molecules-logo

Journal Browser

Journal Browser

Natural Products as Antimicrobial Agents: From Extraction to Therapeutic Applications

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Natural Products Chemistry".

Deadline for manuscript submissions: 31 December 2024 | Viewed by 33791

Special Issue Editor


E-Mail Website
Guest Editor
BioEcoAgro, Joint Research Unit 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV—Institut Charles Viollette, F-59650 Villeneuve d’Ascq, France
Interests: antimicrobial agents; dereplication; halophytes; hops; natural products; phytochemistry; structural elucidation; ethnopharmacology
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Antimicrobial resistance, as well as the emergence and re-emergence of some pathogens, constitute two major aspects of the Anthropocene epoch. The COVID‑19 pandemic, caused by severe acute respiratory syndrome coronavirus 2, is a current example. Globally, the impact of human activities on the environment and on our ability to fight certain pathogens may aggravate this problem. For example, the intensive or inappropriate use of antibiotics, deforestation, and climate change may have significant effects on the emergence of new pathogens and on antimicrobial resistance. In order to counter emerging diseases with a pandemic risk, the WHO promotes the “one health” approach, an integrated and unified approach to humans, animal, and environmental health on a global scale. New resistance mechanisms are also emerging, making the management of certain diseases very complex and sometimes impossible. Therefore, the identification of new antimicrobial agents and the improvement of new therapeutic strategies are urgently required. This Special Issue aims to disclose the most recent advances in the discovery of antimicrobial agents with a natural origin (plant, bacterial, and fungal origin) and hemisynthetic derivatives in the field of human and veterinary therapy, as well as the description of the new mechanisms of action of some natural antimicrobial agents. The SI is open to therapeutic solutions of all infectious diseases (viral, bacterial, fungal, and parasitic).

Dr. Céline Rivière
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Natural antimicrobial agents
  • “One health”
  • Antimicrobial resistance
  • Neglected infectious diseases
  • Mechanisms of action

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (10 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

13 pages, 1147 KiB  
Article
Antimicrobial, Antioxidant and Anti-Inflammatory Activities of the Mucus of the Tropical Sea Slug Elysia crispata
by Diana Lopes, Eva Cunha, Tiago Conde, Anthony Moreira, Sónia Cruz, Pedro Domingues, Manuela Oliveira and Paulo Cartaxana
Molecules 2024, 29(19), 4593; https://doi.org/10.3390/molecules29194593 - 27 Sep 2024
Viewed by 899
Abstract
Elysia crispata (Sacoglossa, Gastropoda) is a tropical sea slug known for its ability to incorporate functional chloroplasts from a variety of green macroalgae, a phenomenon termed kleptoplasty. This sea slug, amenable to laboratory cultivation, produces mucus, a viscous secretion that serves diverse purposes [...] Read more.
Elysia crispata (Sacoglossa, Gastropoda) is a tropical sea slug known for its ability to incorporate functional chloroplasts from a variety of green macroalgae, a phenomenon termed kleptoplasty. This sea slug, amenable to laboratory cultivation, produces mucus, a viscous secretion that serves diverse purposes including protection, locomotion, and reproduction. In this study, we profiled the antimicrobial, antioxidant, and anti-inflammatory activities of the mucus of this sea slug. Results revealed inhibitory activity against several bacterial strains, more pronounced for Gram–negative bacteria. Particularly interesting was the strong inhibitory effect against Pseudomonas aeruginosa, a bacterial species classified by the WHO as a high-priority pathogen and associated with high-risk infections due to its frequent multidrug-resistant profile. Similar inhibitory effects were observed for the mucus native protein extracts, indicating that proteins present in the mucus contributed significantly to the antimicrobial activity. The mucus also showed both antioxidant and anti-inflammatory activities. The latter activities were associated with the low molecular weight (<10 kDa) fraction of the mucus rather than the native protein extracts. This study opens the way to further research on the biotechnological applications of the mucus secreted by this unique marine organism, particularly as an antimicrobial agent. Full article
Show Figures

