Antimicrobial, Antioxidant and Anti-Inflammatory Activities of the Mucus of the Tropical Sea Slug Elysia crispata
Abstract
:1. Introduction
2. Results
2.1. Antimicrobial Activity
2.2. Antioxidant Activity
2.3. Anti-Inflammatory Activity
3. Discussion
3.1. Antimicrobial Activity
3.2. Antioxidant Activity
3.3. Anti-Inflammatory Activity
3.4. Concluding Remarks
4. Materials and Methods
4.1. Animal Rearing
4.2. Mucus Collection
4.3. Native Protein Extract
4.4. Fractions with <10 kDa and ≥10 kDa
4.5. Antimicrobial Activity
4.6. Antioxidant Activity
4.7. Anti-Inflammatory Activity
4.8. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karthikeyan, A.; Joseph, A.; Nair, B.G. Promising bioactive compounds from the marine environment and their potential effects on various diseases. J. Genet. Eng. Biotechnol. 2022, 20, 14. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, R.; Kannappan, A.; Shi, C.; Lin, X. Marine bacterial secondary metabolites: A treasure house for structurally unique and effective antimicrobial compounds. Mar. Drugs 2021, 19, 530. [Google Scholar] [CrossRef] [PubMed]
- Calado, R.; Mamede, R.; Cruz, S.; Leal, M.C. Updated trends on the biodiscovery of new marine natural products from invertebrates. Mar. Drugs 2022, 20, 389. [Google Scholar] [CrossRef]
- Carroll, A.; Copp, B.; Davis, R.; Keyzers, R.; Prinsep, M. Marine natural products. Nat. Prod. Rep. 2019, 36, 122. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Sarkar, T.; Pati, S.; Kari, Z.A.; Edinur, H.A.; Chakraborty, R. Novel bioactive compounds from marine sources as a tool for functional food development. Front. Mar. Sci. 2022, 9, 832957. [Google Scholar] [CrossRef]
- Macedo, M.W.F.S.; Cunha, N.B.; Carneiro, J.A.; Costa, R.A.; Alencar, S.A.; Cardoso, M.H.; Franco, O.L.; Dias, S.C. Marine organisms as a rich source of biologically active peptides. Front. Mar. Sci. 2021, 8, 667764. [Google Scholar] [CrossRef]
- Bhagwat, P.; Ravindran, C.; Irudayarajan, L. Beneficial properties of mucus in coral adaptations and ecological interactions. Mar. Biol. 2024, 171, 46. [Google Scholar] [CrossRef]
- Böni, L.; Fischer, P.; Böcker, L.; Kuster, S.; Rühs, P.A. Hagfish slime and mucin flow properties and their implications for defense. Sci. Rep. 2016, 6, 30371. [Google Scholar] [CrossRef]
- Greenwood, P.G.; Garry, K.; Hunter, A.; Jennings, M. Adaptable defense: A nudibranch mucus inhibits nematocyst discharge and changes with prey type. Biol. Bull. 2004, 206, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Ng, T.P.T.; Davies, M.S.; Stafford, R.; Williams, G.A. Mucus trail following as a mate-searching strategy in mangrove littorinid snails. Anim. Behav. 2011, 82, 459–465. [Google Scholar] [CrossRef]
- Rumpho, M.E.; Summer, E.J.; Manhart, J.R. Solar-powered sea slugs. Mollusc/algal chloroplast symbiosis. Plant Physiol. 2000, 123, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Händeler, K.; Grzymbowski, Y.P.; Krug, P.J.; Wägele, H. Functional chloroplasts in metazoan cells: A unique evolutionary strategy in animal life. Front. Zool. 2009, 6, 28–46. [Google Scholar] [CrossRef] [PubMed]
