Green Synthesis of Magnetic Fe2O3 Nanoparticle with Chenopodium glaucum L. as Recyclable Heterogeneous Catalyst for One-Pot Reactions and Heavy Metal Adsorption
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of CG–Fe2O3 Nanoparticles
2.1.1. FT-IR Characterization
2.1.2. SEM Characterization
2.1.3. XRD Characterization
2.1.4. TEM Characterization
2.1.5. VSM Characterization
2.2. Influence of Substituents on the Synthesis of 2-Amino-4-aryl-4H-benzo[g]chromene-3-carbonitrile Derivatives (4a–l)
2.3. Characterization of 2-Amino-4-phenyl-4H-benzo[g]chromene-3-carbonitrile Derivative (4a)
2.4. Environmental Performance Metrics
2.5. Adsorption of Heavy Metal Ions
2.5.1. Effect of Adsorbent Dose on the Removal of Heavy Metal Ions
2.5.2. Effect of pH on Removal of Heavy Metal Ions
2.5.3. Isotherm Studies
3. Materials and Methods
3.1. Chemicals
3.2. Analytical Instruments
3.3. Preparation of C. glaucum Extract
3.4. Synthesis of CG-Fe2O3 Nanoparticles
3.5. Synthesis of 2-Amino-4-aryl-4H-benzo[g]chromene-3-carbonitrile Derivatives (4a–l)
3.6. Adsorption Experiment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, H.; Lu, L.; Zhu, S.; Li, Y.; Cai, W. The Phototoxicity of Xanthene Derivatives against Escherichia coli, Staphylococcus aureus, and Saccharomyces cerevisiae. Curr. Microbiol. 2006, 52, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Nikpassand, M.; Fekri, L.Z.; Ahmadi, P. Grinding Synthesis of 2-Amino-4H-Chromenes Using 3,3-(butane-1,4-diyl) bis (1,2-dimethyl-1H-imidazole-3-ium)Br-CAN as a Novel Reagent. J. Chil. Chem. Soc. 2017, 62, 3399–3402. [Google Scholar] [CrossRef]
- Burange, A.S.; Gadam, K.G.; Tugaonkar, P.S.; Thakur, S.D.; Soni, R.K.; Khan, R.R.; Tai, M.S. Green Synthesis of Xanthene and Acridine-Based Heterocycles of Pharmaceutical Importance: A Review. Environ. Chem. Lett. 2021, 19, 3283–3314. [Google Scholar] [CrossRef]
- Shirini, F.; Khaligh, N.G. Succinimide-N-Sulfonic Acid: An Efficient Catalyst for the Synthesis of Xanthene Derivatives under Solvent-Free Conditions. Dye. Pigment. 2012, 95, 789–794. [Google Scholar] [CrossRef]
- Banerjee, A.G.; Kothapalli, L.P.; Sharma, P.A.; Thomas, A.B.; Nanda, R.K.; Shrivastava, S.K.; Khatanglekar, V.V. A Facile Microwave-Assisted One-Pot Synthesis of Novel Xanthene Derivatives as Potential Anti-Inflammatory and Analgesic Agents. Arab. J. Chem. 2016, 9, S480–S489. [Google Scholar] [CrossRef]
- Bosica, G.; De Nittis, R.; Borg, R. Solvent-Free, One-Pot, Multicomponent Synthesis of Xanthene Derivatives. Catalysts 2023, 13, 561–577. [Google Scholar] [CrossRef]
- Nasseri, M.A.; Kazemnejadi, M.; Mahmoudi, B.; Assadzadeh, F.; Alavi, S.A.; Allahresani, A. Efficient Preparation of 1,8-Dioxo-Octahydroxanthene Derivatives by Recyclable Cobalt-Incorporated Sulfated Zirconia (ZrO2/SO42−/Co) Nanoparticles. J. Nanoparticle Res. 2019, 21, 214–227. [Google Scholar] [CrossRef]
