Chemical Characterization of Pruning Wood Extracts from Six Japanese Plum (Prunus salicina Lindl.) Cultivars and Their Antitumor Activity
Abstract
:1. Introduction
2. Results and Discussion
2.1. Sampling Collection and Extractions of Woods
2.2. Determination of Total Phenolic Content (TPC) and Antioxidant Activity of Prunus salicina Wood Ethyl Acetate Extracts
2.3. Identification of Components in Prunus salicina Wood Ethyl Acetate Extracts
2.4. Quantification of Identified Compounds in Prunus salicina Wood Ethyl Acetate Extracts
2.5. Antiproliferative Activity of Prunus salicina Wood Ethyl Acetate Extracts and Components
3. Materials and Methods
3.1. Chemicals
3.2. Plant Material Collection and Extraction
3.3. Total Phenolic Content (TPC) and Antioxidant Activity
3.4. Analyses by HPLC–DAD and HPLC–DAD/ESI–MS of EtOAc Extracts
3.5. Quantification of Phenolics Compounds in EtOAc Extracts
3.6. Cell Lines and Culture
3.7. In Vitro Antiproliferative Assays
3.8. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef]
- Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; Supuran, C.T. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov. 2021, 20, 200–216. [Google Scholar] [CrossRef] [PubMed]
- Aliaño-González, M.J.; Gabaston, J.; Ortiz-Somovilla, V.; Cantos-Villar, E. Wood waste from fruit trees: Biomolecules and their applications in agri-food industry. Biomolecules 2022, 12, 238. [Google Scholar] [CrossRef]
- Pérez-Bonilla, M.; Salido, S.; van Beek, T.A.; Altarejos, J. Radical-scavenging compounds from olive tree (Olea europaea L.) wood. J. Agric. Food Chem. 2014, 62, 144–151. [Google Scholar] [CrossRef]
- Alejo-Armijo, A.; Tello-Abolafia, A.; Salido, S.; Altarejos, J. Phenolic compounds in laurel wood: A new source of proanthocyanidins. J. Wood Chem. Technol. 2019, 39, 436–453. [Google Scholar] [CrossRef]
- Ortega-Vidal, J.; Cobo, A.; Ortega-Morente, E.; Gálvez, A.; Alejo-Armijo, A.; Salido, S.; Altarejos, J. Antimicrobial and antioxidant activities of flavonoids isolated from wood of sweet cherry tree (Prunus avium L.). J. Wood Chem. Technol. 2021, 41, 104–117. [Google Scholar] [CrossRef]
- Ortega-Vidal, J.; Cobo, A.; Ortega-Morente, E.; Gálvez, A.; Martínez-Bailén, M.; Salido, S.; Altarejos, J. Antimicrobial activity of phenolics isolated from the pruning wood residue of European plum (Prunus domestica L.). Ind. Crops Prod. 2022, 176, 114296. [Google Scholar] [CrossRef]
- Alejo-Armijo, A.; Ortega-Vidal, J.; Salido, S.; Altarejos, J. Recovery and seasonal variation of cinnamtannin B-1 from laurel (Laurus nobilis L.) pruning wood wastes. Chem. Biodivers. 2022, 19, e202100807. [Google Scholar] [CrossRef]
- Ortega-Vidal, J.; Ruiz-Martos, L.; Salido, S.; Altarejos, J. Proanthocyanidins in pruning wood extracts of four European plum (Prunus domestica L.) cultivars and their hLDHA inhibitory activity. Chem. Biodivers. 2023, 20, e202200931. [Google Scholar] [CrossRef]
- Topp, B.L.; Russell, D.M.; Neumüller, M.; Dalbó, M.A.; Liu, W. Plum. In Fruit Breeding, Handbook of Plant Breeding; Badenes, M.L., Byrne, D.H., Eds.; Springer: New York, NY, USA, 2012; Volume 8, pp. 571–621. [Google Scholar]
- FAOSTAT. Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org/faostat/es/#data/QCL (accessed on 6 May 2024).
- FAOSTAT. Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org/faostat/es/#rankings/countries_by_commodity (accessed on 6 May 2024).
