Testing the Capability of Embedding-Based Alignments on the GST Superfamily Classification: The Role of Protein Length
Abstract
:1. Introduction
2. Results and Discussion
2.1. Fishing for Transfer of Annotation
2.2. The Reference Set
Classes | Bact. | Amoeb. | Fungi | Virid. | Plat. | Nem. | Arth. | Moll. | Actin. | Amph. | Aves | Mamm. | Total Class | Length | Seq. Id. Range (%) | Structure |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mu | - | - | - | - | 11 (9 *) | - | 3 (2 *) | - | - | - | 1 (1) | 28 (8 *) | 43 (20 *) | 211–225 | 22–98 | |
Sigma | - | - | - | - | - | 9 (2) | 7 (4 *) | 1 (1) | - | - | 1 | 3 (2) | 21 (9 *) | 199–249 | 25–94 | |
Alpha | - | 1 | - | - | - | - | - | - | - | - | 2 (1) | 18 (10 *) | 21 (11 *) | 222–229 | 29–96 | |
Pi | - | - | - | - | - | 5 (2 *) | - | - | - | 2 | - | 12 (3) | 19 (5 *) | 207–210 | 32–99 | |
Theta | - | - | - | - | - | - | - | - | - | - | - | 12 (3) | 12 (3) | 240–244 | 40–99 | |
Delta-Epsilon | - | - | - | - | - | - | 32 (15 *) | - | - | - | - | - | 32 (15 *) | 208–271 | 25–99 | |
Omega | - | - | - | - | - | 3 | 2 (2 *) | - | - | - | - | 7 (2) | 12 (4 *) | 240–256 | 23–93 | |
Zeta | 3 (3 *) | - | 1 (1) | 3 (1) | - | 1 | - | - | - | - | - | 3 (2) | 11 (7 *) | 212–221 | 33–95 | |
Rho | - | - | - | - | - | - | - | 1 (1 *) | 1 | - | - | - | 2 (1 *) | 223–225 | 41 | |
DHAR | - | - | - | 3 (3) | - | - | - | - | - | - | - | - | 3 (3) | 213–213 | 66–76 | |
Tau | - | - | - | 34 (5 *) | - | - | - | - | - | - | - | - | 34 (5 *) | 217–231 | 30–98 | |
Phi | - | - | - | 25 (11 *) | - | - | - | - | - | - | - | - | 25 (11 *) | 212–221 | 31–95 | (8GSS) |
Lambda | - | - | - | 3 | - | - | - | - | - | - | - | - | 3 | 235–237 | 56–73 | |
Beta | 4 (3) | - | - | - | - | - | - | - | - | - | - | - | 4 (3) | 201–203 | 36–54 | |
HSP26 | 3 (3) | - | - | - | - | - | - | - | - | - | - | - | 3 (3) | 202–212 | 22–60 | |
Omega-like | - | - | 4 (1) | - | - | - | - | - | - | - | - | - | 4 (1) | 313–370 | 44–63 | (5LKD) |
FosA | 2 (2) | - | - | - | - | - | - | - | - | - | - | - | 2 (2) | 135–141 | 59 | (1NPB) |
LanC | - | - | - | - | - | - | - | - | 1 | - | - | 4 (1) | 5 (1) | 399–405 | 63–96 | (8D19) |
Kappa | - | - | - | - | - | 2 | - | - | - | - | - | 3 (2) | 5 (2) | 225–226 | 28–86 | (3RPN) |
MAPEG | - | 1 | - | - | - | - | - | - | - | - | - | 22 (5) | 23 (5) | 146–155 | 12–98 | (4AL0) |
Total Taxon | 12 (11 *) | 2 | 5 (2) | 68 (20 *) | 11 (9 *) | 20 (4 *) | 44 (23 *) | 2 (2 *) | 2 | 2 | 4 (2) | 112 (38 *) | 284 (111 *) |
ARBA* | Within Reference Length Range (RLR)* | Below Reference Length Range (< RLR)* | Above Reference Range (>RLR)* | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Class | Total | °Exp | °Pred | °Pred SI* | °Exp | °Pred | °Pred SI* | Errors | °Exp | °Pred | °Pred SI* | Errors | |||
(#) | (#) | (#) | RLR | (%) | (#) | (#) | <RLR | (%) | (#) | (#) | (#) | >RLR | (%) | (#) | |
Mu | 1706 | 981 | 979 | 211–225 | 10–99 | 355 | 349 | 140–210 | 8–99 | 6 | 370 | 335 | 226–475 | 9–99 | 35 |
Sigma | 694 | 592 | 592 | 199–249 | 20–99 | 66 | 66 | 109–198 | 21–99 | - | 36 | 36 | 250–499 | 3–99 | - |
