
- Mohammad, N.; Behrooz, B.A.; Hossein, J.; Mostafa, R.J.; Mohsen, E.H.K.; Mitra, G.S. Utilization of Plantago major seed mucilage containing Citrus limon essential oil as an edible coating to improve shelf-life of buffalo meat under refrigeration conditions. Food Sci. Nutr. 2021, 9, 1625–1639. [Google Scholar]
- Xin, Q.N.; Xia, Q.Z.; Ji, Y.Z.; Wu, P.J.; He, L.Y.; Wang, J.Y. Relationship between the UPLC Fingerprints of Citrus reticulata “Chachi” Leaves and Their Antioxidant Activities. Int. J. Anal. Chem. 2022, 2022, 5834525. [Google Scholar]
- Du, W.F.; Zhu, W.H.; Ge, W.H.; Li, C.Y. Research on the effect of spleen-invigorating and anti-swelling active ingredients in crude and processed coix seed based on Spectrum-Effects relationship combined with chemometrics. J. Pharm. Biomed. Anal. 2021, 205, 114350. [Google Scholar] [CrossRef] [PubMed]
- Shan, X.X.; Yang, X.; Li, D.W.; Zhou, L.L.; Qin, S.G.; Li, J.Y.; Tao, W.K.; Peng, C.; Wei, J.M.; Chu, X.Q.; et al. Research on the quality markers of antioxidant activity of Kai-Xin-San based on the spectrum-effect relationship. Front. Pharmacol. 2023, 14, 1270836. [Google Scholar] [CrossRef] [PubMed]
Samples | Similarities | Samples | Similarities | Samples | Similarities |
---|---|---|---|---|---|
S1 | 0.898 | S11 | 0.944 | S21 | 0.949 |
S2 | 0.860 | S12 | 0.941 | S22 | 0.924 |
S3 | 0.861 | S13 | 0.939 | S23 | 0.937 |
S4 | 0.900 | S14 | 0.947 | S24 | 0.939 |
S5 | 0.925 | S15 | 0.873 | S25 | 0.941 |
S6 | 0.932 | S16 | 0.920 | S26 | 0.943 |
S7 | 0.928 | S17 | 0.863 | S27 | 0.936 |
S8 | 0.903 | S18 | 0.942 | S28 | 0.948 |
S9 | 0.938 | S19 | 0.894 | ||
S10 | 0.903 | S20 | 0.801 |
Peak | Correlation Coefficient | Peak | Correlation Coefficient | ||
---|---|---|---|---|---|
DPPH | ABTS | DPPH | ABTS | ||
1 | 0.97 | 0.96 | 19 | 0.96 | 0.95 |
2 | 0.96 | 0.95 | 20 | 0.96 | 0.95 |
3 | 0.95 | 0.94 | 21 | 0.94 | 0.93 |
4 | 0.94 | 0.94 | 22 | 0.94 | 0.94 |
5 | 0.94 | 0.93 | 23 | 0.92 | 0.92 |
6 | 0.90 | 0.89 | 24 | 0.93 | 0.93 |
7 | 0.92 | 0.91 | 25 | 0.94 | 0.93 |
8 | 0.94 | 0.94 | 26 | 0.95 | 0.95 |
9 | 0.96 | 0.95 | 27 | 0.92 | 0.92 |
10 | 0.96 | 0.95 | 28 | 0.96 | 0.95 |
11 | 0.95 | 0.95 | 29 | 0.92 | 0.92 |
12 | 0.96 | 0.96 | 30 | 0.92 | 0.91 |
13 | 0.96 | 0.95 | 31 | 0.92 | 0.91 |
14 | 0.93 | 0.93 | 32 | 0.92 | 0.91 |
15 | 0.93 | 0.92 | 33 | 0.93 | 0.92 |
16 | 0.95 | 0.94 | 34 | 0.94 | 0.93 |
17 | 0.92 | 0.92 | 35 | 0.93 | 0.92 |
18 | 0.94 | 0.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Q.; Yang, M.; Yang, L.; Li, M.; Yang, Y. Optimization and Spectrum–Effect Analysis of Ultrasonically Extracted Antioxidant Flavonoids from Persicae Ramulus. Molecules 2024, 29, 3860. https://doi.org/10.3390/molecules29163860
Yu Q, Yang M, Yang L, Li M, Yang Y. Optimization and Spectrum–Effect Analysis of Ultrasonically Extracted Antioxidant Flavonoids from Persicae Ramulus. Molecules. 2024; 29(16):3860. https://doi.org/10.3390/molecules29163860
Chicago/Turabian StyleYu, Qihua, Mingyu Yang, Liyong Yang, Mengyu Li, and Ye Yang. 2024. "Optimization and Spectrum–Effect Analysis of Ultrasonically Extracted Antioxidant Flavonoids from Persicae Ramulus" Molecules 29, no. 16: 3860. https://doi.org/10.3390/molecules29163860
APA StyleYu, Q., Yang, M., Yang, L., Li, M., & Yang, Y. (2024). Optimization and Spectrum–Effect Analysis of Ultrasonically Extracted Antioxidant Flavonoids from Persicae Ramulus. Molecules, 29(16), 3860. https://doi.org/10.3390/molecules29163860