- Pierce, S.K.; Curtis, N.E.; Middlebrooks, M.L. Sacoglossan sea slugs make routine use of photosynthesis by a variety of species-specific adaptations. Invertebr. Biol. 2015, 134, 103–115. [Google Scholar] [CrossRef]
- Cruz, S.; Cartaxana, P. Kleptoplasty: Getting away with stolen chloroplasts. PLoS Biol. 2022, 20, e3001857. [Google Scholar] [CrossRef]
- Giménez-Casalduero, F.; Muniain, C. The role of kleptoplasts in the survival rates of Elysia timida (Risso,1818): (Sacoglossa: Opisthobranchia) during periods of food shortage. J. Exp. Mar. Biol. Ecol. 2008, 357, 181–187. [Google Scholar] [CrossRef]
- Yamamoto, S.; Hirano, Y.M.; Hirano, Y.J.; Trowbridge, C.D.; Akimoto, A.; Sakai, A.; Yusa, Y. Effects of photosynthesis on the survival and weight retention of two kleptoplastic sacoglossan opisthobranchs. J. Mar. Biol. Assoc. U. K. 2013, 98, 209–215. [Google Scholar] [CrossRef]
- Cartaxana, P.; Rey, F.; LeKieffre, C.; Lopes, D.; Hubas, C.; Spangenberg, J.E.; Escrig, S.; Jesus, B.; Calado, G.; Domingues, R.; et al. Photosynthesis from stolen chloroplasts can support sea slug reproductive fitness. Proc. R. Soc. B 2021, 288, 20211779. [Google Scholar] [CrossRef]
- Krug, P.J.; Vendetti, J.E.; Valdés, A. Molecular and morphological systematics of Elysia Risso, 1818 (Heterobranchia: Sacoglossa) from the Caribbean region. Zootaxa 2016, 4148, 1–137. [Google Scholar] [CrossRef] [PubMed]
- Middlebrooks, M.; Curtis, N.; Pierce, S. Algal sources of sequestered chloroplasts in the sacoglossan sea slug Elysia crispata vary by location and ecotype. Biol. Bull. 2019, 23, 88–96. [Google Scholar] [CrossRef]
- Lopes, D.; Cruz, S.; Martins, P.; Ferreira, S.; Nunes, C.; Domingues, P.; Cartaxana, P. Sea slug mucus production is supported by photosynthesis of stolen chloroplasts. Biology 2022, 11, 1207. [Google Scholar] [CrossRef]
- Lopes, D.; Aveiro, S.S.; Cruz, S.; Cartaxana, P.; Domingues, P. Proteomic analysis of the mucus of the photosynthetic sea slug Elysia crispata. J. Proteom. 2024, 294, 105087. [Google Scholar] [CrossRef]
- WHO Bacterial Priority Pathogens List. 2024: Bacterial Pathogens of Public Health Importance to Guide Research, Development and Strategies to Prevent and Control Antimicrobial Resistance, Impact Initiatives and Research Coordination (IRC). 2024. Available online: https://www.who.int/publications-detail-redirect/9789240093461 (accessed on 6 June 2024).
- Li, H.; Maimaitiming, M.; Zhou, Y.; Li, H.; Wang, P.; Liu, Y.; Schäberle, T.F.; Liu, Z.; Wang, C.-Y. Discovery of marine natural products as promising antibiotics against Pseudomonas aeruginosa. Mar. Drugs 2022, 20, 192. [Google Scholar] [CrossRef] [PubMed]
- Li, X.-Z.; Plésiat, P.; Nikaido, H. The challenge of efflux-mediated antibiotic resistance in Gram–negative bacteria. Clin. Microbiol. Rev. 2015, 28, 337–418. [Google Scholar] [CrossRef] [PubMed]
- Simpson, B.W.; Trent, M.S. Pushing the envelope: LPS modifications and their consequences. Nat. Rev. Microbiol. 2019, 17, 403–416. [Google Scholar] [CrossRef] [PubMed]
- Nikaido, H.; Pagès, J.-M. Broad specificity efflux pumps and their role in multidrug resistance of Gram–negative bacteria. FEMS Microbiol, Rev. 2012, 36, 340–363. [Google Scholar] [CrossRef]
