ZnI2-Mediated cis-Glycosylations of Various Constrained Glycosyl Donors: Recent Advances in cis-Selective Glycosylations
Abstract
:1. Introduction
Recent Development of Stereoselective cis Glycosylations
2. ZnI2-Mediated Glycosylations
2.1. cis-Selective Glycosylations by the Action of ZnI2
2.2. 1,2-cis Mannosylation Using C-2-o-TsNHbenzyl Ether (TAB)
2.3. ZnI2-Mediated 1,2-cis α-Glucosylation
2.4. ZnI2-Mediated 1,2-cis β-D-Mannopyranosylation and β-L-Rhamnopyranosylation
2.5. ZnI2-Mediated 1,4/6-cis β-D-Galactopyranosylation
2.6. ZnI2-Mediated 1,2-cis 2-azido-2-deoxy-α-D-Glucopyranosylation
2.7. ZnI2-Mediated 1,2-cis β-D-Arabinofuranosylation
2.8. Density Functional Theory (DFT) Calculations for ZnI2-Mediated Reactions
2.8.1. DFT Calculations for ZnI2-Mediated Glucosylation and Mannosylation
2.8.2. DFT Calculations for ZnI2-Mediated l-Rhamnosylation, 2-azido-2-deoxy-α-d-Glucopyranosylation and for B(C6F5)3-Mediated d-Arabinofuranosylation
2.8.3. DFT Calculations for ZnI2-Mediated D-Galactopyranosylation
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ishiwata, A.; Tanaka, K.; Ao, J.; Ding, F.; Ito, Y. Recent advances in stereoselective 1,2-cis-O-glycosylations. Front. Chem. 2022, 10, 972429. [Google Scholar] [CrossRef] [PubMed]
- Ishiwata, A.; Ito, Y. Development of highly efficient and stereocontrolled O-glycosylation methodologies and its application to the construction of bacterial glycans. Trends Glycosci. Glycotechnol. 2009, 21, 266–289. [Google Scholar] [CrossRef]
- Nigudkar, S.S.; Demchenko, A.V. Stereocontrolled 1,2-cis glycosylation as the driving force of progress in synthetic carbohydrate chemistry. Chem. Sci. 2015, 6, 2687–2704. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, D.; Toshima, K. 1,2-cis O-glycosylation methods. Compr. Glycosci. 2021, 2, 365–412. [Google Scholar] [CrossRef]
- Mukherjee, M.M.; Ghosh, R.; Hanover, J.A. Recent advances in stereoselective chemical O-glycosylation reactions. Front. Mol. Biosci. 2022, 9, 896187. [Google Scholar] [CrossRef]
- Toshima, K.; Tatsuta, K. Recent progress in O-glycosylation methods and its application to natural products synthesis. Chem. Rev. 1993, 93, 1503–1531. [Google Scholar] [CrossRef]
- Schmidt, R.R. New methods for the synthesis of glycosides and oligosaccharides–Are there alternatives to the Koenigs-Knorr method? [New Synthetic Methods (56)]. Angew. Chem. Int. Ed. Engl. 1986, 25, 212–235. [Google Scholar] [CrossRef]
- Demchenko, A.V. Stereoselective chemical 1,2-cis O-glycosylation: From ‘Sugar Ray’ to modern techniques of the 21st century. Synlett 2003, 2003, 1225–1240. [Google Scholar] [CrossRef]
- Mydock, L.K.; Demchenko, A.V. Mechanism of chemical O-glycosylation: From early studies to recent discoveries. Org. Biomol. Chem. 2010, 8, 497–510. [Google Scholar] [CrossRef]
- Capon, B.; McManus, S.P. Neighboring Group Participation; Plenum: New York, NY, USA, 1976. [Google Scholar]
- Capon, B. Mechanism in carbohydrate chemistry. Chem. Rev. 1969, 69, 407–4982. [Google Scholar] [CrossRef]
- Bochkov, A.F.; Zaikov, G.E. Chemistry of the O-Glycosidic Bond; Pergamon: Oxford, UK, 1979. [Google Scholar]
- Ernst, B.; Hart, G.W.; Sinaÿ, P. (Eds.) Carbohydrates in Chemistry and Biology; Wiley-VCH: Weinheim, Germany, 2000. [Google Scholar]
- Fraser-Reid, B.; Tatsuta, K.; Thiem, J. (Eds.) Glycoscience: Chemistry and Chemical Biology; Springer: Berlin, Germany, 2001. [Google Scholar]
- Demchenko, A.V. (Ed.) Handbook of Chemical Glycosylation: Advances in Stereoselectivity and Therapeutic Relevance; Wiley-VCH: Weinheim, Germany, 2008. [Google Scholar]
- Green, L.G.; Ley, S.V. Protecting Groups: Effects on Reactivity, Glycosylation Stereoselectivity, and Coupling Efficiency. In Carbohydrates in Chemistry and Biology; Ernst, B., Hart, G.W., Sinaÿ, P., Eds.; Wiley-VCH: Weinheim, Germany, 2000; Volume 1, Chapter 17; pp. 427–448. [Google Scholar] [CrossRef]
- Sinnott, M.L. (Ed.) Carbohydrate Chemistry and Biochemistry: Structure and Mechanism; RSC Publishing: Cambridge, UK, 2007. [Google Scholar] [CrossRef]
- Crich, D.; Hu, T.; Cai, F. Does Neighboring Group Participation by Non-Vicinal Esters Play a Role in Glycosylation Reactions? Effective Probes for the Detection of Bridging Intermediates. J. Org. Chem. 2008, 73, 8942–8953. [Google Scholar] [CrossRef] [PubMed]
- Crich, D.; Sun, S. Direct Formation of β-Mannopyranosides and Other Hindered Glycosides from Thioglycosides. J. Am. Chem. Soc. 1998, 120, 435–436. [Google Scholar] [CrossRef]
- Crich, D.; Sun, S. Direct chemical synthesis of β-mannopyranosides and other glycosides via glycosyl triflates. Tetrahedron 1998, 54, 8321–8348. [Google Scholar] [CrossRef]
