Metal–Site Dispersed Zinc–Chromium Oxide Derived from Chromate–Intercalated Layered Hydroxide for Highly Selective Propane Dehydrogenation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Catalyst Precursors
2.2. Characterization of Spinel Formation after Precursor Calcination
2.3. The Catalytic Performance of Catalysts
2.3.1. Catalytic Properties in Direct Propane Dehydrogenation
2.3.2. Investigation of the Acidic Sites of Catalysts
2.3.3. Catalysts after Reaction
3. Materials and Methods
3.1. Materials and Reagents
3.2. Catalyst Preparation
3.3. Characterization
3.4. Catalytic Test
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.; Chen, S.; Sun, J.; Xie, Y.; Zhao, Z.-J.; Pei, C.; Gong, J. Roles of V-O sites for non-oxidative propane dehydrogenation over supported vanadium oxides. Sci. China Mater. 2023, 66, 1062–1070. [Google Scholar] [CrossRef]
- Atanga, M.A.; Rezaei, F.; Jawad, A.; Fitch, M.; Rownaghi, A.A. Oxidative dehydrogenation of propane to propylene with carbon dioxide. Appl. Catal. B Environ. 2018, 220, 429–445. [Google Scholar] [CrossRef]
- Zhao, Z.-J.; Chiu, C.-C.; Gong, J. Molecular understandings on the activation of light hydrocarbons over heterogeneous catalysts. Chem. Sci. 2015, 6, 4403–4425. [Google Scholar] [CrossRef] [PubMed]
- Ye, C.; Peng, M.; Li, Y.; Wang, D.; Chen, C.; Li, Y. Atomically dispersed Pt in ordered PtSnZn intermetallic with Pt-Sn and Pt-Zn pairs for selective propane dehydrogenation. Sci. China Mater. 2022, 66, 1071–1078. [Google Scholar] [CrossRef]
- Hu, Z.-P.; Yang, D.; Wang, Z.; Yuan, Z.-Y. State-of-the-art catalysts for direct dehydrogenation of propane to propylene. Chin. J. Catal. 2019, 40, 1233–1254. [Google Scholar] [CrossRef]
- Lavrenov, A.; Saifulina, L.; Buluchevskii, E.; Bogdanets, E. Propylene production technology: Today and tomorrow. Catal. Ind. 2015, 7, 175–187. [Google Scholar] [CrossRef]
- Wang, G.; Zhu, X.; Li, C. Recent progress in commercial and novel catalysts for catalytic dehydrogenation of light alkanes. Chem. Rec. 2020, 20, 604–616. [Google Scholar] [CrossRef] [PubMed]
- Nawaz, Z. Light alkane dehydrogenation to light olefin technologies: A comprehensive review. Rev. Chem. Eng. 2015, 31, 413–436. [Google Scholar] [CrossRef]
- Chen, S.; Chang, X.; Sun, G.; Zhang, T.; Xu, Y.; Wang, Y.; Pei, C.; Gong, J. Propane dehydrogenation: Catalyst development, new chemistry, and emerging technologies. Chem. Soc. Rev. 2021, 50, 3315–3354. [Google Scholar] [CrossRef]
- Wang, Q.; O’Hare, D. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem. Rev. 2012, 112, 4124–4155. [Google Scholar] [CrossRef]
- Evans, D.; Slade, R. Layered double hydroxides. Struct. Bond. 2006, 119, 1–87. [Google Scholar]
- He, S.; An, Z.; Wei, M.; Evans, D.G.; Duan, X. Layered double hydroxide-based catalysts: Nanostructure design and catalytic performance. Chem. Commun. 2013, 49, 5912–5920. [Google Scholar] [CrossRef]
- Yuan, Z.; Kumar, A.; Zhou, D.; Feng, J.; Liu, B.; Sun, X. Highly efficient semi-hydrogenation of acetylene over Ni supported mesoporous MgAl2O4 spinel derived from aluminate-intercalated layered double hydroxide. J. Catal. 2022, 414, 374–384. [Google Scholar] [CrossRef]