Figure 1

19 pages, 2569 KiB  
Article
Antimicrobial Plants Used by Fang Populations and Phytochemical Profiling of Erismadelphus exsul
by Morel Essono Mintsa, Cédric Sima Obiang, Elodie Choque, Elodie Dussert, Rozenn Ravallec, Joseph-Privat Ondo, Christophe Belloncle, Brice Serge Kumulungui and François Mesnard
Molecules 2024, 29(15), 3503; https://doi.org/10.3390/molecules29153503 - 26 Jul 2024
Cited by 1 | Viewed by 1070
Abstract
Gabon has a rich flora, many species of which are used in traditional medicine. However, little research has been carried out on this wealth. An ethnopharmacological survey in the Fang language was carried out among traditional practitioners to collect antimicrobial medicinal plants. Phytochemical [...] Read more.
Gabon has a rich flora, many species of which are used in traditional medicine. However, little research has been carried out on this wealth. An ethnopharmacological survey in the Fang language was carried out among traditional practitioners to collect antimicrobial medicinal plants. Phytochemical profiling of ethanolic and methanolic extracts from Erismadelphus exsul Mildbr leaves was carried out using HPLC-ESI-Q/TOF and a molecular network approach. Antibacterial activity was assessed with disk diffusion and microdilution methods, antioxidant activity via DPPH and FRAP methods, and in vitro cell viability via Cell Counting Kit-8. A total of 21 medicinal plants were collected, grouped into 10 families, of which the Fabaceae is the most represented. Erismadelphus exsul was chosen for chemical and biological studies due to its citation frequency (RCF = 0.59) and the absence of previous phytochemical studies. These studies revealed 4 major families of natural compounds and annotated 19 compounds for the first time. The crude leaf extract showed significant antioxidant and antibacterial activity. Cytotoxicity studies showed that the leaves were not cytotoxic, unlike the bark. This study underlines the importance of preserving the ancestral knowledge of the Fang populations, while showing promising results for Erismadelphus exsul. Full article
Show Figures

Figure 1

21 pages, 3907 KiB  
Article
A Novel Antimicrobial Mechanism of Azalomycin F Acting on Lipoteichoic Acid Synthase and Cell Envelope
by Zilong Luo, Pingyi Li, Duoduo Zhang, Jianping Zhu, Wan Wang, Wenjia Zhao, Peibo Li and Ganjun Yuan
Molecules 2024, 29(4), 856; https://doi.org/10.3390/molecules29040856 - 14 Feb 2024
Viewed by 1476
Abstract
Lipoteichoic acid (LTA) plays an essential role in bacterial growth and resistance to antibiotics, and LTA synthetase (LtaS) was considered as an attractive target for combating Gram-positive infections. Azalomycin F, a natural guanidyl-containing polyhydroxy macrolide, can target the LTA of Staphylococcus aureus. [...] Read more.
Lipoteichoic acid (LTA) plays an essential role in bacterial growth and resistance to antibiotics, and LTA synthetase (LtaS) was considered as an attractive target for combating Gram-positive infections. Azalomycin F, a natural guanidyl-containing polyhydroxy macrolide, can target the LTA of Staphylococcus aureus. Using various technologies including enzyme-linked immunosorbent assay, transmission electron microscope, proteomics, and parallel reaction monitoring, here, the experimental results indicated that azalomycin F can accelerate the LTA release and disrupt the cell envelope, which would also lead to the feedback upregulation on the expressions of LtaS and other related enzymes. Simultaneously, the reconstituted enzyme activity evaluations showed that azalomycin F can significantly inhibit the extracellular catalytic domain of LtaS (eLtaS), while this was vague for LtaS embedded in the liposomes. Subsequently, the fluorescence analyses for five incubation systems containing azalomycin F and eLtaS or the LtaS-embedded liposome indicated that azalomcyin F can spontaneously bind to the active center of LtaS. Combining the mass spectroscopy analyses and the molecular dockings, the results further indicated that this interaction involves the binding sites of substrates and the LTA prolongation, especially the residues Lys299, Phe353, Trp354 and His416. All these suggested that azalomycin F has multiple antibacterial mechanisms against S. aureus. It can not only inhibit LTA biosynthesis through the interactions of its guanidyl side chain with the active center of LtaS but also disrupt the cell envelope through the synergistic effect of accelerating the LTA release, damaging the cell membrane, and electrostatically interacting with LTA. Simultaneously, these antibacterial mechanisms exhibit a synergistic inhibition effect on S. aureus cells, which would eventually cause the cellular autolysis. Full article
Show Figures