- Weingart, R.; Schmidt, R.R. Can preferential β-mannopyranoside formation with 4,6-O-benzylidene protected mannopyranosyl sulfoxides be reached with trichloroacetimidates? Tetrahedron Lett. 2000, 41, 8753–8758. [Google Scholar] [CrossRef]
- Imamura, A.; Ando, H.; Korogi, S.; Tanabe, G.; Muraoka, O.; Ishida, H.; Kiso, M. Di-tert-butylsilylene (DTBS) group-directed α-selective galactosylation unaffected by C-2 participating functionalities. Tetrahedron Lett. 2003, 44, 6725–6728. [Google Scholar] [CrossRef]
- Hao, T.; Feng, K.; Jin, H.; Li, J.; Zhou, C.; Liu, X.; Zhao, W.; Yu, F.; Li, T. Acceptor-reactivity-controlled stereoconvergent synthesis and immunological activity of a unique pentasaccharide from the cell wall polysaccharide of Cutibacterium acnes C7. Angew. Chem. Int. Ed. 2024, 63, e202405297. [Google Scholar] [CrossRef]
- Leng, W.-L.; Yao, H.; He, J.-X.; Liu, X.-W. Venturing beyond donor-controlled glycosylation: New perspectives toward anomeric selectivity. Acc. Chem. Res. 2018, 51, 628–639. [Google Scholar] [CrossRef]
- van der Vorm, S.; Hansen, T.; van Hengst, J.M.A.; Overkleeft, H.S.; van der Marel, G.A.; Codée, J.D.C. Acceptor reactivity in glycosylation reactions. Chem. Soc. Rev. 2019, 48, 4688–4706. [Google Scholar] [CrossRef]
- Gridley, J.J.; Osborn, M.I. Recent advances in the construction of β-D-mannose and β-D-mannosamine linkages. J. Chem. Soc. Perkin Trans. 1 2000, 1471–1491. [Google Scholar] [CrossRef]
- Davis, B.G. Recent developments in oligosaccharide synthesis. J. Chem. Soc. Perkin Trans. 1 2000, 2137–2160. [Google Scholar] [CrossRef]
- Cumpstey, I. Intramolecular aglycon delivery. Carbohydr. Res. 2008, 343, 1553–1573. [Google Scholar] [CrossRef] [PubMed]
- Carmona, A.T.; Moreno-Vargas, A.J.; Robina, I. Stereoselective synthesis of 1,2-cis-glycosylic linkages. Curr. Org. Synth. 2008, 5, 33–63. [Google Scholar] [CrossRef]
- Dwek, R.A. Glycobiology: Toward Understanding the Function of Sugars. Chem. Rev. 1996, 96, 683–720. [Google Scholar] [CrossRef] [PubMed]
- Varki, A.; Cummings, R.; Esko, J.D.; Stanley, P.; Hart, G.W.; Aebi, M.; Mohnen, D.; Kinoshita, T.; Packer, N.H.; Prestegard, J.H. (Eds.) Essentials in Glyocbiology; Cold Spring Harbor Laboratory Press: New York, NY, USA, 2022. [Google Scholar]
- Kiessling, L.L. Chemistry-driven glycoscience. Bioorganic Med. Chem. 2018, 26, 5229–5238. [Google Scholar] [CrossRef]
- Ohtsubo, K.; Marth, D. Glycosylation in Cellular Mechanisms of Health and Disease. Cell 2006, 126, 855–867. [Google Scholar] [CrossRef]
- Zhao, X.; Huang, Y.; Zhou, S.; Ao, J.; Cai, H.; Tanaka, K.; Ito, Y.; Ishiwata, A.; Ding, F. Recent Chemical and Chemoenzymatic Strategies to Complex-Type N-Glycans. Front. Chem. 2022, 10, 880128. [Google Scholar] [CrossRef]
- Ling, J.; Bennett, C.S. Recent Developments in Stereoselective Chemical Glycosylation. Asian J. Org. Chem. 2019, 8, 802–813. [Google Scholar] [CrossRef]
- Ding, F.; Ishiwata, A.; Ito, Y. Stereodivergent mannosylation using 2-O-(ortho-tosylamido)benzyl group. Org. Lett. 2018, 20, 4833–4837. [Google Scholar] [CrossRef]
- Zhou, S.; Zhong, X.; Guo, A.; Xiao, Q.; Ao, J.; Zhu, W.; Cai, H.; Ishiwata, A.; Ito, Y.; Liu, X.-W.; et al. ZnI2-directed Stereocontrolled α-Glucosylation. Org. Lett. 2021, 23, 6841–6845. [Google Scholar] [CrossRef]
- Zhong, X.; Zhou, S.; Ao, J.; Guo, A.; Xiao, Q.; Huang, Y.; Zhu, W.; Cai, H.; Ishiwata, A.; Ito, Y.; et al. Zinc(II) Iodide-directed β-Mannosylation: Reaction Selectivity, Mode and Application. J. Org. Chem. 2021, 86, 16901–16915. [Google Scholar] [CrossRef]
- Ao, J.; Zhao, X.; Zhou, S.; Guo, Y.; Wang, G.; Fang, S.; Yao, X.; Liu, Y.; Ishiwata, A.; Tanaka, K.; et al. Construction of 1,2-cis Rhamnosidic Linkages and Synthesis of Tetrasaccharide Repeating Unit of Streptococcus pneumoniae Serotype 23F. Org. Chem. Front. 2023, 10, 5610–5615. [Google Scholar] [CrossRef]
- Zhou, S.; Ao, J.; Guo, A.; Zhao, X.; Deng, N.; Wang, G.; Li, B.; Yang, Q.; Ishiwata, A.; Liu, X.-W.; et al. ZnI2-Mediated β-Galactosylation of C2-ether Type Donor. Org. Lett. 2022, 24, 8025–8030. [Google Scholar] [CrossRef]
- Zhao, X.; Ding, H.; Guo, A.; Zhong, X.; Zhou, S.; Wang, G.; Liu, Y.; Ishiwata, A.; Tanaka, K.; Cai, H.; et al. Zinc(II)-mediated Stereoselective Construction of 1,2-cis 2-Azido-2-deoxy Glycosidic Linkage: Assembly of Acinetobacter baumannii K48 Capsular Pentasaccharide. Chem. Sci. 2024, 15, 12889–12899. [Google Scholar] [CrossRef] [PubMed]
- Yamatsugu, K.; Kanai, M. Catalytic approaches to chemo- and site-selective transformation of carbohydrates. Chem. Rev. 2023, 123, 6793–6838. [Google Scholar] [CrossRef] [PubMed]
- López, M.; de Parrodi, C.A.; Huelgas, G.; Lozada-Ramírez, J.D. Organocatalyzed stereoselective glycosylation: An overview of the last decade. Mini-Rev. Org. Chem. 2024, 21, 318–345. [Google Scholar] [CrossRef]