- Wittekind, M.; Schuch, R. Cell wall hydrolases and antibiotics: Exploiting synergy to create efficacious new antimicrobial treatments. Curr. Opin. Microbiol. 2016, 33, 18–24. [Google Scholar] [CrossRef]
- Ferraboschi, P.; Ciceri, S.; Grisenti, P. Applications of lysozyme, an innate immune defense factor, as an alternative antibiotic. Antibiotics 2021, 10, 1534. [Google Scholar] [CrossRef] [PubMed]
- Ellison, R.T.; Giehl, T.J. Killing of gram-negative bacteria by lactoferrin and lysozyme. J. Clin. Investig. 1991, 88, 1080–1091. [Google Scholar] [CrossRef]
- Tonoyan, L.; Montagner, D.; Friel, R.; O’Flaherty, V. Antimicrobials offered from nature: Peroxidase-catalyzed systems and their mimics. Biochem. Pharmacol. 2020, 182, 114281. [Google Scholar] [CrossRef]
- Subramanian, S.; Ross, N.W.; MacKinnon, S.L. Myxinidin, a novel antimicrobial peptide from the epidermal mucus of hagfish, Myxine glutinosa L. Mar. Biotechnol. 2009, 11, 748–757. [Google Scholar] [CrossRef]
- Nazurally, N.; Balambha, S.; Damry, K.; Facknath, S.; Sadeer, N.B. Antimicrobial, antifungal and antioxidant activity from the mucus cocoon of the parrotfish (Genus Scarus: Laboridei: Scaridae). Reg. Stud. Mar. Sci. 2023, 61, 102912. [Google Scholar] [CrossRef]
- Pitt, S.J.; Graham, M.A.; Dedi, C.G.; Taylor-Harris, P.M.; Gunn, A. Antimicrobial properties of mucus from the brown garden snail Helix aspersa. Br. J. Biomed. Sci. 2015, 72, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Etim, L.; Aleruchi, C.; Obande, G.A. Antibacterial properties of snail mucus on bacteria isolated from patients with wound infection. Br. Microbiol. Res. J. 2016, 11, 1–9. [Google Scholar] [CrossRef]
- Chakraborty, K.; Kizhakkekalam, V.K.; Joy, M. Macrocyclic polyketides with siderophore mode of action from marine heterotrophic Shewanella algae: Prospective anti-infective leads attenuate drug-resistant pathogens. J. Appl. Microbiol. 2021, 130, 1552–1570. [Google Scholar] [CrossRef]
- Liu, Y.F.; Zhang, Y.H.; Shao, C.L.; Cao, F.; Wang, C.Y. Microketides A and B, polyketides from a gorgonian-derived Microsphaeropsis sp. fungus. J. Nat. Prod. 2020, 83, 1300–1304. [Google Scholar] [CrossRef] [PubMed]
- Auckloo, B.N.; Pan, C.; Akhter, N.; Wu, B.; Wu, X.; He, S. Stress-driven discovery of novel cryptic antibiotics from a marine fungus Penicillium sp. BB1122. Front. Microbiol. 2017, 8, 1450. [Google Scholar] [CrossRef]
- Schneemann, I.; Kajahn, I.; Ohlendorf, B.; Zinecker, H.; Erhard, A.; Nagel, K.; Wiese, J.; Imhoff, J.F. Mayamycin, a cytotoxic polyketide from a streptomyces strain isolated from the marine sponge Halichondria panicea. J. Nat. Prod. 2010, 73, 1309–1312. [Google Scholar] [CrossRef]
- Torres, J.P.; Lin, Z.; Winter, J.M.; Krug, P.J.; Schmidt, E.W. Animal biosynthesis of complex polyketides in a photosynthetic partnership. Nat. Commun. 2020, 11, 2882. [Google Scholar] [CrossRef]
- Miller, A.K.; Byun, D.H.; Beaudry, C.M.; Trauner, D. The total synthesis of (–)-crispatene. Proc. Natl. Acad. Sci. USA 2004, 101, 12019–12023. [Google Scholar] [CrossRef] [PubMed]
- Ireland, C.; Scheuer, P.J. Photosynthetic marine mollusks: In vivo 14C incorporation into metabolites of the sacoglossan Placobranchus ocellatus. Science 1979, 205, 922–923. [Google Scholar] [CrossRef]