Figure 1

19 pages, 3334 KiB  
Article
Natural Products from Singapore Soil-Derived Streptomycetaceae Family and Evaluation of Their Biological Activities
by Elaine-Jinfeng Chin, Kuan-Chieh Ching, Zann Y. Tan, Mario Wibowo, Chung-Yan Leong, Lay-Kien Yang, Veronica W. P. Ng, Deborah C. S. Seow, Yoganathan Kanagasundaram and Siew-Bee Ng
Molecules 2023, 28(15), 5832; https://doi.org/10.3390/molecules28155832 - 2 Aug 2023
Cited by 1 | Viewed by 1739
Abstract
Natural products have long been used as a source of antimicrobial agents against various microorganisms. Actinobacteria are a group of bacteria best known to produce a wide variety of bioactive secondary metabolites, including many antimicrobial agents. In this study, four actinobacterial strains found [...] Read more.
Natural products have long been used as a source of antimicrobial agents against various microorganisms. Actinobacteria are a group of bacteria best known to produce a wide variety of bioactive secondary metabolites, including many antimicrobial agents. In this study, four actinobacterial strains found in Singapore terrestrial soil were investigated as potential sources of new antimicrobial compounds. Large-scale cultivation, chemical, and biological investigation led to the isolation of a previously undescribed tetronomycin A (1) that demonstrated inhibitory activities against both Gram-positive bacteria Staphylococcus aureus (SA) and methicillin-resistant Staphylococcus aureus (MRSA) (i.e., MIC90 of 2–4 μM and MBC90 of 9–12 μM), and several known antimicrobial compounds, namely nonactin, monactin, dinactin, 4E-deacetylchromomycin A3, chromomycin A2, soyasaponin II, lysolipin I, tetronomycin, and naphthomevalin. Tetronomycin showed a two- to six-fold increase in antibacterial activity (i.e., MIC90 and MBC90 of 1–2 μM) as compared to tetronomycin A (1), indicating the presence of an oxy-methyl group at the C-27 position is important for antibacterial activity. Full article
Show Figures

Figure 1

20 pages, 3230 KiB  
Article
Luteolin Isolated from Juncus acutus L., a Potential Remedy for Human Coronavirus 229E
by Asma Hakem, Lowiese Desmarets, Ramla Sahli, Rawen Ben Malek, Charline Camuzet, Nathan François, Gabriel Lefèvre, Jennifer Samaillie, Sophie Moureu, Sevser Sahpaz, Sandrine Belouzard, Riadh Ksouri, Karin Séron and Céline Rivière
Molecules 2023, 28(11), 4263; https://doi.org/10.3390/molecules28114263 - 23 May 2023
Cited by 4 | Viewed by 2176
Abstract
The COVID-19 pandemic, caused by SARS-CoV-2, addressed the lack of specific antiviral drugs against coronaviruses. In this study, bioguided fractionation performed on both ethyl acetate and aqueous sub-extracts of Juncus acutus stems led to identifying luteolin as a highly active antiviral molecule against [...] Read more.
The COVID-19 pandemic, caused by SARS-CoV-2, addressed the lack of specific antiviral drugs against coronaviruses. In this study, bioguided fractionation performed on both ethyl acetate and aqueous sub-extracts of Juncus acutus stems led to identifying luteolin as a highly active antiviral molecule against human coronavirus HCoV-229E. The apolar sub-extract (CH2Cl2) containing phenanthrene derivatives did not show antiviral activity against this coronavirus. Infection tests on Huh-7 cells, expressing or not the cellular protease TMPRSS2, using luciferase reporter virus HCoV-229E-Luc showed that luteolin exhibited a dose-dependent inhibition of infection. Respective IC50 values of 1.77 µM and 1.95 µM were determined. Under its glycosylated form (luteolin-7-O-glucoside), luteolin was inactive against HCoV-229E. Time of addition assay showed that utmost anti-HCoV-229E activity of luteolin was achieved when added at the post-inoculation step, indicating that luteolin acts as an inhibitor of the replication step of HCoV-229E. Unfortunately, no obvious antiviral activity for luteolin was found against SARS-CoV-2 and MERS-CoV in this study. In conclusion, luteolin isolated from Juncus acutus is a new inhibitor of alphacoronavirus HCoV-229E. Full article
Show Figures