- Takeda, D.; Yoritate, M.; Yasutomi, H.; Chiba, S.; Moriyama, T.; Yokoo, A.; Usui, K.; Hirai, G. β-Glycosyl trifluoroborates as precursors for direct α-C-glycosylation: Synthesis of 2-deoxy-α-C-glycosides. Org. Lett. 2021, 23, 1940–1944. [Google Scholar] [CrossRef]
- Shang, W.; Shi, R.; Niu, D. C-Glycoside synthesis enabled by nickel catalysis. Chin. J. Chem. 2023, 41, 2217–2236. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, Y.; Lee, B.C.; Koh, M.J. Diversification of glycosyl compounds via glycosyl radicals. Angew. Chem. Int. Ed. 2023, 62, e202305138. [Google Scholar] [CrossRef]
- Shang, W.; Niu, D. Radical pathway glycosylation empowered by bench-stable glycosyl donors. Acc. Chem. Res. 2023, 56, 2473–2488. [Google Scholar] [CrossRef]
- Xia, Y.; Wang, Y.; Zhang, Z.; Gulzar, T.; Lin, Y.; Wang, J.; Zhu, D.; Yu, B. Synthesis of 2-Indolyl C-Glycoside Neopetrosins A and C and Congeners via Ni-Catalyzed Photoreductive Cross-Coupling. Org. Lett. 2023, 25, 6741–6745. [Google Scholar] [CrossRef]
- Ikazaki, T.; Ishikawa, E.; Tamashima, H.; Akiyama, H.; Kimuro, Y.; Yoritate, M.; Matoba, H.; Imamura, A.; Ishida, H.; Yamasaki, S.; et al. Ligand-Controlled Stereoselective Synthesis and Biological Activity of 2-Exomethylene Pseudo-Glycoconjugates: Discovery of Mincle-Selective Ligands. Angew. Chem. Int. Ed. 2023, 62, e202302569. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Chen, K.; Guo, F.; Zhu, W.; Liu, C.; Dong, H.; Yu, J.-Q.; Lei, X. C–H Glycosylation of Native Carboxylic Acids: Discovery of Antidiabetic SGLT-2 Inhibitors. ACS Cent. Sci. 2023, 9, 1129–1139. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Kirchhoff, J.-L.; Strohmann, C.; Grabe, B.; Loh, C.C.J. Exploiting π and Chalcogen Interactions for the β-Selective Glycosylation of Indoles through Glycal Conformational Distortion. Angew. Chem. Int. Ed. 2024, 63, e202316667. [Google Scholar] [CrossRef] [PubMed]
- Moriyama, T.; Yoritate, M.; Kato, N.; Saika, A.; Kusuhara, W.; Ono, S.; Nagatake, T.; Koshino, H.; Kiya, N.; Moritsuka, N.; et al. Linkage-Editing Pseudo-Glycans: A Reductive α-Fluorovinyl-C-Glycosylation Strategy to Create Glycan Analogs with Altered Biological Activities. J. Am. Chem. Soc. 2024, 146, 2237–2247. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Purushothaman, R.; Kallert, F.; Homölle, S.L.; Ackermann, L. Electrochemical glycosylation via halogen-atom-transfer for C-glycoside assembly. ACS Catal. 2024, 14, 11532–11544. [Google Scholar] [CrossRef]
- Zhu, H.; Dang, Q.; Wang, Y.; Niu, D. Polarity-matched initiation of radical-polar crossover reactions for the synthesis of C-allyl glycosides with gem-difluoroalkene groups. J. Org. Chem. 2024, 89, 10175–10179. [Google Scholar] [CrossRef]
- Sun, Y.; Ren, K.; Zhang, Z.; Li, Y.; Wang, N.; Zeng, H.; Huang, N.; Li, X.-X.; Deng, W.-Q.; Yao, H. Palladium-catalyzed O-glycosylation through π–π interactions. Org. Lett. 2024, 26, 5396–5401. [Google Scholar] [CrossRef]
- Lyu, M.-Y.; Jacobo, S.A.; Brown, M.K. Diverse synthesis of C-glycosides by stereoselective Ni-Catalyzed carboboration of glycals. J. Am. Chem. Soc. 2024, 146, 18866–18872. [Google Scholar] [CrossRef]
- Zhang, C.; He, D.; Ma, Z.; Wang, M.; Zhu, Y.; Liu, Y.; Chen, J.; Guo, L.; Lv, G.; Wu, Y. Synthesis of nonclassical heteroaryl C-glycosides via decarboxylative C–H glycosylation. J. Org. Chem. 2024, 89, 10112–10126. [Google Scholar] [CrossRef]
- Liu, D.-Y.; Wang, P.-F.; Ruan, Y.-J.; Wang, X.-L.; Hu, X.-Y.; Yang, Q.; Liu, J.; Wen, M.-M.; Zhang, C.-Z.; Xiao, Y.-H.; et al. Assembly of heterocyclic C-glycosides by Ru-catalyzed C–H activation/cyclization with carbonyl sulfoxonium ylide glyco-reagents. Org. Lett. 2024, 26, 5092–5097. [Google Scholar] [CrossRef]
- Wu, X.; Li, S.; Chen, L.; Ma, S.; Ma, B.; Song, L.; Qian, D. Stereoselective construction of multifunctional C-glycosides enabled by nickel-catalyzed tandem borylation/glycosylation. J. Am. Chem. Soc. 2024, 146, 22413–22423. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.-Y.; Ma, J.-J.; Li, H.-Y.; Chen, D.; Liu, X.-Y.; Liang, Y.-M. Synthesis of C-alkyl glycosides from alkyl bromides and glycosyl carboxylic acids via Ni/photoredox dual catalysis. J. Org. Chem. 2024, 89, 11136–11147. [Google Scholar] [CrossRef] [PubMed]
- Gan, Y.; Zhou, J.-F.; Li, X.; Liu, J.-R.; Liu, F.-J.; Hong, X.; Ye, B. Zirconaaziridine-mediated Ni-catalyzed diastereoselective C(sp2)-glycosylation. J. Am. Chem. Soc. 2024, 146, 16753–16763. [Google Scholar] [CrossRef] [PubMed]
- Moritsuka, N.; Kiya, N.; Moriyama, T.; Koshino, H.; Yoritate, M.; Matoba, H.; Hirai, G. Linkage-editing of melibiosamine: Synthesis and biological evaluation of CH2- and CHF-linked analogs. J. Org. Chem. 2024, 89, 11909–11920. [Google Scholar] [CrossRef] [PubMed]