- Mendes, J.J.; Marques-Costa, A.; Vilela, C.; Neves, J.; Candeias, N.; Cavaco-Silva, P.; Melo-Cristino, J. Clinical and bacteriological survey of diabetic foot infections in Lisbon. Diabetes Res. Clin. Pract. 2012, 95, 153–161. [Google Scholar] [CrossRef]
- Garousi, M.; MonazamiTabar, S.; Mirazi, H.; Farrokhi, Z.; Khaledi, A.; Shakerimoghaddam, A. Epidemiology of Pseudomonas aeruginosa in diabetic foot infections: A global systematic review and meta-analysis. Germs 2023, 13, 362–372. [Google Scholar] [CrossRef] [PubMed]
- Pham-Huy, L.A.; He, H.; Pham-Huy, C. Free radicals, antioxidants in disease and health. Int. J. Biomed. Sci. 2008, 4, 89–96. [Google Scholar] [CrossRef]
- Lü, J.-M.; Lin, P.H.; Yao, Q.; Chen, C. Chemical and molecular mechanisms of antioxidants: Experimental approaches and model systems. J. Cell. Mol. Med. 2010, 14, 840–860. [Google Scholar] [CrossRef] [PubMed]
- Vladkova, T.; Georgieva, N.; Staneva, A.; Gospodinova, D. Recent progress in antioxidant active substances from marine biota. Antioxidants 2022, 11, 439. [Google Scholar] [CrossRef] [PubMed]
- Swaminathan, R.; Ali, M.S.; Anuradha, V.; Abinaya, R.; Ananthalakshmi, J.; Yogananth, N. Antioxidant potential of fucose isolated from the marine macroalgae Padina gymnospora. Biosci. Biotechnol. Res. Commun. 2021, 14, 1302–1308. [Google Scholar] [CrossRef]
- Abuine, R.; Rathnayake, A.U.; Byun, H.-G. Biological activity of peptides purified from fish skin hydrolysates. Fish. Aquat. Sci. 2019, 22, 10. [Google Scholar] [CrossRef]
- Wang, W.; Yi, J.; Ke, S.; Halmela, M. Gastropod Biological Fluid, Method of Making and Refining and Use. U.S. Patent US 2010/0233111 A1, 16 September 2010. [Google Scholar]
- Phrompanya, P.; Suriyaruean, N.; Nantarat, N.; Saenphet, S.; Tragoolpua, Y.; Saenphet, K. Biological properties of mucus from land snails (Lissachatina fulica) and freshwater snails (Pomacea canaliculata) and histochemical study of mucous cells in their foot. PeerJ 2023, 11, e15827. [Google Scholar] [CrossRef] [PubMed]
- Rizzi, V.; Gubitosa, J.; Fini, P.; Nuzzo, S.; Agostiano, A.; Cosma, P. Snail slime-based gold nanoparticles: An interesting potential ingredient in cosmetics as an antioxidant, sunscreen, and tyrosinase inhibitor. J. Photochem. Photobiol. B 2021, 224, 112309. [Google Scholar] [CrossRef]
- Li, C.-Q.; Ma, Q.-Y.; Gao, X.-Z.; Wang, X.; Zhang, B.-L. Research progress in anti-inflammatory bioactive substances derived from marine microorganisms, sponges, algae, and corals. Mar. Drugs 2021, 19, 572. [Google Scholar] [CrossRef]
- Jiao, W.-H.; Cheng, B.-H.; Chen, G.-D.; Shi, G.-H.; Li, J.; Hu, T.-Y.; Lin, H.-W. Dysiarenone, a dimeric C21 meroterpenoid with inhibition of COX-2 expression from the marine sponge Dysidea arenaria. Org. Lett. 2018, 20, 3092–3095. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.M.; Kim, N.-H.; Lee, S.; Kim, Y.N.; Heo, J.D.; Jeong, E.J.; Rho, J.-R. Deacetylphylloketal, a new phylloketal derivative from a marine sponge, genus Phyllospongia, with potent anti-inflammatory activity in in-vitro co-culture model of intestine. Mar. Drugs 2019, 17, 634. [Google Scholar] [CrossRef]