Figure 1

21 pages, 42496 KiB  
Article
Immunomodulatory Efficacy-Mediated Anti-HCV and Anti-HBV Potential of Kefir Grains; Unveiling the In Vitro Antibacterial, Antifungal, and Wound Healing Activities
by Sawsan Abd Ellatif, Elsayed S. Abdel Razik, Marwa M. Abu-Serie, Ahmed Mahfouz, Abdullah F. Shater, Fayez M. Saleh, Mohamed M. Hassan, Walaa F. Alsanie, Abdullah Altalhi, Ghadir E. Daigham and Amira Y. Mahfouz
Molecules 2022, 27(6), 2016; https://doi.org/10.3390/molecules27062016 - 21 Mar 2022
Cited by 7 | Viewed by 3956
Abstract
The utilization of fermented foods with health-promoting properties is becoming more popular around the world. Consequently, kefir, a fermented milk beverage made from kefir grains, was shown in numerous studies to be a probiotic product providing significant health benefits. Herein, we assessed the [...] Read more.
The utilization of fermented foods with health-promoting properties is becoming more popular around the world. Consequently, kefir, a fermented milk beverage made from kefir grains, was shown in numerous studies to be a probiotic product providing significant health benefits. Herein, we assessed the antibacterial and antifungal potential of kefir against a variety of pathogenic bacteria and fungi. This study also showed the effectiveness of kefir in healing wounds in human gastric epithelial cells (GES-1) by (80.78%) compared with control (55.75%) within 48 h. The quantitative polymerase chain reaction (qPCR) results of kefir-treated HCV- or HBV- infected cells found that 200 µg/mL of kefir can eliminate 92.36% of HCV and 75.71% of HBV relative to the untreated infected cells, whereas 800 µg/mL (the highest concentration) completely eradicated HCV and HBV. Moreover, the estimated IC50 values of kefir, at which HCV and HBV were eradicated by 50%, were 63.84 ± 5.81 µg/mL and 224.02 ± 14.36 µg/mL, correspondingly. Kefir can significantly suppress the elevation of TNF-α and upregulate IL-10 and INF-γ in both treated HCV- and HBV-infected cells. High-performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS) analysis of kefir revealed the presence of numerous active metabolites which mainly contribute to the antimicrobial, antiviral, and immunomodulatory activities. This study demonstrated, for the first time, the anti-HBV efficacy of kefir while also illustrating the immunomodulatory impact in the treated HBV-infected cells. Accordingly, kefir represents a potent antiviral agent against both viral hepatitis C and B, as well as having antimicrobial and wound healing potential. Full article
Show Figures