- Oka, N.; Kajino, R.; Takeuchi, K.; Nagakawa, H.; Ando, K. α-Selective ribofuranosylation of alcohols with ribofuranosyl iodides and triphenylphosphine oxide. J. Org. Chem. 2014, 79, 7656–7664. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Overkleeft, H.S.; van der Marel, G.A.; Codée, J.D.C. Reagent controlled stereoselective synthesis of α-glucans. J. Am. Chem. Soc. 2018, 140, 4632–4638. [Google Scholar] [CrossRef]
- Shou, K.; Zhang, Y.; Ji, Y.; Liu, B.; Zhou, Q.; Tan, Q.; Li, F.; Wang, X.; Lu, G.; Xiao, G. Highly stereoselective α-glycosylation with GalN3 donors enabled collective synthesis of mucin related tumor associated carbohydrate antigens. Chem. Sci. 2024, 15, 6552–6656. [Google Scholar] [CrossRef]
- Pathan, E.K.; Ghosh, B.; Podilapu, A.R.; Kulkarni, S.S. Total synthesis of the repeating unit of Bacteroides fragilis zwitterionic polysaccharide A1. J. Org. Chem. 2021, 86, 6090–6099. [Google Scholar] [CrossRef]
- Liu, W.; Hu, Z.; Xu, P.; Yu, B. Synthesis of anticoagulant pentasaccharide fondaparinux via 3,5-dimethyl-4-(2′-phenylethynylphenyl)phenyl glycosides. Org. Lett. 2023, 25, 8506–8510. [Google Scholar] [CrossRef]
- Deng, L.-F.; Wang, Y.; Xu, S.; Shen, A.; Zhu, H.; Zhang, S.; Zhang, X.; Niu, D. Palladium catalysis enables cross-coupling–like SN2-glycosylation of phenols. Science 2023, 382, 928–935. [Google Scholar] [CrossRef]
- Ghosh, B.; Alber, A.; Lander, C.W.; Shao, Y.; Nicholas, K.M.; Sharma, I. Catalytic stereoselective 1,2-cis-furanosylations enabled by enynal-derived copper carbenes. ACS Catal. 2024, 14, 1037–1049. [Google Scholar] [CrossRef]
- Duong, T.; Valenzuela, E.A.; Ragains, J.R. Benzyne-promoted, 1,2-cis-selective O-glycosylation with genzylchalcogenoglycoside donors. Org. Lett. 2023, 25, 8526–8529. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Shen, W.; Cao, C.; Wang, Z.; Zhang, Y.; Xue, W. Thiourea-Cu(OTf)2/NIS-synergistically promoted stereoselective glycoside formation with 2-azidoselenoglycosides or thioglycosides as donors. Org. Biomol. Chem. 2024, 22, 2137–2144. [Google Scholar] [CrossRef] [PubMed]
- Demchenko, A.V.; Rousson, E.; Boons, G.-J. Stereoselective 1,2-cis-galactosylation assisted by remote neighboring group participation and solvent effects. Tetrahedron Lett. 1999, 40, 6523–6526. [Google Scholar] [CrossRef]
- Ishiwata, A.; Munemura, Y.; Ito, Y. Synergistic solvent effect in 1,2-cis-glycoside formation. Tetrahedron 2008, 64, 92–102. [Google Scholar] [CrossRef]
- Ghosh, B.; Bhattacharjee, N.; Podilapu, A.R.; Puri, K.; Kulkarni, S.S. Total synthesis of the repeating units of O-specific polysaccharide of Pseudomonas chlororaphis subsp. aureofaciens UCM B-306 via one-pot glycosylation. Org. Lett. 2022, 24, 3696–3701. [Google Scholar] [CrossRef]
- Shirsat, A.A.; Rai, D.; Ghotekar, B.K.; Kulkarni, S.S. Total synthesis of trisaccharide repeating unit of Staphylococcus aureus strain M. Org. Lett. 2023, 25, 2913–2917. [Google Scholar] [CrossRef]
- Pradhan, K.; Paul, A.; Mishra, A.K.; Balhara, P.; Kulkarni, S.S. Total Synthesis of Vibrio Cholerae O43 Tetrasaccharide Repeating Unit. J. Org. Chem. 2024, 89, 4019–4030. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, H.; Zhao, Q.; Li, Q.; Li, T.; Gao, J. Total synthesis of the repeating iunits of highly functionalized O-antigens of Pseudomonas aeruginosa ATCC 27577, O10, and O19. JACS Au 2024, 4, 2351–2362. [Google Scholar] [CrossRef]
- Behera, A.; Rai, D.; Kushwaha, D.; Kulkarni, S.S. Total synthesis of trisaccharide repeating unit of O-specific polysaccharide of Pseudomonas fluorescens BIM B-582. Org. Lett. 2018, 20, 5956–5959. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, Y.; Overkleeft, H.S.; van der Marel, G.A.; Codee, J.D.C. Reagent controlled glycosylations for the assembly of well-defined pel pligosaccharides. J. Org. Chem. 2020, 85, 15872–15884. [Google Scholar] [CrossRef] [PubMed]
- Biswas, S.; Ghotekar, B.K.; Kulkarni, S.S. Total synthesis of the all-rare sugar-containing pentasaccharide repeating unit of the O-polysaccharide of Plesiomonas shigelloides strain 302–73 (Serotype O1). Org. Lett. 2021, 23, 6137–6142. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, C.; Gao, Y.; Yang, M.; He, Z.; Zhang, B.; Gu, G.; Tang, B.; Cai, F. β-L-Rhamnosylation and β-D-mannosylation mediated by 4-O-ester groups in a weakly nucleophilic environment. Org. Lett. 2023, 25, 7120–7125. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Xiao, G. Total synthesis of nona-decasaccharide motif from Ganoderma sinense polysaccharide enabled by modular and one-pot stereoselective glycosylation strategy. J. Am. Chem. Soc. 2024, 146, 17446–17455. [Google Scholar] [CrossRef] [PubMed]