Alpha | 1520 | 734 | 734 | 222–229 | 17–99 | 495 | 471 | 113–221 | 13–99 | 24 | 291 | 289 | 230–487 | 10–99 | 2 |
Pi | 609 | 323 | 323 | 207–210 | 24–99 | 158 | 158 | 120–206 | 21–99 | - | 128 | 124 | 211–488 | 20–99 | 4 |
Theta | 1428 | 560 | 560 | 240–244 | 25–99 | 545 | 540 | 104–239 | 16–99 | 5 | 323 | 323 | 245–491 | 1–99 | - |
Delta-Epsilon | 822 | 715 | 715 | 208–271 | 18–99 | 68 | 68 | 102–207 | 15–99 | - | 39 | 39 | 272–478 | 10–99 | - |
Omega | 1349 | 556 | 556 | 240–256 | 11–99 | 617 | 597 | 101–239 | 6–99 | 20 | 176 | 176 | 257–474 | 10–99 | - |
Zeta | 728 | 268 | 268 | 212–221 | 26–99 | 122 | 122 | 139–211 | 22–99 | - | 338 | 338 | 222–433 | 2–99 | - |
DHAR | 10 | - | - | 213–213 | - | 7 | 7 | 107–212 | 6–97 | - | 3 | 3 | 214–465 | 37–99 | - |
Tau | 1342 | 851 | 851 | 217–231 | 23–99 | 222 | 219 | 202–216 | 6–99 | 3 | 269 | 268 | 232–449 | 3–99 | 1 |
Phi | 1711 | 1066 | 1066 | 212–221 | 25–99 | 177 | 177 | 149–211 | 20–99 | - | 468 | 468 | 222–491 | 2–99 | - |
HSP26 | 433 | 363 | 363 | 202–212 | 33–99 | 48 | 48 | 196–211 | 40–99 | - | 22 | 22 | 213–227 | 40–99 | - |
LanC | 450 | 177 | 177 | 399–405 | 45–99 | 109 | 109 | 126–398 | 4–99 | - | 164 | 164 | 406–490 | 32–99 | - |
Kappa | 1148 | 230 | 230 | 225–226 | 17–99 | 554 | 554 | 189–224 | 12–99 | - | 364 | 364 | 227–257 | 12–99 | - |
MAPEG | 1111 | 687 | 687 | 146–155 | 7–99 | 143 | 143 | 101–145 | 3–99 | - | 281 | 281 | 157–363 | 6–99 | - |
Total | 15,061 | 8103 | 8101 | 3686 | 3628 | 58 | 3272 | 3230 | 42 |
Class | Bacteria | Amoeb. | Fungi | Virid. | Plat. | Nematoda | Arth. | Moll. | Actin. | Amph. | Aves | Mamm. | Others | Total Class |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mu | 5 | - | 33 | 4 | 6 | 12 | 74 | 7 | 5 | - | - | 7 | 96 | 249 |
Sigma | 30 | - | 87 | 14 | - | 480 | 133 | 82 | 11 | 3 | 73 | 130 | 376 | 1419 |
Alpha | 21 | - | 13 | 7 | - | 11 | 1 | 1 | 2 | - | 1 | 6 | 49 | 112 |
Pi | - | - | 37 | 2 | - | 6 | 4 | - | - | 1 | - | 4 | 33 | 87 |
Theta | 13 | - | - | 10 | - | - | 1 | 3 | 2 | - | - | 30 | 5 | 64 |
Delta-Epsilon | 1949 | 9 | 498 | 8 | - | - | 1642 | 1 | 5 | - | - | 4 | 74 | 4190 |
Omega | 87 | - | 112 | 5 | 1 | - | 1 | - | - | - | - | - | 10 | 216 |
Zeta | 1397 | - | 22 | 7 | - | - | - | - | - | - | 1 | - | 21 | 1448 |
Rho | 524 | - | 22 | - | - | - | - | 5 | 197 | - | - | - | 9 | 757 |
DHAR | 1 | - | - | - | - | - | - | - | - | - | - | - | - | 1 |
Tau | 1555 | - | 30 | 2401 | - | 1 | - | - | 1 | - | - | - | 41 | 4029 |
Phi | 3694 | 5 | 772 | 60 | - | - | - | 1 | 1 | - | - | 1 | 57 | 4591 |
Lambda | - | - | 3 | 63 | - | - | - | - | - | - | - | - | - | 66 |
Beta | 1569 | - | 4 | - | - | - | 1 | - | - | - | - | - | 15 | 1589 |
HSP26 | 2539 | - | 9 | 1 | - | - | - | - | - | - | - | - | 27 | 2576 |
Omega-like | 2746 | 1 | 298 | 39 | - | - | 2 | - | 4 | - | 2 | 21 | 200 | 3313 |
FosA | 306 | - | - | - | - | - | - | - | - | - | - | - | 2 | 308 |
LanC | - | - | - | - | - | - | - | - | - | - | - | - | 1 | 1 |
Kappa | - | - | 8 | - | - | - | - | - | 1 | - | - | - | - | 9 |
MAPEG | 39 | 1 | 230 | 108 | 3 | - | 347 | 24 | 141 | 11 | 48 | 44 | 159 | 1155 |