- Zhang, J.; Yan, T.; Yang, Y.; Sun, J.; Lin, Y.; Wei, M. Zn-Zr-Al oxides derived from hydrotalcite precursors for ethanol conversion to diethyl carbonate. Chin. J. Catal. 2019, 40, 515–522. [Google Scholar] [CrossRef]
- Zhong, L.; He, X.; Qu, J.; Li, X.; Lei, Z.; Zhang, Q.; Liu, X. Precursor preparation for Ca-Al layered double hydroxide to remove hexavalent chromium coexisting with calcium and magnesium chlorides. J. Solid State Chem. 2017, 245, 200–206. [Google Scholar] [CrossRef]
- Shabanian, M.; Hajibeygi, M.; Raeisi, A. FTIR characterization of layered double hydroxides and modified layered double hydroxides. In Layered Double Hydroxide Polymer Nanocomposites; Woodhead Publishing: Sawston, UK, 2020; pp. 77–101. [Google Scholar]
- Theiss, F.L.; Ayoko, G.A.; Frost, R.L. Thermogravimetric analysis of selected layered double hydroxides. J. Therm. Anal. Calorim. 2012, 112, 649–657. [Google Scholar] [CrossRef]
- Gomes, A.S.O.; Simic, N.; Wildlock, M.; Martinelli, A.; Ahlberg, E. Electrochemical investigation of the hydrogen evolution reaction on electrodeposited films of Cr(OH)3 and Cr2O3 in mild alkaline solutions. Electrocatalysis 2017, 9, 333–342. [Google Scholar] [CrossRef]
- Gomes, A.S.O.; Yaghini, N.; Martinelli, A.; Ahlberg, E. A micro-Raman spectroscopic study of Cr(OH)3 and Cr2O3 nanoparticles obtained by the hydrothermal method. J. Raman Spectrosc. 2017, 48, 1256–1263. [Google Scholar] [CrossRef]
- Christiansen, M.B.; Sørensen, M.A.; Sanyova, J.; Bendix, J.; Simonsen, K.P. Characterisation of the rare cadmium chromate pigment in a 19th century tube colour by Raman, FTIR, X-ray and EPR. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 175, 208–214. [Google Scholar] [CrossRef]
- Sun, J.; Qi, G.C.; Tan, Y.; An, C.Q. Characterization of chromate conversion film on tinplate substrate by XPS and electrochemistry methods. Surf. Interface Anal. 2009, 41, 449–452. [Google Scholar] [CrossRef]
- Zhao, D.; Tian, X.; Doronkin, D.E.; Han, S.; Kondratenko, V.A.; Grunwaldt, J.-D.; Perechodjuk, A.; Vuong, T.H.; Rabeah, J.; Eckelt, R.; et al. In situ formation of ZnOx species for efficient propane dehydrogenation. Nature 2021, 599, 234–238. [Google Scholar] [CrossRef]
- Sun, M.-L.; Hu, Z.-P.; Wang, H.-Y.; Suo, Y.-J.; Yuan, Z.-Y. Design Strategies of Stable Catalysts for Propane Dehydrogenation to Propylene. ACS Catal. 2023, 13, 4719–4741. [Google Scholar] [CrossRef]
- Reichle, W.; Kang, S.; Everhardt, D. The nature of the thermal decomposition of a catalytically active anionic clay mineral. J. Catal. 1986, 101, 352–359. [Google Scholar] [CrossRef]
- Song, H.; Laudenschleger, D.; Carey, J.J.; Ruland, H.; Nolan, M.; Muhler, M. Spinel-structured ZnCr2O4 with excess Zn is the active ZnO/Cr2O3 catalyst for high-temperature methanol synthesis. ACS Catal. 2017, 7, 7610–7622. [Google Scholar] [CrossRef]
- Aguilar, M.; Barrera, E.; Palomar-Pardavé, M.; Huerta, L.; Muhl, S. Characterization of black and white chromium electrodeposition films: Surface and optical properties. J. Non-Cryst. Solids 2003, 329, 31–38. [Google Scholar] [CrossRef]