- Remmerswaal, W.A.; Elferink, H.; Houthuijs, K.J.; Hansen, T.; ter Braak, F.; Berden, G.; van der Vorm, S.; Martens, J.; Oomens, J.; van der Marel, G.A.; et al. Anomeric triflates versus dioxanium ions: Different product-forming intermediates from 3-acyl benzylidene mannosyl and glucosyl donors. J. Org. Chem. 2024, 89, 1618–1625. [Google Scholar] [CrossRef]
- Liu, X.; Lin, Y.; Peng, W.; Zhang, Z.; Gao, L.; Zhou, Y.; Song, Z.; Wang, Y.; Xu, P.; Yu, B.; et al. Direct Synthesis of 2,6-dideoxy-β-glycosides and β-rhamnosides with a stereodirecting 2-(diphenylphosphinoyl)acetyl group. Angew. Chem. Int. Ed. 2022, 61, e202206128. [Google Scholar] [CrossRef]
- Tang, X.; Zhou, Y.; Wang, Y.; Lin, Y.; Pan, S.; Che, Q.; Sang, J.; Gao, Z.; Zhang, W.; Wang, Y.; et al. Direct Synthesis of α- and β-2′-deoxynucleosides with stereodirecting phosphine oxide via remote participation. J. Am. Chem. Soc. 2024, 146, 8768–8779. [Google Scholar] [CrossRef]
- Zhong, X.; Zhao, X.; Ao, J.; Huang, Y.; Liu, Y.; Zhou, S.; Li, B.; Ishiwata, A.; Cai, H.; Ding, F. An experimental and theoretical study on stereocontrolled glycosylations by “one-pot” procedure. Org. Chem. Front. 2022, 9, 4151–4157. [Google Scholar] [CrossRef]
- Bharali, M.M.; Pramanik, S.; Santra, A. Zinc tetrafluoroborate catalyzed stereo- and regioselective O-glycosylation for the direct synthesis of β-glycosides from armed O-glycosyl trichloroacetimidates. Chem. Asian J. 2024, 19, e202400420. [Google Scholar] [CrossRef]
- Morelli, L.; Compostella, F.; Panza, L.; Imperio, D. Unusual promoters and leaving groups in glycosylation reactions: The evolution of carbohydrate synthesis. Carbohydr. Res. 2022, 519, 108625. [Google Scholar] [CrossRef]
- Kanie, O.; Ito, Y.; Ogawa, T. Orthogonal glycosylation strategy in oligosaccharide synthesis. J. Am. Chem. Soc. 1994, 116, 12073–12074. [Google Scholar] [CrossRef]
- Wang, X.; Xiao, G. Recent chemical synthesis of plant polysaccharides. Curr. Opin. Chem. Biol. 2023, 77, 102387. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, Y.; Huang, Y.; Chen, Z.; Xian, Q.; Su, R.; Jiang, Q.; Wang, X.; Xiao, G. One-Pot Assembly of mannose-capped lipoarabinomannan motifs up to 101-mer from the Mycobacterium tuberculosis Cell Wall. J. Am. Chem. Soc. 2024, 146, 4112–4122. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Liu, B.; Wang, X.; Xiao, G. Highly Stereoselective Synthesis of Branched Fructooligosaccharides ABW90-1 and ABW50-1 from Achyranthes bidentata with Potent Antiosteoporosis Activities. Org. Lett. 2024, 26, 1468–1471. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.-C.; Chen, Z.; Yang, R.; Wang, M.; Wang, X.; Zhang, Q.; Xiao, G. Modular and Stereoselective One-pot Total Synthesis of Icosasaccharide motif from Cordyceps sinensis EPS-1A Glycan. Org. Lett. 2023, 25, 7364–7368. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Fan, H.; Tan, Q.; Xiao, G. Highly Stereoselective Assembly of 1,2-cis-Arap Linkages. Org. Lett. 2023, 25, 2788–2792. [Google Scholar] [CrossRef]
- Ma, Y.; Jiang, Q.; Wang, X.; Xiao, G. Total synthesis of Cordyceps militaris glycans via stereoselective orthogonal one-pot glycosylation and α-glycosylation strategies. Org. Lett. 2022, 24, 7950–7954. [Google Scholar] [CrossRef]
- Yang, R.; Sun, X.; Zhang, Y.; Xiao, G. The total synthesis of rhynchosporosides via orthogonal one-pot glycosylation and stereoselective α-glycosylation strategies. Org. Biomol. Chem. 2022, 20, 6755–6758. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, Y.; Liu, S.; He, H.; Sun, R.; Lu, G.; Xiao, G. Total synthesis of Lentinus giganteus glycans with antitumor activities via stereoselective α-glycosylation and orthogonal one-pot glycosylation strategies. Chem. Sci. 2022, 13, 7755–7764. [Google Scholar] [CrossRef]
- Yu, B.; Tao, H. Glycosyl trifluoroacetimidates. Part 1: Preparation and application as new glycosyl donors. Tetrahedron Lett. 2001, 42, 2405–2407. [Google Scholar] [CrossRef]
- Yu, B.; Sun, J. Glycosylation with glycosyl N-phenyltrifluoroacetimidates (PTFAI) and a perspective of the future development of new glycosylation methods. Chem. Commun. 2010, 46, 4668–4679. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yang, Y.; Yu, B. An efficient glycosylation protocol with glycosyl ortho-alkynylbenzoates as donors under the catalysis of Ph3PAuOTf. Tetrahedron Lett. 2008, 49, 3604–3608. [Google Scholar] [CrossRef]
- Yu, B. Gold(I)-catalyzed glycosylation with glycosyl o-alkynylbenzoates as donors. Acc. Chem. Res. 2018, 51, 507–516. [Google Scholar] [CrossRef] [PubMed]
- Shen, K.; Bai, B.; Liu, Y.H.; Lowary, T.L. Synthesis of a tridecasaccharide lipooligosaccharide antigen from the opportunistic pathogen Mycobacterium kansasii. Angew. Chem. Int. Ed. 2021, 60, 24859–24863. [Google Scholar] [CrossRef] [PubMed]