Within RLR | 16,475 | 16 | 2178 | 2729 | 10 | 510 | 2206 | 124 | 370 | 15 | 125 | 247 | 1175 | 26,180 |
Below RLR | 11,288 | 6 | 626 | 1493 | 66 | 237 | 443 | 52 | 426 | 39 | 159 | 509 | 677 | 16,021 |
Above RLR | 12,917 | 22 | 3743 | 2260 | 18 | 119 | 388 | 45 | 342 | 15 | 56 | 148 | 1007 | 21,080 |
Total per Taxon | 41,075 | 44 | 6582 | 6851 | 99 | 883 | 3063 | 222 | 1157 | 69 | 345 | 928 | 2889 | 64,207 |
2.3. Testing the Embedding Alignment Method
2.4. Fishing in the Deep Sea
3. Materials and Methods
3.1. Dataset Generation
3.1.1. The Reference Dataset
3.1.2. The Testing and Trial Datasets
3.2. Embedding Procedure
3.2.1. Embedding Generation
3.2.2. Embedding-Based Alignment
3.3. Computational Time
4. Conclusions and Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L. Attention Is All You Need. Adv. Neural Inf. Process. Syst. 2017, 30, 6000–6010. [Google Scholar]
- Bepler, T.; Berger, B. Learning the protein language: Evolution, structure, and function. Cell Syst. 2021, 12, 654–669.e3. [Google Scholar] [CrossRef]
- Elnaggar, A.; Heinzinger, M.; Dallago, C.; Rehawi, G.; Wang, Y.; Jones, L.; Gibbs, T.; Feher, T.; Angerer, C.; Steinegger, M. ProtTrans: Toward Understanding the Language of Life Through Self-Supervised Learning. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 7112–7127. [Google Scholar] [CrossRef] [PubMed]
- Heinzinger, M.; Weissenow, K.; Sanchez, J.G.; Henkel, A.; Mirdita, M.; Steinegger, M.; Rost, B. Bilingual Language Model for Protein Sequence and Structure. bioRxiv 2023. [Google Scholar] [CrossRef]
- Rives, A.; Meier, J.; Sercu, T.; Goyal, S.; Lin, Z.; Liu, J.; Guo, D.; Ott, M.; Zitnick, C.L.; Ma, J.; et al. Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences. Proc. Natl. Acad. Sci. USA 2021, 118, e2016239118. [Google Scholar] [CrossRef]
- Lin, Z.; Akin, H.; Rao, R.; Hie, B.; Zhu, Z.; Lu, W.; Smetanin, N.; Verkuil, R.; Kabeli, O.; Shmueli, Y.; et al. Evolutionary-scale prediction of atomic-level protein structure with a language model. Science 2023, 379, 1123–1130. [Google Scholar] [CrossRef]
- Kandathil, S.M.; Lau, A.M.; Jones, D.T. Machine learning methods for predicting protein structure from single sequences. Curr. Opin. Struct. Biol. 2023, 81, 102627. [Google Scholar] [CrossRef] [PubMed]
- Jha, K.; Saha, S.; Singh, H. Prediction of protein–protein interaction using graph neural networks. Sci. Rep. 2022, 12, 8360. [Google Scholar] [CrossRef]
- Manfredi, M.; Savojardo, C.; Martelli, P.L.; Casadio, R. ISPRED-SEQ: Deep Neural Networks and Embeddings for Predicting Interaction Sites in Protein Sequences. J. Mol. Biol. 2023, 435, 167963. [Google Scholar] [CrossRef]
- Heinzinger, M.; Littmann, M.; Sillitoe, I.; Bordin, N.; Orengo, C.; Rost, B. Contrastive learning on protein embeddings enlightens midnight zone. NAR Genom. Bioinf. 2022, 4, lqac043. [Google Scholar] [CrossRef]
- Yeung, W.; Zhou, Z.; Li, S.; Kannan, N. Alignment-free estimation of sequence conservation for identifying functional sites using protein sequence embeddings. Brief. Bioinform. 2023, 24, bbac599. [Google Scholar] [CrossRef]