Figure 1

13 pages, 930 KiB  
Article
A Validated HPLC-PDA-HRMS Method to Investigate the Biological Stability and Metabolism of Antiparasitic Triterpenic Esters
by Laura Schioppa, Fanta Fall, Sergio Ortiz, Jacques H. Poupaert and Joelle Quetin-Leclercq
Molecules 2021, 26(23), 7154; https://doi.org/10.3390/molecules26237154 - 26 Nov 2021
Viewed by 2010
Abstract
Pentacyclic triterpenes (PTs) are commonly found in medicinal plants with well-known antiparasitic effects. Previous research on C-3 and C-27 triterpenic esters showed effective and selective in vitro antiparasitic activities and in vivo effectiveness by parenteral routes. The aim of this study was to [...] Read more.
Pentacyclic triterpenes (PTs) are commonly found in medicinal plants with well-known antiparasitic effects. Previous research on C-3 and C-27 triterpenic esters showed effective and selective in vitro antiparasitic activities and in vivo effectiveness by parenteral routes. The aim of this study was to determine triterpenic esters’ stability in different biological-like media and the main microsomal degradation products. An HPLC-PDA method was developed and validated to simultaneously analyze and quantify bioactive triterpenic esters in methanol (LOQ: 2.5 and 1.25–100 µg/mL) and plasma (LOQ: 5–125 µg/mL). Overall, both triterpenic esters showed a stable profile in aqueous and buffered solutions as well as in entire plasma, suggesting gaining access to the ester function is difficult for plasma enzymes. Conversely, after 1 h, 30% esters degradation in acidic media was observed with potential different hydrolysis mechanisms. C-3 (15 and 150 µM) and C-27 esters (150 µM) showed a relatively low hepatic microsomal metabolism (<23%) after 1 h, which was significantly higher in the lowest concentration of C-27 esters (15 µM) (>40% degradation). Metabolic HPLC-PDA-HRMS studies suggested hydrolysis, hydroxylation, dehydration, O-methylation, hydroxylation and/or the reduction of hydrolyzed derivatives, depending on the concentration and the position of the ester link. Further permeability and absorption studies are required to better define triterpenic esters pharmacokinetic and specific formulations designed to increase their oral bioavailability. Full article
Show Figures

Graphical abstract

17 pages, 2730 KiB  
Article
Inhibition of Bacterial Efflux Pumps by Crude Extracts and Essential Oil from Myristica fragrans Houtt. (Nutmeg) Seeds against Methicillin-Resistant Staphylococcus aureus
by Thidar Oo, Bhanubong Saiboonjan, Sukanya Srijampa, Arpasiri Srisrattakarn, Khaetthareeya Sutthanut, Ratree Tavichakorntrakool, Aroonwadee Chanawong, Aroonlug Lulitanond and Patcharaporn Tippayawat
Molecules 2021, 26(15), 4662; https://doi.org/10.3390/molecules26154662 - 31 Jul 2021
Cited by 20 | Viewed by 4022
Abstract
Myristicafragrans Houtt. (Nutmeg) is a widely known folk medicine across several parts of Asia, particularly used in antimicrobial treatment. Bacterial resistance involves the expression of efflux pump systems (chromosomal norA and mepA) in methicillin-resistant Staphylococcus aureus (MRSA). Crude extract (CE) [...] Read more.
Myristicafragrans Houtt. (Nutmeg) is a widely known folk medicine across several parts of Asia, particularly used in antimicrobial treatment. Bacterial resistance involves the expression of efflux pump systems (chromosomal norA and mepA) in methicillin-resistant Staphylococcus aureus (MRSA). Crude extract (CE) and essential oil (EO) obtained from nutmeg were applied as efflux pump inhibitors (EPIs), thereby enhancing the antimicrobial activity of the drugs they were used in. The major substances in CE and EO, which function as EPIs, in a descending order of % peak area include elemicin, myristicin, methoxyeugenol, myristicin, and asarone. Here, we investigated whether the low amount of CE and EO used as EPIs was sufficient to sensitize MRSA killing using the antibiotic ciprofloxacin, which acts as an efflux system. Interestingly, synergy between ciprofloxacin and CE or EO revealed the most significant viability of MRSA, depending on norA and mepA, the latter being responsible for EPI function of EO. Therefore, CE and EO obtained from nutmeg can act as EPIs in combination with substances that act as efflux systems, thereby ensuring that the MRSA strain is susceptible to antibiotic treatment. Full article
Show Figures