- Yasomanee, J.P.; Demchenko, A.V. Effect of remote picolinyl and picoloyl substituents on the stereoselectivity of chemical glycosylation. J. Am. Chem. Soc. 2012, 134, 20097–20102. [Google Scholar] [CrossRef]
- Liu, Q.W.; Bin, H.C.; Yang, J.S. β-Arabinofuranosylation using 5-O-(2-quinolinecarbonyl) substituted ethyl thioglycoside donors. Org. Lett. 2013, 15, 3974–3977. [Google Scholar] [CrossRef]
- Ishiwata, A.; Munemura, Y.; Ito, Y. NAP ether mediated intramolecular aglycon delivery: A unified strategy for 1,2-cis-glycosylation. Eur. J. Org. Chem. 2008, 2008, 4250–4263. [Google Scholar] [CrossRef]
- Lee, Y.J.; Ishiwata, A.; Ito, Y. Stereoselective synthesis of β-L-rhamnopyranosides. J. Am. Chem. Soc. 2008, 130, 6330–6331. [Google Scholar] [CrossRef]
- Ishiwata, A.; Lee, Y.J.; Ito, Y. Recent Advances in Stereoselective Glycosylation through Intramolecular Aglycon Delivery. Org. Biomol. Chem. 2010, 8, 3596. [Google Scholar] [CrossRef]
- Ishiwata, A. Synthetic Study on Glycoconjugates Containing 1,2-Cis Glycoside and Their Application. Trends Glycosci. Glycotechnol. 2019, 31, SE53–SE54. [Google Scholar] [CrossRef]
- Ishiwata, A.; Kaeothip, S.; Takeda, Y.; Ito, Y. Synthesis of Highly Glycosylated Hydrophilic Motif of Extensins. Angew. Chem. Int. Ed. 2014, 53, 9812–9816. [Google Scholar] [CrossRef] [PubMed]
- Tamigney, M.; Blériot, K.Y.; Gauthier, C. Intramolecular aglycon delivery enables the synthesis of 6-deoxy-β-D-manno-heptosides as fragments of Burkholderia pseudomallei and Burkholderia mallei capsular polysaccharide. J. Org. Chem. 2014, 79, 4615–4634. [Google Scholar] [CrossRef] [PubMed]
- Yu, K.; Qiao, Y.; Gu, G.; Gao, J.; Cai, S.; Long, Z.; Guo, Z. Synthesis of the biological repeating unit of Streptococcus pneumoniae serotype 23F capsular polysaccharide. Org. Biomol. Chem. 2016, 14, 11462–11472. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.G.; Demchenko, A.V. Intramolecular glycosylation. Beilstein J. Org. Chem. 2017, 13, 2028–2048. [Google Scholar] [CrossRef] [PubMed]
- Ishiwata, A.; Ito, Y. Intramolecular aglycon delivery toward 1,2-selective glycosylation. Sel. Glycosylations Synth. Methods Catal. 2017, 4, 79–96. [Google Scholar] [CrossRef]
- Robinson, S.A.; Yau, J.; Terabe, M.; Berzofsky, J.A.; Painter, G.F.; Compton, B.J.; Larsen, D.S. Synthetic preparation and immunological evaluation of β-mannosylceramide and related N-acyl analogues. Org. Biomol. Chem. 2020, 18, 2739–2746. [Google Scholar] [CrossRef]
- Fairbanks, A.J. Glycosylation through intramolecular aglycon delivery. Compr. Glycosci. 2021, 2, 413–434. [Google Scholar] [CrossRef]
- Ishiwata, A.; Fujita, K.; Fushinobu, S.; Tanaka, K.; Ito, Y. Synthesis of naturally occurring β-L-arabinofuranosyl-L-arabinofuranoside structures towards the substrate specificity evaluation of β-L-arabinofuranosidase. Bioorg. Med. Chem. 2022, 68, 116849. [Google Scholar] [CrossRef]
- Jaiswal, M.K.; Sharma, A.; Tiwari, V.K.; Schmidt, R.R. Recent advances in stereoselective intramolecular O-glycosylation. Synth. Strateg. Carbohydr. Chem. 2024, 2, 53–94. [Google Scholar] [CrossRef]
- Sano, K.; Ishiwata, A.; Kikuma, T.; Takamori, H.; Tanaka, K.; Ito, Y.; Takeda, Y. Synthesis of sucrose-mimicking disaccharide by intramolecular aglycone delivery. Molecules 2024, 29, 1771. [Google Scholar] [CrossRef]
- Pellissier, H. Recent developments in enantioselective zinc-catalyzed transformations. Coord. Chem. Rev. 2021, 439, 213926. [Google Scholar] [CrossRef]
- Denmark, S.E.; O’Connor, S.P. Catalytic, enantioselective cyclopropanation of allylic alcohols. Substrate generality. J. Org. Chem. 1997, 62, 584–594. [Google Scholar] [CrossRef]
- Hanessian, S.; Guindon, Y. Cleavage of methyl and benzyl ethers with thiotrimethylsilanes. Tetrahedron Lett. 1980, 21, 2305–2308. [Google Scholar] [CrossRef]
- Kaufmann, E.; Hattori, H.; Miyatake-Ondozabal, H.; Gademann, K. Total synthesis of the glycosylated macrolide antibiotic fidaxomicin. Org. Lett. 2015, 17, 3514–3517. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.-H.; Vogel, P. Synthesis of a C-disaccharide analog of the Thomsen-Friedenreich (T) epitope. Synlett 2001, 2001, 79–81. [Google Scholar] [CrossRef]
- Berry, J.; Despras, G.; Lindhorst, T.K. A compatibility study on the glycosylation of 4,4′-dihydroxyazobenzene. RSC Adv. 2020, 10, 17432. [Google Scholar] [CrossRef]
- Murakami, T.; Sato, Y.; Shibakami, M. Stereoselective glycosylations using benzoylated glucosyl halides with inexpensive promoters. Carbohydr. Res. 2008, 343, 1297–1308. [Google Scholar] [CrossRef]
- Lanz, G.; Madsen, R. Glycosylation with disarmed glycosyl bromides promoted by iodonium ions. Eur. J. Org. Chem. 2016, 2016, 3119–3125. [Google Scholar] [CrossRef]