- Poonam, V.; Kumar, G.; Reddy, C.S.; Jain, R.; Sharma, S.K.; Prasad, A.K.; Parmar, V.S. Chemical constituents of the genus Prunus and their medicinal properties. Curr. Med. Chem. 2011, 18, 3758–3824. [Google Scholar] [CrossRef] [PubMed]
- Igwe, E.O.; Charlton, K.E. A systematic review on the health effects of plums (Prunus domestica and Prunus salicina). Phytother. Res. 2016, 30, 701–731. [Google Scholar] [CrossRef]
- Jaiswal, R.; Karaköse, H.; Rühmann, S.; Goldner, K.; Neumüller, M.; Treutter, D.; Kuhnert, N. Identification of phenolic compounds in plum fruits (Prunus salicina Lindl. and Prunus domestica L.) by high-performance liquid chromatography/tandem mass spectrometry and characterization of varieties by quantitative phenolic fingerprints. J. Agric. Food Chem. 2013, 61, 12020–12031. [Google Scholar] [CrossRef] [PubMed]
- Venter, A.; Joubert, E.; De Beer, D. Characterisation of phenolic compounds in South African plum fruits (Prunus salicina Lindl.) using HPLC coupled with diode-array, fluorescence, mass spectrometry and on-line antioxidant detection. Molecules 2013, 18, 5072–5090. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Li, W.; You, B.; Yang, S.; Xian, W.; Deng, Y.; Huang, W.; Yang, R. Phenolic profiles, bioaccessibility and antioxidant activity of plum (Prunus Salicina Lindl). Food Res. Int. 2021, 143, 110300. [Google Scholar] [CrossRef]
- Liu, W.; Nan, G.; Nisar, M.F.; Wan, C. Chemical constituents and health benefits of four Chinese plum species. J. Food Qual. 2020, 2020, 842506. [Google Scholar] [CrossRef]
- Bahrin, A.A.; Moshawih, S.; Dhaliwal, J.S.; Kanakal, M.M.; Khan, A.; Lee, K.S.; Goh, B.H.; Goh, H.P.; Kifli, N.; Ming, L.C. Cancer protective effects of plums: A systematic review. Biomed. Pharmacother. 2022, 146, 112568. [Google Scholar] [CrossRef]
- Delgado-Adámez, J.; Fernández-León, M.F.; Velardo-Micharet, B.; González-Gómez, D. In vitro assays of the antibacterial and antioxidant activity of aqueous leaf extracts from different Prunus salicina Lindl. cultivars. Food Chem. Toxicol. 2012, 50, 2481–2486. [Google Scholar] [CrossRef]
- Salido, S.; Pérez-Bonilla, M.; Adams, R.P.; Altarejos, J. Phenolic components and antioxidant activity of wood extracts from 10 main Spanish olive cultivars. J. Agric. Food Chem. 2015, 63, 6493–6500. [Google Scholar] [CrossRef]
- Bruno, M.R.; Russo, D.; Faraone, I.; D’Auria, M.; Milella, L.; Todaro, L. Orchard biomass residues: Chemical composition, biological activity and wood characterization of apricot tree (Prunus armeniaca L.). Biofuels Bioprod. Bioref. 2021, 15, 377–391. [Google Scholar] [CrossRef]
- Sanz, M.; Cadahía, E.; Esteruelas, E.; Muñoz, A.M.; Fernández De Simón, B.; Hernández, T.; Estrella, I. Phenolic compounds in cherry (Prunus avium) heartwood with a view to their use in cooperage. J. Agric. Food Chem. 2010, 58, 4907–4914. [Google Scholar] [CrossRef]
- Ademović, Z.; Hodžić, S.; Halilić-Zahirović, Z.; Husejnagić, D.; Džananović, J.; Šarić-Kundalić, B.; Suljagić, J. Phenolic compounds, antioxidant and antimicrobial properties of the wild cherry (Prunus avium L.) stem. Acta Period. Technol. 2017, 48, 1–13. [Google Scholar] [CrossRef]
- Ramos, P.A.B.; Pereira, C.; Gomes, A.P.; Neto, R.T.; Almeida, A.; Santos, S.A.O.; Silva, A.M.S.; Silvestre, A.J.D. Chemical characterisation, antioxidant and antibacterial activities of Pinus pinaster Ait. and Pinus pinea L. bark polar extracts: Prospecting forestry by-products as renewable sources of bioactive compounds. Appl. Sci. 2022, 12, 784. [Google Scholar] [CrossRef]