- Iniyavan, P.; Sarveswari, S.; Vijayakumar, V. Microwave-Assisted Clean Synthesis of Xanthenes and Chromenes in [Bmim][PF6] and Their Antioxidant Studies. Res. Chem. Intermed. 2015, 41, 7413–7426. [Google Scholar] [CrossRef]
- Sang, S.; Li, D.; Zhang, H.; Sun, Y.; Jian, A.; Zhang, Q.; Zhang, W. Facile Synthesis of AgNPs on Reduced Graphene Oxide for Highly Sensitive Simultaneous Detection of Heavy Metal Ions. RSC Adv. 2017, 7, 21618–21624. [Google Scholar] [CrossRef]
- Gao, C.; Yu, X.-Y.; Xu, R.-X.; Liu, J.-H.; Huang, X.-J. AlOOH-Reduced Graphene Oxide Nanocomposites: One-Pot Hydrothermal Synthesis and Their Enhanced Electrochemical Activity for Heavy Metal Ions. ACS Appl. Mater. Interfaces 2012, 4, 4672–4682. [Google Scholar] [CrossRef]
- Zhao, G.; Tran, T.-T.; Modha, S.; Sedki, M.; Myung, N.V.; Jassby, D.; Mulchandani, A. Multiplexed Anodic Stripping Voltammetry Detection of Heavy Metals in Water Using Nanocomposites Modified Screen-Printed Electrodes Integrated with a 3D-Printed Flow Cell. Front. Chem. 2022, 10, 815805. [Google Scholar] [CrossRef] [PubMed]
- Floresta, G.; Cardullo, N.; Spatafora, C.; Rescifina, A.; Tringali, C. A Rare Natural Benzo[k,l]Xanthene as a Turn-off Fluorescent Sensor for Cu2+ Ion. Int. J. Mol. Sci. 2020, 21, 6933–6945. [Google Scholar] [CrossRef] [PubMed]
- Zarei, M.; Zolfigol, M.A.; Moosavi-Zare, A.R.; Noroozizadeh, E. Trityl Bromide versus Nano-Magnetic Catalyst in the Synthesis of Henna-Based Xanthenes and Bis-Coumarins. J. Iran. Chem. Soc. 2017, 14, 2187–2198. [Google Scholar] [CrossRef]
- He, Y.; Wang, Z.; Ma, L.; Zhou, L.; Jiang, Y.; Gao, J. Synthesis of Bismuth Nanoparticle-Loaded Cobalt Ferrite for Electrochemical Detection of Heavy Metal Ions. RSC Adv. 2020, 10, 27697–27705. [Google Scholar] [CrossRef]
- Biswal, S.K.; Panigrahi, G.K.; Sahoo, S.K. Green Synthesis of Fe2O3-Ag Nanocomposite Using Psidium Guajava Leaf Extract: An Eco-Friendly and Recyclable Adsorbent for Remediation of Cr(VI) from Aqueous Media. Biophys. Chem. 2020, 263, 106392–106399. [Google Scholar] [CrossRef]
- Mannaa, M.A.; Mlahi, M.R.; AL Maofari, A.; Ahmed, A.I.; Hassan, S.M. Synthesis of Highly Efficient and Recyclable Bimetallic Cox-Fe1-x-MOF for the Synthesis of Xanthan and Removal of Toxic Pb2+ and Cd2+ Ions. ACS Omega 2023, 8, 26379–26390. [Google Scholar] [CrossRef]
- Shirsat, M.D.; Hianik, T. Electrochemical Detection of Heavy Metal Ions Based on Nanocomposite Materials. J. Compos. Sci. 2023, 7, 473–549. [Google Scholar] [CrossRef]
- Wang, C.; Xu, J.; Zhou, G.; Qu, Q.; Yang, G.; Hu, X. Electrochemical Detection Coupled with High-Performance Liquid Chromatography in Pharmaceutical and Biomedical Analysis: A Mini Review. Comb. Chem. High Throughput Screen. 2007, 10, 547–554. [Google Scholar] [CrossRef]