- Baldoni, L.; Marino, C. Synthetic tools for the characterization of galactofuranosyl transferases: Glycosylations via acylated glycosyl iodides. Carbohydr. Res. 2013, 374, 75–81. [Google Scholar] [CrossRef]
- Plante, O.J.; Palmacci, E.R.; Andrade, R.B.; Seeberger, P.H. Oligosaccharide synthesis with glycosyl phosphate and dithiophosphate triesters as glycosylating agents. J. Am. Chem. Soc. 2001, 123, 9545–9554. [Google Scholar] [CrossRef]
- Meloncelli, P.J.; Martin, A.D.; Lowary, T.L. Glycosyl iodides. History and recent advances. Carbohydr. Res. 2009, 344, 1110–1122. [Google Scholar] [CrossRef]
- Schmidt, R.R.; Kinzy, W. Anomeric-oxygen activation for glycoside synthesis. Adv. Carbohydr. Chem. Biochem. 1994, 50, 21–123. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, R.R.; Michel, J. Facile Synthesis of α- and β-O-glycosyl imidates; preparation of glycosides and disaccharides. Angew. Chem. Int. Ed. Engl. 1980, 19, 731–732. [Google Scholar] [CrossRef]
- Pougny, J.-R.; Sinaÿ, P. Reaction d’imidates de glucopyranosyle avec l’acetonitrile. Applications synthetiques. Tetrahedron Lett. 1976, 17, 4073–4076. [Google Scholar] [CrossRef]
- Pougny, J.-R.; Jacquinet, J.-C.; Nassr, M.; Duchet, D.; Milat, M.-L.; Sinaÿ, P. A novel synthesis of 1,2-cis-disaccharides. J. Am. Chem. Soc. 1977, 99, 6762–6763. [Google Scholar] [CrossRef] [PubMed]
- Ding, F.; Ishiwata, A.; Ito, Y. Recent advances of the stereoselective bimodal glycosylations for the synthesis of various glucans. Stud. Nat. Prod. Chem. (Bioact. Nat. Prod.) 2022, 74, 1–40. [Google Scholar] [CrossRef]
- Ishiwata, A.; Tanaka, K.; Ito, Y.; Cai, H.; Ding, F. Recent progress in 1,2-cis glycosylation for glucan synthesis. Molecules 2023, 28, 5644. [Google Scholar] [CrossRef]
- Mishra, K.B.; Singh, A.K.; Kandasamy, J. Tris(pentafluorophenyl)borane-promoted stereoselective glycosylation with glycosyl trichloroacetimidates under mild conditions. J. Org. Chem. 2018, 83, 4204–4212. [Google Scholar] [CrossRef]
- Nielsen, M.M.; Holmstrøm, T.; Pedersen, C.M. Stereoselective O-glycosylations by pyrylium salt organocatalysis. Angew. Chem. Int. Ed. 2022, 61, e202115394. [Google Scholar] [CrossRef]
- Warne, M.E.; Fascione, M.A. Bimodal Glycosyl Donors as an Emerging Approach Towards a General Glycosylation Strategy. Chem. Eur. J. 2024, 30, e202400399. [Google Scholar] [CrossRef]
- Aubry, S.; Sasaki, K.; Sharma, I.; Crich, D. Influence of Protecting Groups on the Reactivity and Selectivity of Glycosylation: Chemistry of the 4,6-O-Benzylidene Protected Mannopyranosyl Donors and Related Species. In Topics in Current Chemistry; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar] [CrossRef]
- Ding, F.; Ishiwata, A.; Ito, Y. Bimodal Glycosyl Donors Protected by 2-O-(ortho-Tosylamido)benzyl Group. Org. Lett. 2018, 20, 4384–4388. [Google Scholar] [CrossRef] [PubMed]
- Ding, F.; Ishiwata, A.; Zhou, S.; Zhong, X.; Ito, Y. Unified Strategy toward Stereocontrolled Assembly of Various Glucans Based on Bimodal Glycosyl Donors. J. Org. Chem. 2020, 85, 5536–5558. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Yuan, X.; Kong, Y.; Hu, Y.; Li, J.; Jiang, S.; Dong, C.; Ding, K. Chemical approaches for the stereocontrolled synthesis of 1,2-cis-β-D-rhamnosides. Chin. J. Nat. Med. 2023, 21, 886–901. [Google Scholar] [CrossRef] [PubMed]
- Ueki, A.; Hirota, M.; Kobayashi, Y.; Komatsu, K.; Takano, Y.; Iwaoka, M.; Nakahara, Y.; Hojo, H.; Nakahara, Y. Stereoselective synthesis of benzyl-protected β-galactosides by propionitrile-mediated glycosylation. Tetrahedron 2008, 64, 2611–2618. [Google Scholar] [CrossRef]
- Franconetti, A.; Ardá, A.; Asensio, J.L.; Blériot, Y.; Thibaudeau, S.; Jiménez-Barbero, J. Glycosyl oxocarbenium ions: Structure, conformation, reactivity, and interactions. Acc. Chem. Res. 2021, 54, 2552–2564. [Google Scholar] [CrossRef]
- Xiao, Q.; Fang, S.; Ao, J.; Zhao, X.; Huang, C.; Liu, Y.; Nie, Y.; Ishiwata, A.; Tanaka, K.; Deng, W.; et al. B(C6F5)3-catalyzed stereoselective 1,2-cis arabinofuranosylation with a conformationally constrained donor. ACS Omega 2024, 9, 11969–11975. [Google Scholar] [CrossRef]
- Imamura, A.; Lowary, T.L. β-Selective arabinofuranosylation using a 2,3-O-xylylene-protected donor. Org. Lett. 2010, 12, 3686–3689. [Google Scholar] [CrossRef]
- Wang, Y.; Maguire-Boyle, S.; Dere, R.T.; Zhu, X. Synthesis of β-D-arabinofuranosides: Stereochemical differentiation between D- and L-enantiomers. Carbohydr. Res. 2008, 343, 3100–3106. [Google Scholar] [CrossRef]
- Zhang, L.; Shen, K.; Taha, H.A.; Lowary, T.L. Stereocontrolled synthesis of α-xylofuranosides using a conformationally restricted donor. J. Org. Chem. 2018, 83, 7659–7671. [Google Scholar] [CrossRef]