- Kaminski, K.; Ludwiczak, J.; Pawlicki, K.; Alva, V.; Dunin-Horkawicz, S. pLM-BLAST: Distant homology detection based on direct comparison of sequence representations from protein language models. Bioinformatics 2023, 39, btad579. [Google Scholar] [CrossRef]
- Yeung, W.; Zhou, Z.; Mathew, L.; Gravel, N.; Taujale, R.; O’Boyle, B.; Salcedo, M.; Venkat, A.; Lanzilotta, W.; Li, S.; et al. Tree visualizations of protein sequence embedding space enable improved functional clustering of diverse protein superfamilies. Brief. Bioinform. 2023, 24, bbac619. [Google Scholar] [CrossRef]
- Hie, B.L.; Yang, K.K.; Kim, P.S. Evolutionary velocity with protein language models predicts evolutionary dynamics of diverse proteins. Cell Syst. 2022, 13, 274–285.e6. [Google Scholar] [CrossRef] [PubMed]
- Sillitoe, I.; Bordin, N.; Dawson, N.; Waman, V.P.; Ashford, P.; Scholes, H.M.; Pang, C.S.M.; Woodridge, L.; Rauer, C.; Sen, N.; et al. CATH: Increased structural coverage of functional space. Nucleic Acids Res. 2021, 49, D266–D273. [Google Scholar] [CrossRef] [PubMed]
- Hamamsy, T.; Morton, J.T.; Blackwell, R.; Berenberg, D.; Carriero, N.; Gligorijevic, V.; Strauss, C.E.M.; Leman, J.K.; Cho, K.; Bonneau, R. Protein remote homology detection and structural alignment using deep learning. Nat. Biotechnol. 2024, 42, 975–985. [Google Scholar] [CrossRef] [PubMed]
- Kabir, A.; Moldwin, A.; Shehu, A. A Comparative Analysis of Transformer-based Protein Language Models for Remote Homology Prediction. In Proceedings of the 14th ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics, Houston, TX, USA, 3–6 September 2023; pp. 1–9. [Google Scholar] [CrossRef]
- Pantolini, L.; Studer, G.; Pereira, J.; Durairaj, J.; Tauriello, G.; Schwede, T. Embedding-based alignment: Combining protein language models with dynamic programming alignment to detect structural similarities in the twilight-zone. Bioinformatics 2024, 40, btad786. [Google Scholar] [CrossRef]
- Mazari, A.M.A.; Zhang, L.; Ye, Z.-W.; Zhang, J.; Tew, K.D.; Townsend, D.M. The Multifaceted Role of Glutathione S-Transferases in Health and Disease. Biomolecules 2023, 13, 688. [Google Scholar] [CrossRef]
- Allocati, N.; Federici, L.; Masulli, M.; Di Ilio, C. Glutathione transferases in bacteria. FEBS J. 2009, 276, 58–75. [Google Scholar] [CrossRef]
- Meux, E.; Prosper, P.; Ngadin, A.; Didierjean, C.; Morel, M.; Dumarçay, S.; Lamant, T.; Jacquot, J.-P.; Favier, F.; Gelhaye, E. Glutathione Transferases of Phanerochaete chrysosporium. J. Biol. Chem. 2011, 286, 9162–9173. [Google Scholar] [CrossRef]
- Huang, C.; Chen, M.; Pang, D.; Bi, D.; Zou, Y.; Xia, X.; Yang, W.; Luo, L.; Deng, R.; Tan, H.; et al. Developmental and Activity-Dependent Expression of LanCL1 Confers Antioxidant Activity Required for Neuronal Survival. Dev. Cell 2014, 30, 479–487. [Google Scholar] [CrossRef]
- Kumar, S.; Trivedi, P.K. Glutathione S-Transferases: Role in Combating Abiotic Stresses Including Arsenic Detoxification in Plants. Front. Plant Sci. 2018, 9, 751. [Google Scholar] [CrossRef]
- Morel, F.; Aninat, C. The glutathione transferase kappa family. Drug Metab. Rev. 2011, 43, 281–291. [Google Scholar] [CrossRef]