- Cavani, F.; Koutyrev, M.; Trifiro, F.; Bartolini, A.; Ghisletti, D.; Iezzi, R.; Santucci, A.; Del Piero, G. Chemical and physical characterization of alumina-supported chromia-based catalysts and their activity in dehydrogenation of isobutane. J. Catal. 1996, 158, 236–250. [Google Scholar] [CrossRef]
- Sattler, J.J.H.B.; Ruiz-Martinez, J.; Santillan-Jimenez, E.; Weckhuysen, B.M. Catalytic dehydrogenation of light alkanes on metals and metal oxides. Chem. Rev. 2014, 114, 10613–10653. [Google Scholar] [CrossRef]
- Hakuli, A.; Kytökivi, A.; Krause, A. Dehydrogenation of i-butane on CrOx/Al2O3 catalysts prepared by ALE and impregnation techniques. Appl. Catal. A Gen. 2000, 190, 219–232. [Google Scholar] [CrossRef]
- Han, S.; Zhao, Y.; Otroshchenko, T.; Zhang, Y.; Zhao, D.; Lund, H.; Vuong, T.H.; Rabeah, J.; Bentrup, U.; Kondratenko, V.A.; et al. Unraveling the Origins of the Synergy Effect between ZrO2 and CrOx in Supported CrZrOx for Propene Formation in Nonoxidative Propane Dehydrogenation. ACS Catal. 2019, 10, 1575–1590. [Google Scholar] [CrossRef]
- Gao, X.-Q.; Lu, W.-D.; Hu, S.-Z.; Li, W.-C.; Lu, A.-H. Rod-shaped porous alumina-supported Cr2O3 catalyst with low acidity for propane dehydrogenation. Chin. J. Catal. 2019, 40, 184–191. [Google Scholar] [CrossRef]
- Hu, Z.; Wang, Y.; Yang, D.; Yuan, Z.-Y. CrO supported on high-silica HZSM-5 for propane dehydrogenation. J. Energy Chem. 2020, 47, 225–233. [Google Scholar] [CrossRef]
- Ren, Y.; Wang, J.; Hua, W.; Yue, Y.; Gao, Z. Ga2O3/HZSM-48 for dehydrogenation of propane: Effect of acidity and pore geometry of support. J. Ind. Eng. Chem. 2012, 18, 731–736. [Google Scholar] [CrossRef]
- Schreiber, M.W.; Plaisance, C.P.; Baumgärtl, M.; Reuter, K.; Jentys, A.; Bermejo-Deval, R.; Lercher, J.A. Lewis-Brønsted acid pairs in Ga/H-ZSM-5 to catalyze dehydrogenation of light alkanes. J. Am. Chem. Soc. 2018, 140, 4849–4859. [Google Scholar] [CrossRef]
- Węgrzyniak, A.; Jarczewski, S.; Węgrzynowicz, A.; Michorczyk, B.; Kuśtrowski, P.; Michorczyk, P. Catalytic behavior of chromium oxide supported on nanocasting-prepared mesoporous alumina in dehydrogenation of propane. Nanomaterials 2017, 7, 249. [Google Scholar] [CrossRef]
- Fridman, V.Z.; Xing, R. Investigating the CrOx/Al2O3 dehydrogenation catalyst model: II. Relative activity of the chromium species on the catalyst surface. Appl. Catal. A Gen. 2017, 530, 154–165. [Google Scholar] [CrossRef]
- Lin, G.; Su, Y.; Duan, X.; Xie, K. High-density lewis acid sites in porous single-crystalline monoliths to enhance propane dehydrogenation at reduced temperatures. Angew. Chem. Int. Ed. 2021, 60, 9311–9315. [Google Scholar] [CrossRef]
- Yue, Y.; Fu, J.; Wang, C.; Yuan, P.; Bao, X.; Xie, Z.; Basset, J.-M.; Zhu, H. Propane dehydrogenation catalyzed by single Lewis acid site in Sn-Beta zeolite. J. Catal. 2021, 395, 155–167. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, T.; Xu, Z.; Yue, Y.; Lin, M.; Zhu, H. Pt-Sn clusters anchored at Al3+ penta sites as a sinter-resistant and regenerable catalyst for propane dehydrogenation. J. Energy Chem. 2022, 65, 293–301. [Google Scholar] [CrossRef]