- Grajeda, B.A.G.; Acosta, S.G.S.; Aguila, S.A.; Guevara, H.P.; Díaz-García, M.E.; Enríquez, A.C.; Campos-Gaxiola, J.J. Selective and Colorimetric Detection of Ba2+ Ions in Aqueous Solutions Using 11-Mercaptoundecylphosphonic Acid Functionalized Gold Nanoparticles. RSC Adv. 2017, 7, 31611–31618. [Google Scholar] [CrossRef]
- Amin, M.A.; Mersal, G.A.M.; El-Hendawy, M.M.; Shaltout, A.A.; Badawi, A.; Boman, J.; Gobouri, A.A.; Saracoglu, M.; Kandemirli, F.; Boukherroub, R.; et al. Synthesis of Cyano-Benzylidene Xanthene Synthons Using a Diprotic Brønsted Acid Catalyst, and Their Application as Efficient Inhibitors of Aluminum Corrosion in Alkaline Solutions. Molecules 2022, 27, 5733–5749. [Google Scholar] [CrossRef]
- Miao, P.; Tang, Y.; Wang, L. DNA Modified Fe3O4@Au Magnetic Nanoparticles as Selective Probes for Simultaneous Detection of Heavy Metal Ions. ACS Appl. Mater. Interfaces 2017, 9, 3940–3947. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Rout, L.; Achary, L.S.K.; Dhaka, R.S.; Dash, P. Greener Route for Synthesis of Aryl and Alkyl-14H-Dibenzo [a.j] Xanthenes Using Graphene Oxide-Copper Ferrite Nanocomposite as a Recyclable Heterogeneous Catalyst. Sci. Rep. 2017, 7, 42975–42992. [Google Scholar] [CrossRef] [PubMed]
- Sahar, P.; Behrooz, M.; Ghani, M. Fe3O4@SiO2@Mel-Rh-Cu: A High-Performance, Green Catalyst for Efficient Xanthene Synthesis and Its Application for Magnetic Solid Phase Extraction of Diazinon Followed by Its Determination through HPLC-UV. Chem. Methodol. 2024, 8, 257–279. [Google Scholar] [CrossRef]
- Fekri, L.Z.; Darya-Laal, A.-R. NiFe2O4@SiO2@amino Glucose Magnetic Nanoparticle as a Green, Effective and Magnetically Separable Catalyst for the Synthesis of Xanthene-Ones under Solvent-Free Condition. Polycycl. Aromat. Compd. 2020, 40, 1539–1556. [Google Scholar] [CrossRef]
- Mousavi, S.R.; Nodeh, H.R.; Afshari, E.Z.; Foroumadi, A. Graphene Oxide Incorporated Strontium Nanoparticles as a Highly Efficient and Green Acid Catalyst for One-Pot Synthesis of Tetramethyl-9-Aryl-Hexahydroxanthenes and 13-Aryl-5H-Dibenzo[b,i]Xanthene-5,7,12,14(13H)-Tetraones Under Solvent-Free Conditions. Catal. Lett. 2019, 149, 1075–1086. [Google Scholar] [CrossRef]
- El-Yazeed, W.S.A.; Hayes, O.R.; Ahmed, A.I. Phosphotungestic Acid Supported Mesoporous MCM-41 Coated NiFe2O4 Magnetic Nanoparticles as Highly Effective Green Nanocatalysts for Coumarin and Xanthene Synthesis. J. Sol-Gel Sci. Technol. 2021, 99, 140–157. [Google Scholar] [CrossRef]
- Haeri, H.S.; Rezayati, S.; Nezhad, E.R.; Darvishi, H. Fe2+ Supported on Hydroxyapatite-Core–Shell-γ-Fe2O3 Nanoparticles: Efficient and Recyclable Green Catalyst for the Synthesis of 14-Aryl-14H-Dibenzo[a,j]Xanthene Derivatives. Res. Chem. Intermed. 2016, 42, 4773–4784. [Google Scholar] [CrossRef]