Graphical abstract

Review

Jump to: Research

22 pages, 20000 KiB  
Review
Biodiversity of Secondary Metabolites Compounds Isolated from Phylum Actinobacteria and Its Therapeutic Applications
by Muhanna Mohammed Al-shaibani, Radin Maya Saphira Radin Mohamed, Nik Marzuki Sidik, Hesham Ali El Enshasy, Adel Al-Gheethi, Efaq Noman, Nabil Ali Al-Mekhlafi and Noraziah Mohamad Zin
Molecules 2021, 26(15), 4504; https://doi.org/10.3390/molecules26154504 - 26 Jul 2021
Cited by 48 | Viewed by 8883
Abstract
The current review aims to summarise the biodiversity and biosynthesis of novel secondary metabolites compounds, of the phylum Actinobacteria and the diverse range of secondary metabolites produced that vary depending on its ecological environments they inhabit. Actinobacteria creates a wide range of bioactive [...] Read more.
The current review aims to summarise the biodiversity and biosynthesis of novel secondary metabolites compounds, of the phylum Actinobacteria and the diverse range of secondary metabolites produced that vary depending on its ecological environments they inhabit. Actinobacteria creates a wide range of bioactive substances that can be of great value to public health and the pharmaceutical industry. The literature analysis process for this review was conducted using the VOSviewer software tool to visualise the bibliometric networks of the most relevant databases from the Scopus database in the period between 2010 and 22 March 2021. Screening and exploring the available literature relating to the extreme environments and ecosystems that Actinobacteria inhabit aims to identify new strains of this major microorganism class, producing unique novel bioactive compounds. The knowledge gained from these studies is intended to encourage scientists in the natural product discovery field to identify and characterise novel strains containing various bioactive gene clusters with potential clinical applications. It is evident that Actinobacteria adapted to survive in extreme environments represent an important source of a wide range of bioactive compounds. Actinobacteria have a large number of secondary metabolite biosynthetic gene clusters. They can synthesise thousands of subordinate metabolites with different biological actions such as anti-bacterial, anti-parasitic, anti-fungal, anti-virus, anti-cancer and growth-promoting compounds. These are highly significant economically due to their potential applications in the food, nutrition and health industries and thus support our communities’ well-being. Full article
Show Figures

Graphical abstract

23 pages, 6411 KiB  
Review
Promising Antimicrobial Properties of Bioactive Compounds from Different Honeybee Products
by Magdalena Ratajczak, Dorota Kaminska, Eliza Matuszewska, Elżbieta Hołderna-Kedzia, Jarosław Rogacki and Jan Matysiak
Molecules 2021, 26(13), 4007; https://doi.org/10.3390/molecules26134007 - 30 Jun 2021
Cited by 22 | Viewed by 5429
Abstract
Bee products have been known for centuries for their versatile healing properties. In recent decades they have become the subject of documented scientific research. This review aims to present and compare the impact of bee products and their components as antimicrobial agents. Honey, [...] Read more.
Bee products have been known for centuries for their versatile healing properties. In recent decades they have become the subject of documented scientific research. This review aims to present and compare the impact of bee products and their components as antimicrobial agents. Honey, propolis, royal jelly and bee venom are bee products that have antibacterial properties. Sensitivity of bacteria to these products varies considerably between products and varieties of the same product depending on their origin. According to the type of bee product, different degrees of activity were observed against Gram-positive and Gram-negative bacteria, yeasts, molds and dermatophytes, as well as biofilm-forming microorganisms. Pseudomonas aeruginosa turned out to be the most resistant to bee products. An analysis of average minimum inhibitory concentration values for bee products showed that bee venom has the strongest bacterial effectiveness, while royal jelly showed the weakest antibacterial activity. The most challenging problems associated with using bee products for medical purposes are dosage and safety. The complexity and variability in composition of these products raise the need for their standardization before safe and predictable clinical uses can be achieved. Full article
Show Figures

Figure 1

Back to TopTop