- Oakley, A. Glutathione transferases: A structural perspective. Drug Metab. Rev. 2011, 43, 138–151. [Google Scholar] [CrossRef] [PubMed]
- Bresell, A.; Weinander, R.; Lundqvist, G.; Raza, H.; Shimoji, M.; Sun, T.; Balk, L.; Wiklund, R.; Eriksson, J.; Jansson, C.; et al. Bioinformatic and enzymatic characterization of the MAPEG superfamily. FEBS J. 2005, 272, 1688–1703. [Google Scholar] [CrossRef] [PubMed]
- Zhuge, X.-L.; Xu, H.; Xiu, Z.-J.; Yang, H.-L. Biochemical Functions of Glutathione S-Transferase Family of Salix babylonica. Front. Plant Sci. 2020, 11, 364. [Google Scholar] [CrossRef]
- Sonu Koirala, B.K.; Moural, T.; Zhu, F. Functional and Structural Diversity of Insect Glutathione S-transferases in Xenobiotic Adaptation. Int. J. Biol. Sci. 2022, 18, 5713–5723. [Google Scholar] [CrossRef]
- Konishi, T.; Kato, K.; Araki, T.; Shiraki, K.; Takagi, M.; Tamaru, Y. A new class of glutathione S-transferase from the hepatopancreas of the red sea bream Pagrus major. Biochem. J. 2005, 388, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Munyampundu, J.-P.; Xu, Y.-P.; Cai, X.-Z. Phi Class of Glutathione S-transferase Gene Superfamily Widely Exists in Nonplant Taxonomic Groups. Evol. Bioinform. 2016, 12, 59–71. [Google Scholar] [CrossRef]
- Shehu, D.; Abdullahi, N.; Alias, Z. Cytosolic Glutathione S-transferase in Bacteria:A Review. Pol. J. Environ. Stud. 2018, 28, 515–528. [Google Scholar] [CrossRef]
- Garcerá, A.; Barreto, L.; Piedrafita, L.; Tamarit, J.; Herrero, E. Saccharomyces cerevisiae cells have three Omega class glutathione S-transferases acting as 1-Cys thiol transferases. Biochem. J. 2006, 398, 187–196. [Google Scholar] [CrossRef]
- Xun, L.; Belchik, S.M.; Xun, R.; Huang, Y.; Zhou, H.; Sanchez, E.; Kang, C.; Board, P.G. S-Glutathionyl-(chloro)hydroquinone reductases: A novel class of glutathione transferases. Biochem. J. 2010, 428, 419–427. [Google Scholar] [CrossRef]
- Blisnick, T.; Vincensini, L.; Barale, J.C.; Namane, A.; Braun Breton, C. LANCL1, an erythrocyte protein recruited to the Maurer’s clefts during Plasmodium falciparum development. Mol. Biochem. Parasitol. 2005, 141, 39–47. [Google Scholar] [CrossRef]
- Ladner, J.E.; Parsons, J.F.; Rife, C.L.; Gilliland, G.L.; Armstrong, R.N. Parallel Evolutionary Pathways for Glutathione Transferases: Structure and Mechanism of the Mitochondrial Class Kappa Enzyme rGSTK1-1. Biochemistry 2004, 43, 352–361. [Google Scholar] [CrossRef] [PubMed]
- Morgenstern, R.; Zhang, J.; Johansson, K. Microsomal glutathione transferase 1: Mechanism and functional roles. Drug Metab. Rev. 2011, 43, 300–306. [Google Scholar] [CrossRef] [PubMed]
- Rost, B. Twilight zone of protein sequence alignments. Protein Eng. Des. Sel. 1999, 12, 85–94. [Google Scholar] [CrossRef] [PubMed]
- UniProt Consortium. UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Res. 2021, 49, D480–D489. [Google Scholar] [CrossRef]
- Ketterman, A.J.; Saisawang, C.; Wongsantichon, J. Insect glutathione transferases. Drug Metab. Rev. 2011, 43, 253–265. [Google Scholar] [CrossRef]