- Liu, L.; Yuan, M.; Huang, S.; Li, J.; Li, D.; Zhao, L. Analysis of Xanthine Oxidase Inhibitors from Clerodendranthus spicatus with Xanthine Oxidase Immobilized Silica Coated Fe3O4 Nanoparticles. Appl. Sci. 2018, 8, 158–170. [Google Scholar] [CrossRef]
- Barman, G.; Samanta, A.; Maiti, S.; Laha, J.K. Colorimetric Assays for the Detection of Hg(II) Ions Using Functionalized Gold and Silver Nanoparticles. Adv. Sci. Focus 2014, 2, 52–58. [Google Scholar] [CrossRef]
- Rostamizadeh, E.; Iranbakhsh, A.; Majd, A.; Arbabian, S.; Mehregan, I. Green Synthesis of Fe2O3 Nanoparticles Using Fruit Extract of Cornus mas L. and Its Growth-Promoting Roles in Barley. J. Nanostruct. Chem. 2020, 10, 125–130. [Google Scholar] [CrossRef]
- Shankramma, K.; Yallappa, S.; Shivanna, M.B.; Manjanna, J. Fe2O3 Magnetic Nanoparticles to Enhance S. lycopersicum (Tomato) Plant Growth and Their Biomineralization. Appl. Nanosci. 2016, 6, 983–990. [Google Scholar] [CrossRef]
- Ahmad, W.; Joshi, H.C.; Pandey, S.; Kumar, V.; Verma, M. An Overview of Green Methods for Fe2O3 Nanoparticle Synthesis and Their Applications. Int. Nano Lett. 2023, 13, 117–130. [Google Scholar] [CrossRef]
- Campos, E.A.; Pinto, D.V.B.S.; de Oliveira, J.I.S.; Mattos, E.d.C.; Dutra, R.d.C.L. Synthesis, Characterization and Applications of Iron Oxide Nanoparticles—A Short Review. Int. J. Health Sci. 2015, 7, 267–276. [Google Scholar] [CrossRef]
- Karpagavinayagam, P.; Vedhi, C. Green Synthesis of Iron Oxide Nanoparticles Using Avicennia Marina Flower Extract. Vacuum 2019, 160, 286–292. [Google Scholar] [CrossRef]
- Waseem, M.; Munsif, S.; Rashid, U. Imad-ud-Din Physical Properties of α-Fe2O3 Nanoparticles Fabricated by Modified Hydrolysis Technique. Appl. Nanosci. 2014, 4, 643–648. [Google Scholar] [CrossRef]
- Bhosale, M.A.; Ummineni, D.; Sasaki, T.; Nishio-Hamane, D.; Bhanage, B.M. Magnetically Separable γ-Fe2O3 Nanoparticles: An Efficient Catalyst for Acylation of Alcohols, Phenols, and Amines Using Sonication Energy under Solvent Free Condition. J. Mol. Catal. A Chem. 2015, 404–405, 8–17. [Google Scholar] [CrossRef]
- Powell, C.D.; Lounsbury, A.W.; Fishman, Z.S.; Coonrod, C.L.; Gallagher, M.J.; Villagran, D.; Zimmerman, J.B.; Pfefferle, L.D.; Wong, M.S. Nano-Structural Effects on Hematite (α-Fe2O3) Nanoparticle Radiofrequency Heating. Nano Converg. 2021, 8, 8–18. [Google Scholar] [CrossRef]
- Mollie, E.; Annette, S.; Butler, J. The Atom Economy A Search for Synthetic Efficiency. Green Chem. Teach. Learn. Community 1991, 254, 5037–5051. [Google Scholar] [CrossRef]