- Monagas, M.; Garrido, I.; Lebrón-Aguilar, R.; Bartolome, B.; Gómez-Cordovés, C. Almond (Prunus dulcis (Mill.) D.A. Webb) skins as a potential source of bioactive polyphenols. J. Agric. Food Chem. 2007, 21, 8498–8507. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Kosińska-Cagnazzo, A.; Kerr, W.L.; Amarowicz, R.; Swanson, R.B.; Pegg, R.B. Separation and characterization of phenolic compounds from dry-blanched peanut skins by liquid chromatography-electrospray ionization mass spectrometry. J. Chromatogr. A 2014, 1356, 64–81. [Google Scholar] [CrossRef] [PubMed]
- Neilson, A.P.; O’Keefe, S.F.; Bolling, B.W. High-molecular-weight proanthocyanidins in foods: Overcoming analytical challenges in pursuit of novel dietary bioactive components. Annu. Rev. Food Sci. Technol. 2016, 7, 43–64. [Google Scholar] [CrossRef] [PubMed]
- Howell, A.B. Bioactive compounds in cranberries and their role in prevention of urinary tract infections. Mol. Nutr. Food Res. 2007, 51, 732–737. [Google Scholar] [CrossRef]
- Maffei, M.E.; Salata, C.; Gribaudo, G. Tackling the future pandemics: Broad-spectrum antiviral agents (BSAAs) based on A-type proanthocyanidins. Molecules 2022, 27, 8353. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Zhao, L.; Wang, K.; Renard, C.M.G.C.; Le Bourvellec, C.; Hu, Z.; Liu, X. A-Type proanthocyanidins: Sources, structure, bioactivity, processing, nutrition, and potential applications. Compr. Rev. Food Sci. Food Saf. 2024, 23, e13352. [Google Scholar] [CrossRef] [PubMed]
- Vizzotto, M.; Porter, W.; Byrne, D.; Cisneros-Zevallos, L. Polyphenols of selected peach and plum genotypes reduce cell viability and inhibit proliferation of breast cancer cells while not affecting normal cells. Food Chem. 2014, 164, 363–370. [Google Scholar] [CrossRef]
- Daza, A.; Camacho, M.; Galindo, I.; Arroyo, F.T.; Casanova, L.; Santamaría, C. Comparative fruit quality parameters of several Japanese plum varieties in two newly established orchards, organic and conventionally managed. Int. J. Food Sci. Technol. 2012, 47, 341–349. [Google Scholar] [CrossRef]
- Arroyo, F.T.; Jiménez-Bocanegra, J.A.; García-Galavís, P.A.; Santamaría, C.; Camacho, M.; Castejón, M.; Pérez-Romero, L.F.; Daza, A. Comparative tree growth, phenology and fruit yield of several Japanese plum cultivars in two newly established orchards, organic and conventionally managed. Span. J. Agric. Res. 2013, 11, 155–163. [Google Scholar] [CrossRef]
- Cuevas, F.J.; Pradas, I.; Ruiz-Moreno, M.J.; Arroyo, F.T.; Pérez-Romero, L.F.; Montenegro, J.C.; Moreno-Rojas, J.M. Effect of organic and conventional management on bio-functional quality of thirteen plum cultivars (Prunus salicina Lindl.). PLoS ONE 2015, 10, e0136596. [Google Scholar] [CrossRef] [PubMed]
- Cuevas, F.J.; Moreno-Rojas, J.M.; Arroyo, F.; Daza, A.; Ruiz-Moreno, M.J. Effect of management (organic vs conventional) on volatile profiles of six plum cultivars (Prunus salicina Lindl.). A chemometric approach for varietal classification and determination of potential markers. Food Chem. 2016, 199, 479–484. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Rossi, J.A., Jr. Colorimetry to total phenolics with phosphomolybdic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Vichai, V.; Kirtikara, K. Sulforhodamine B Colorimetric assay for cytotoxicity screening. Nat. Protoc. 2006, 1, 1112–1116. [Google Scholar] [CrossRef]
Pruning Samples | Extraction Yields a | ||
---|---|---|---|
Cultivar | Reference | DCM | EtOAc |
‘Songold’ b | Ps1 | 0.1 | 0.9 |