- Pozharitskaya, O.N.; Obluchinskaya, E.D.; Shikov, A.N. Mechanisms of bioactivities of fucoidan from the brown seaweed Fucus vesiculosus L. of the Barents Sea. Mar. Drugs 2020, 18, 275. [Google Scholar] [CrossRef] [PubMed]
- Jayawardena, T.U.; Fernando, I.P.S.; Lee, W.W.; Sanjeewa, K.K.A.; Kim, H.-S.; Lee, D.-S.; Jeon, Y.-J. Isolation and purification of fucoidan fraction in Turbinaria ornata from the Maldives; inflammation inhibitory potential under LPS stimulated conditions in in-vitro and in-vivo models. Int. J. Biol. Macromol. 2019, 131, 614–623. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.-Y.; Lin, S.-C.; Feng, C.-W.; Chen, P.-C.; Su, Y.-D.; Li, C.-M.; Yang, S.-N.; Jean, Y.-H.; Sung, P.-J.; Duh, C.-Y.; et al. Anti-inflammatory and analgesic effects of the marine-derived compound excavatolide B isolated from the culture-type formosan gorgonian Briareum excavatum. Mar. Drugs 2015, 13, 2559–2579. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.F.; Chen, Y.-W.; Huang, C.-Y.; Tseng, Y.-J.; Lin, C.-C.; Dai, C.-F.; Wu, Y.-C.; Sheu, J.-H. Isolation and structure elucidation of cembranoids from a Dongsha Atoll soft coral Sarcophyton stellatum. Mar. Drugs 2018, 16, 210. [Google Scholar] [CrossRef]
- Huang, C.-Y.; Sung, P.-J.; Uvarani, C.; Su, J.-H.; Lu, M.-C.; Hwang, T.-L.; Dai, C.-F.; Wu, S.-L.; Sheu, J.-H. Glaucumolides A and B, biscembranoids with new structural type from a cultured soft coral Sarcophyton glaucum. Sci. Rep. 2015, 5, 15624. [Google Scholar] [CrossRef] [PubMed]
- Ricci, A.; Gallorini, M.; Feghali, N.; Sampò, S.; Cataldi, A.; Zara, S. Snail slime extracted by a cruelty free method preserves viability and controls inflammation occurrence: A focus on fibroblasts. Molecules 2023, 28, 1222. [Google Scholar] [CrossRef]
- El-Zawawy, N.A.; Mona, M.M. Antimicrobial efficacy of egyptian Eremina desertorum and Helix aspersa snail mucus with a novel approach to their anti-inflammatory and wound healing potencies. Sci. Rep. 2021, 11, 24317. [Google Scholar] [CrossRef] [PubMed]
- McDermott, M.; Cerullo, A.R.; Parziale, J.; Achrak, E.; Sultana, S.; Ferd, J.; Samad, S.; Deng, W.; Braunschweig, A.B.; Holford, M. Advancing discovery of snail mucins function and application. Front. Bioeng. Biotechnol. 2021, 9, 734023. [Google Scholar] [CrossRef]
- Cartaxana, P.; Morelli, L.; Cassin, E.; Havurinne, V.; Cabral, M.; Cruz, S. Prey species and abundance affect growth and photosynthetic performance of the polyphagous sea slug Elysia crispata. R. Soc. Open Sci. 2023, 10, 230810. [Google Scholar] [CrossRef] [PubMed]
- Elder, G.H.; Tovey, J.A.; Sheppard, D.M. Purification of uroporphyrinogen decarboxylase from human erythrocytes. Immunochemical evidence for a single protein with decarboxylase activity in human erythrocytes and liver. Biochem. J. 1983, 21, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Cunha, E.; Freitas, F.B.; São Braz, B.; Moreira da Silva, J.; Tavares, L.; Veiga, A.S.; Oliveira, M. Polyphasic validation of a nisin-biogel to control canine periodontal disease. Antibiotics 2020, 9, 180. [Google Scholar] [CrossRef] [PubMed]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
Bacterial Isolates | Inhibitory Effect | |