- Luo, H.; Zhang, S.; Li, X.; Liu, X.; Xu, Q.; Liu, J.; Wang, Z. Tannic acid modified Fe3O4 core–shell nanoparticles for adsorption of Pb2+ and Hg2+. J. Taiwan Inst. Chem. Eng. 2017, 72, 163–170. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, H.; Lu, P.; Chen, T.; Ma, W. Nanostructured α-Fe2O3 Derived from Siderite as an Effective Hg(II) Adsorbent: Performance and Mechanism. Appl. Geochem. 2018, 96, 92–99. [Google Scholar] [CrossRef]
Entry | R1 | Rf | Isolated Yield a (%) | Melting Point (°C) | Literature Melting Point (°C) | Reference |
---|---|---|---|---|---|---|
4a | C6H5 | 0.66 | 95 | 208–209 | 210–211 | [25] |
4b | 3-NO2 C6H4 | 0.78 | 97 | 210–211 | 212–214 | [25] |
4c | 4-NO2 C6H4 | 0.75 | 95 | 178–179 | 179–182 | [17] |
4d | 2-Cl C6H4 | 0.69 | 93 | 233–234 | 231–232 | [6] |
4e | 4-Cl C6H4 | 0.70 | 97 | 230–231 | 231–232 | [14] |
4f | 4-CH3 C6H4 | 0.58 | 97 | 203–205 | 202–204 | [25] |
4g | 4-CH3O C6H4 | 0.63 | 98 | 192–194 | 192–195 | [25] |
4h | 2-OH C6H4 | 0.71 | 96 | 245–248 | 253–255 | [6] |
4i | 2-Thiophenyl | 0.60 | 97 | 267–268 | 265–269 | [6] |
4j | 2-Furyl | 0.54 | 96 | 265–267 | 267–269 | [17] |
4k | 4-NMe2 C6H4 | 0.78 | 97 | 209–211 | 210–212 | [5] |
4l | 4-OH, 3-OMe C6H3 | 0.65 | 96 | 163–165 | 160–164 | [6] |
Heavy Metal Ion | Langmuir’s Isotherm Model | Freundlich Isotherm Model | ||||
---|---|---|---|---|---|---|
q0 (mg/g) | b (L/mg) | R2 | KF (mg/g) | n | R2 | |
Hg2+ | 96.9 | 0.29 | 0.991 | 8.29 | 4.21 | 0.907 |
Pb2+ | 94.1 | 0.47 | 0.951 | 6.60 | 4.03 | 0.865 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thakur, R.; Kaur, N.; Kaur, M.; Bhowmik, P.K.; Han, H.; Singh, K.; Husain, F.M.; Sohal, H.S. Green Synthesis of Magnetic Fe2O3 Nanoparticle with Chenopodium glaucum L. as Recyclable Heterogeneous Catalyst for One-Pot Reactions and Heavy Metal Adsorption. Molecules 2024, 29, 4583. https://doi.org/10.3390/molecules29194583
Thakur R, Kaur N, Kaur M, Bhowmik PK, Han H, Singh K, Husain FM, Sohal HS. Green Synthesis of Magnetic Fe2O3 Nanoparticle with Chenopodium glaucum L. as Recyclable Heterogeneous Catalyst for One-Pot Reactions and Heavy Metal Adsorption. Molecules. 2024; 29(19):4583. https://doi.org/10.3390/molecules29194583
Chicago/Turabian StyleThakur, Rahul, Navneet Kaur, Manvinder Kaur, Pradip K. Bhowmik, Haesook Han, Kishanpal Singh, Fohad Mabood Husain, and Harvinder Singh Sohal. 2024. "Green Synthesis of Magnetic Fe2O3 Nanoparticle with Chenopodium glaucum L. as Recyclable Heterogeneous Catalyst for One-Pot Reactions and Heavy Metal Adsorption" Molecules 29, no. 19: 4583. https://doi.org/10.3390/molecules29194583
APA StyleThakur, R., Kaur, N., Kaur, M., Bhowmik, P. K., Han, H., Singh, K., Husain, F. M., & Sohal, H. S. (2024). Green Synthesis of Magnetic Fe2O3 Nanoparticle with Chenopodium glaucum L. as Recyclable Heterogeneous Catalyst for One-Pot Reactions and Heavy Metal Adsorption. Molecules, 29(19), 4583. https://doi.org/10.3390/molecules29194583