‘Angeleno’ b | Ps2 | 0.4 | 0.9 |
‘Angeleno’ b,c | Ps3 | 0.3 | 0.7 |
‘Angeleno’ d | Ps4 | 0.5 | 1.0 |
‘Fortune’ b | Ps5 | 0.3 | 0.6 |
‘Red Beaut’ b | Ps6 | 0.4 | 1.2 |
‘Souvenir’ b | Ps7 | 0.7 | 1.1 |
‘Showtime’ b | Ps8 | 0.4 | 1.5 |
Peak | tR (min) | λmax (nm) | [M − H]− |
---|---|---|---|
1 | 13.8 | 279.3 | 288.6 |
2 | 21.4 | 279.3 | 288.6 |
3 | 24.3 | 285.2 | 342.7 |
4 | 31.2 | 278.1 | 574.7 |
5 | 35.2 | 276.9 | 574.7 |
6 | 36.6 | 278.1 | 558.7 |
7 | 38.2 | 276.9 | 558.7 |
8 and 9 | 42.1 | 272.2 | 542.7 |
Compounds | Concentration of Components (Milligrams of Compound Per Gram of DW) # | |||||||
---|---|---|---|---|---|---|---|---|
Ps1 | Ps2 | Ps3 | Ps4 | Ps5 | Ps6 | Ps7 | Ps8 | |
Flavan-3-ols | ||||||||
1 | 0.21 ± 0.01 a | 0.10 ± 0.01 b | 0.11 ± 0.01 b | 0.16 ± 0.01 | 0.06 ± 0.01 | 0.22 ± 0.01 a | 0.31 ± 0.01 | 0.51 ± 0.01 |
2 | 0.22 ± 0.02 a | 0.33 ± 0.01 b | 0.34 ± 0.01 b | 0.52 ± 0.01 c | 0.18 ± 0.01 a | 0.43 ± 0.01 | 0.51 ± 0.01 c | 0.86 ± 0.05 |
Total * | 0.43 | 0.43 | 0.45 | 0.68 | 0.24 | 0.65 | 0.82 | 1.37 |
3 & | <LOQ & | <LOQ & | <LOQ & | <LOQ & | <LOQ & | <LOQ & | <LOQ & | <LOQ & |
Proanthocyanidins | ||||||||
4 | 0.60 ± 0.05 a | 0.18 ± 0.01 b | 0.18 ± 0.02 b | 0.22 ± 0.01 b | 0.18 ± 0.04 b | 0.42 ± 0.01 | 0.56 ± 0.01 a | 1.02 ± 0.04 |
5 | 0.58 ± 0.02 a | 0.56 ± 0.03 a,b | 0.64 ± 0.04 a | 0.90 ± 0.01 c | 0.48 ± 0.02 b | 0.92 ± 0.03 c | 0.86 ± 0.03 c | 1.57 ± 0.04 |
6 | 0.25 ± 0.01 a | 0.13 ± 0.01 b | 0.14 ± 0.01 b | 0.17 ± 0.01 | 0.12 ± 0.01 b | 0.24 ± 0.01 a | 0.24 ± 0.01 a | 0.34 ± 0.01 |
7 | 0.53 ± 0.02 a | 0.97 ± 0.04 b | 0.56 ± 0.05 a | 0.98 ± 0.03 b | 0.47 ± 0.04 a | 0.97 ± 0.03 b | 1.11 ± 0.07 c | 1.12 ± 0.04 c |
8 and 9 | 0.42 ± 0.01 a | 0.71 ± 0.03 | 0.39 ± 0.02 a | 0.54 ± 0.01 | 0.25 ± 0.01 | 0.81 ± 0.04 | 0.38 ± 0.01 a | 0.41 ± 0.01 a |
Total ** | 2.38 | 2.55 | 1.91 | 2.81 | 1.50 | 3.36 | 3.15 | 4.44 |
Extract/Compound | % Reduction at 200 μg/mL | IC50 (μg/mL) * |
---|---|---|
Ps1 | 30.2 a | 423.8 ± 8.3 |
Ps2 | 8.9 | 768.9 ± 16.8 |
Ps3 | 10.1 | 789.3 ± 17.5 |
Ps4 | 24.2 | 471.2 ± 8.8 |
Ps5 | 29.8 a | 450.5 ± 10.2 |
Ps6 | 39.4 b | 518.2 ± 13.7 |
Ps7 | 41.0 b | 500.6 ± 12.5 |
Ps8 | 20.8 | 566.7 ± 12.3 |
3 | 28.8 a | 404.7 ± 7.4 |
4 | Non affected | 833.3 ± 16.6 |
5 | 19.2 | 461.9 ± 9.7 |
6 | Non affected | 882.3 ± 20.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ortega-Vidal, J.; Mut-Salud, N.; de la Torre, J.M.; Altarejos, J.; Salido, S. Chemical Characterization of Pruning Wood Extracts from Six Japanese Plum (Prunus salicina Lindl.) Cultivars and Their Antitumor Activity. Molecules 2024, 29, 3887. https://doi.org/10.3390/molecules29163887
Ortega-Vidal J, Mut-Salud N, de la Torre JM, Altarejos J, Salido S. Chemical Characterization of Pruning Wood Extracts from Six Japanese Plum (Prunus salicina Lindl.) Cultivars and Their Antitumor Activity. Molecules. 2024; 29(16):3887. https://doi.org/10.3390/molecules29163887
Chicago/Turabian StyleOrtega-Vidal, Juan, Nuria Mut-Salud, José M. de la Torre, Joaquín Altarejos, and Sofía Salido. 2024. "Chemical Characterization of Pruning Wood Extracts from Six Japanese Plum (Prunus salicina Lindl.) Cultivars and Their Antitumor Activity" Molecules 29, no. 16: 3887. https://doi.org/10.3390/molecules29163887
APA StyleOrtega-Vidal, J., Mut-Salud, N., de la Torre, J. M., Altarejos, J., & Salido, S. (2024). Chemical Characterization of Pruning Wood Extracts from Six Japanese Plum (Prunus salicina Lindl.) Cultivars and Their Antitumor Activity. Molecules, 29(16), 3887. https://doi.org/10.3390/molecules29163887