---|---|---|
Enterococcus faecalis ATCC 51299 | Gram + | + |
Enterococcus faecium CCUG 36804 | + | |
Staphylococcus aureus ATCC 29213 | – | |
Staphylococcus aureus Z25.2 | + | |
Staphylococcus pseudintermedius 93/23 | – | |
Streptococcus equi | + | |
Bacillus anthracis | + | |
Listeria monocytogenes 22 | ++ | |
Listeria monocytogenes CECT 935 | ++ | |
Escherichia coli ATCC 25922 | Gram – | + |
Pseudomonas aeruginosa ATCC 27853 | +++ | |
Pseudomonas aeruginosa Z25.1 | +++ | |
Pseudomonas aeruginosa 74/23 | +++ | |
Aeromonas hydrophila ATCC 7966 | ++ | |
Salmonella enterica CECT 443 | + | |
Salmonella Rissen | + | |
Proteus mirabilis 250/23 | + |
Bacterial Isolates | Inhibitory Effect | |
---|---|---|
Staphylococcus aureus ATCC 29213 | Gram + | + |
Staphylococcus aureus Z25.2 | + | |
Listeria monocytogenes 22 | ++ | |
Listeria monocytogenes CECT 935 | + | |
Pseudomonas aeruginosa ATCC 27853 | Gram – | +++ |
Pseudomonas aeruginosa Z25.1 | +++ | |
Pseudomonas aeruginosa 74/23 | +++ |
Bacterial Isolates | Origin |
---|---|
Escherichia coli ATCC 25922 | Culture collection |
Enterococcus faecalis ATCC 51299 | Culture collection |
Enterococcus faecium CCUG 36804 | Culture collection |
Staphylococcus aureus ATCC 29213 * | Culture collection |
Staphylococcus aureus Z25.2 * | Diabetic Foot Infection |
Staphylococcus pseudintermedius 93/23 | Canine Urinary tract infection |
Pseudomonas aeruginosa ATCC 27853 * | Culture collection |
Pseudomonas aeruginosa Z25.1 * | Diabetic Foot Infection |
Pseudomonas aeruginosa 74/23 * | Canine otitis externa |
Aeromonas hydrophila ATCC 7966 | Culture collection |
Salmonella enterica CECT 443 | Culture collection |
Salmonella Rissen | Swine |
Streptococcus equi | Culture collection |
Bacillus anthracis | Culture collection |
Proteus mirabilis 250/23 | Culture collection |
Listeria monocytogenes 22 * | Culture collection |
Listeria monocytogenes CECT 935 * | Culture collection |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lopes, D.; Cunha, E.; Conde, T.; Moreira, A.; Cruz, S.; Domingues, P.; Oliveira, M.; Cartaxana, P. Antimicrobial, Antioxidant and Anti-Inflammatory Activities of the Mucus of the Tropical Sea Slug Elysia crispata. Molecules 2024, 29, 4593. https://doi.org/10.3390/molecules29194593
Lopes D, Cunha E, Conde T, Moreira A, Cruz S, Domingues P, Oliveira M, Cartaxana P. Antimicrobial, Antioxidant and Anti-Inflammatory Activities of the Mucus of the Tropical Sea Slug Elysia crispata. Molecules. 2024; 29(19):4593. https://doi.org/10.3390/molecules29194593
Chicago/Turabian StyleLopes, Diana, Eva Cunha, Tiago Conde, Anthony Moreira, Sónia Cruz, Pedro Domingues, Manuela Oliveira, and Paulo Cartaxana. 2024. "Antimicrobial, Antioxidant and Anti-Inflammatory Activities of the Mucus of the Tropical Sea Slug Elysia crispata" Molecules 29, no. 19: 4593. https://doi.org/10.3390/molecules29194593
APA StyleLopes, D., Cunha, E., Conde, T., Moreira, A., Cruz, S., Domingues, P., Oliveira, M., & Cartaxana, P. (2024). Antimicrobial, Antioxidant and Anti-Inflammatory Activities of the Mucus of the Tropical Sea Slug Elysia crispata. Molecules, 29(19), 4593. https://doi.org/10.3390/molecules29194593