- Dai, Y.; Gu, J.; Tian, S.; Wu, Y.; Chen, J.; Li, F.; Du, Y.; Peng, L.; Ding, W.; Yang, Y. γ-Al2O3 sheet-stabilized isolate Co2+ for catalytic propane dehydrogenation. J. Cata. 2020, 381, 482–492. [Google Scholar] [CrossRef]
- Wei, S.; Dai, H.; Long, J.; Lin, H.; Gu, J.; Zong, X.; Yang, D.; Tang, Y.; Yang, Y.; Dai, Y. Nonoxidative propane dehydrogenation by isolated Co2+ in BEA zeolite: Dealumination-determined key steps of propane CH activation and propylene desorption. Chem. Eng. J. 2023, 455, 140726. [Google Scholar] [CrossRef]
- Wang, W.; Wu, Y.; Liu, T.; Zhao, Y.; Qu, Y.; Yang, R.; Xue, Z.; Wang, Z.; Zhou, F.; Long, J. Single Co sites in ordered SiO2 channels for boosting nonoxidative propane dehydrogenation. ACS Catal. 2022, 12, 2632–2638. [Google Scholar] [CrossRef]
- Liu, G.; Zhao, Z.-J.; Wu, T.; Zeng, L.; Gong, J. Nature of the active sites of VOx/Al2O3 catalysts for propane dehydrogenation. ACS Catal. 2016, 6, 5207–5214. [Google Scholar] [CrossRef]
- Xie, L.; Wang, R.; Chai, Y.; Weng, X.; Guan, N.; Li, L. Propane dehydrogenation catalyzed by in-situ partially reduced zinc cations confined in zeolites. J. Energy Chem. 2021, 63, 262–269. [Google Scholar] [CrossRef]
- Liu, J.; Liu, Y.; Ni, Y.; Liu, H.; Zhu, W.; Liu, Z. Enhanced propane dehydrogenation to propylene over zinc-promoted chromium catalysts. Catal. Sci. Techno. 2020, 10, 1739–1746. [Google Scholar] [CrossRef]
- Natarajan, P.; Khan, H.A.; Jaleel, A.; Park, D.S.; Kang, D.-C.; Yoon, S.; Jung, K.-D. The pronounced effect of Sn on RhSn catalysts for propane dehydrogenation. J. Catal. 2020, 392, 8–20. [Google Scholar] [CrossRef]
- Xie, Y.; Luo, R.; Sun, G.; Chen, S.; Zhao, Z.-J.; Mu, R.; Gong, J. Facilitating the reduction of V-O bonds on VOx/ZrO2 catalysts for non-oxidative propane dehydrogenation. Chem. Sci. 2020, 11, 3845–3851. [Google Scholar] [CrossRef]
- Wang, Y.; Suo, Y.; Ren, J.-T.; Wang, Z.; Yuan, Z.-Y. Spatially isolated cobalt oxide sites derived from MOFs for direct propane dehydrogenation. J. Collo. Interf. Sci. 2021, 594, 113–121. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, L.; Pang, M.; Yuan, Z.; Zhou, D. Metal–Site Dispersed Zinc–Chromium Oxide Derived from Chromate–Intercalated Layered Hydroxide for Highly Selective Propane Dehydrogenation. Molecules 2024, 29, 3063. https://doi.org/10.3390/molecules29133063
Xue L, Pang M, Yuan Z, Zhou D. Metal–Site Dispersed Zinc–Chromium Oxide Derived from Chromate–Intercalated Layered Hydroxide for Highly Selective Propane Dehydrogenation. Molecules. 2024; 29(13):3063. https://doi.org/10.3390/molecules29133063
Chicago/Turabian StyleXue, Lu, Maoqi Pang, Zijian Yuan, and Daojin Zhou. 2024. "Metal–Site Dispersed Zinc–Chromium Oxide Derived from Chromate–Intercalated Layered Hydroxide for Highly Selective Propane Dehydrogenation" Molecules 29, no. 13: 3063. https://doi.org/10.3390/molecules29133063
APA StyleXue, L., Pang, M., Yuan, Z., & Zhou, D. (2024). Metal–Site Dispersed Zinc–Chromium Oxide Derived from Chromate–Intercalated Layered Hydroxide for Highly Selective Propane Dehydrogenation. Molecules, 29(13), 3063. https://doi.org/10.3390/molecules29133063