- Scian, M.; Le Trong, I.; Mazari, A.M.A.; Mannervik, B.; Atkins, W.M.; Stenkamp, R.E. Comparison of epsilon- and delta-class glutathione S -transferases: The crystal structures of the glutathione S -transferases DmGSTE6 and DmGSTE7 from Drosophila melanogaster. Acta Crystallogr. D Biol. Crystallogr. 2015, 71, 2089–2098. [Google Scholar] [CrossRef]
- Park, H.; Ahn, I.-Y.; Kim, H.; Lee, J. Glutathione S-transferase as a biomarker in the Antarctic bivalve. Laternula elliptica after exposure to the polychlorinated biphenyl mixture Aroclor 1254. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2009, 150, 528–536. [Google Scholar] [CrossRef]
- Thom, R.; Cummins, I.; Dixon, D.P.; Edwards, R.; Cole, D.J.; Lapthorn, A.J. Structure of a Tau Class Glutathione S- Transferase from Wheat Active in Herbicide Detoxification. Biochemistry 2002, 41, 7008–7020. [Google Scholar] [CrossRef] [PubMed]
- Lesk, A.M. Introduction to Protein Science, 3rd ed.; Oxford University Press: Oxford, UK, 2016. [Google Scholar]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Schoch, C.L.; Ciufo, S.; Domrachev, M.; Hotton, C.L.; Kannan, S.; Khovanskaya, R.; Leipe, D.; Mcveigh, R.; O’Neill, K.; Robbertse, B.; et al. NCBI Taxonomy: A comprehensive update on curation, resources and tools. Database 2020, 2020, baaa062. [Google Scholar] [CrossRef] [PubMed]
- MacDougall, A.; Volynkin, V.; Saidi, R.; Poggioli, D.; Zellner, H.; Hatton-Ellis, E.; Joshi, V.; O’Donovan, C.; Orchard, S.; Auchincloss, A.H.; et al. UniRule: A unified rule resource for automatic annotation in the UniProt Knowledgebase. Bioinformatics 2020, 36, 4643–4648. [Google Scholar] [CrossRef]
- Paysan-Lafosse, T.; Blum, M.; Chuguransky, S.; Grego, T.; Pinto, B.L.; Salazar, G.A.; Bileschi, M.L.; Bork, P.; Bridge, A. Colwell InterPro in 2022. Nucleic Acids Res. 2023, 51, D418–D427. [Google Scholar] [CrossRef]
- Manfredi, M.; Savojardo, C.; Iardukhin, G.; Salomoni, D.; Costantini, A.; Martelli, P.L.; Casadio, R. Alpha&ESMhFolds: A Web Server for Comparing AlphaFold2 and ESMFold Models of the Human Reference Proteome. J. Mol. Biol. 2024, 436, 168593. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vazzana, G.; Savojardo, C.; Martelli, P.L.; Casadio, R. Testing the Capability of Embedding-Based Alignments on the GST Superfamily Classification: The Role of Protein Length. Molecules 2024, 29, 4616. https://doi.org/10.3390/molecules29194616
Vazzana G, Savojardo C, Martelli PL, Casadio R. Testing the Capability of Embedding-Based Alignments on the GST Superfamily Classification: The Role of Protein Length. Molecules. 2024; 29(19):4616. https://doi.org/10.3390/molecules29194616
Chicago/Turabian StyleVazzana, Gabriele, Castrense Savojardo, Pier Luigi Martelli, and Rita Casadio. 2024. "Testing the Capability of Embedding-Based Alignments on the GST Superfamily Classification: The Role of Protein Length" Molecules 29, no. 19: 4616. https://doi.org/10.3390/molecules29194616
APA StyleVazzana, G., Savojardo, C., Martelli, P. L., & Casadio, R. (2024). Testing the Capability of Embedding-Based Alignments on the GST Superfamily Classification: The Role of Protein Length. Molecules, 29(19), 4616. https://doi.org/10.3390/molecules29194616