- Ishiwata, A.; Akao, H.; Ito, Y. Stereoselective Synthesis of a fragment of mycobacterial arabinan. Org. Lett. 2006, 8, 5525–5528. [Google Scholar] [CrossRef]
- Zhu, X.; Kawatkar, S.; Rao, Y.; Boons, G.J. Practical approach for the stereoselective introduction of β-arabinofuranosides. J. Am. Chem. Soc. 2006, 128, 11948–11957. [Google Scholar] [CrossRef] [PubMed]
- Crich, D.; Pedersen, C.M.; Bowers, A.A.; Wink, D.J. On the use of 3,5-O-benzylidene and 3,5-O-(di-tert-butylsilylene)-2-O-benzylarabinothiofuranosides and their sulfoxides as glycosyl donors for the synthesis of β-arabinofuranosides: Importance of the activation method. J. Org. Chem. 2007, 72, 1553–1565. [Google Scholar] [CrossRef] [PubMed]
- Sau, A.; Palo-Nieto, C.; Galan, M.C. Substrate-controlled direct α-stereoselective synthesis of deoxyglycosides from glycals using B(C6F5)3 as catalyst. J. Org. Chem. 2019, 84, 2415–2424. [Google Scholar] [CrossRef] [PubMed]
- Hou, M.; Xiang, Y.; Gao, J.; Zhang, J.; Wang, N.; Shi, H.; Huang, N.; Yao, H. Stereoselective synthesis of 2-deoxy glycosides via iron catalysis. Org. Lett. 2023, 25, 832–837. [Google Scholar] [CrossRef]
- Dubey, A.; Tiwari, A.; Mandal, P.K. Tris (pentafluorophenyl) borane-catalyzed stereoselective C-glycosylation of indoles with glycosyl trichloroacetimidates: Access to 3-indolyl-C-glycosides. J. Org. Chem. 2021, 86, 8516–8526. [Google Scholar] [CrossRef]
- Xu, Y.; Montgomery, J. Synthesis of 2-amino-2-deoxy sugars via boron-catalyzed coupling of glycosyl fluorides and silyl ether acceptors. Org. Lett. 2024, 26, 7474–7478. [Google Scholar] [CrossRef]
- Fang, S.; Huang, C.; Ao, J.; Xiao, Q.; Zhou, S.; Deng, W.; Cai, H.; Ding, F. Total synthesis of the hexasaccharide arabinan domain of mycobacterial arabinogalactan. Carbohydr. Res. 2024, 542, 109204. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Minenkov, Y.; Sharapa, D.I.; Cavallo, L. Application of semiempirical methods to transition metal complexes: Fast results but hard-to-predict accuracy. J. Chem. Theory Comput. 2018, 14, 3428–3439. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate Ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef]
- Tekarli, S.M.; Drummond, M.L.; Williams, T.G.; Cundari, T.R.; Wilson, A.K. Performance of density functional theory for 3d transition metal-containing complexes: Utilization of the correlation consistent basis sets. J. Phys. Chem. A 2009, 113, 8607–8614. [Google Scholar] [CrossRef]
- Sun, Y.-L.; Li, T.-H.; Chen, J.-L.; Wu, K.-J.; Hu, W.-P. Accurate multi-level electronic structure methods (MLSE-DFT) for atomization energies and reaction energy barriers. Chem. Phys. Lett. 2007, 442, 220–223. [Google Scholar] [CrossRef]
- Schultz, N.E.; Zhao, Y.; Truhlar, D.G. Density functionals for inorganometallic and organometallic chemistry. J. Phys. Chem. A 2005, 109, 11127–11143. [Google Scholar] [CrossRef] [PubMed]
- Goerigk, L.; Grimme, S. Efficient and accurate double-hybrid-meta-GGA density functionals–evaluation with the extended GMTKN30 database for general main group thermochemistry, kinetics, and noncovalent interactions. J. Chem. Theory Comput. 2011, 7, 291–309. [Google Scholar] [CrossRef] [PubMed]
- Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal solvation model based on solute electron density and a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 2009, 113, 6378–6396. [Google Scholar] [CrossRef] [PubMed]
- Ischtwan, J.; Collins, M.A. Determination of the intrinsic reaction coordinate: Comparison of gradient and local quadratic approximation methods. J. Chem. Phys. 1988, 89, 2881–2885. [Google Scholar] [CrossRef]
- Mardirossian, N.; Head-Gordon, M. ΩB97M-V: A combinatorially optimized, range-separated hybrid, meta-GGA density functional with VV10 nonlocal correlation. J. Chem. Phys. 2016, 144, 214110. [Google Scholar] [CrossRef]
- Papajak, E.; Zheng, J.; Xu, X.; Leverentz, H.R.; Truhlar, D.G. Perspectives on basis sets beautiful: Seasonal plantings of diffuse basis functions. J. Chem. Theory Comput. 2011, 7, 3027–3034. [Google Scholar] [CrossRef]
- Zheng, J.; Xu, X.; Truhlar, D.G. Minimally Augmented karlsruhe basis sets. Theor. Chem. Acc. 2011, 128, 295–305. [Google Scholar] [CrossRef]
- Lu, T.; Chen, Q. Shermo: A general code for calculating molecular thermochemistry properties. Comput. Theor. Chem. 2020, 1200, 113249. [Google Scholar] [CrossRef]
- Database of Frequency Scale Factors for Electronic Model Chemistries. Available online: https://comp.chem.umn.edu/freqscale/version3b2.htm (accessed on 15 September 2021).
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Hariharan, P.C.; Pople, J.A. The influence of polarization functions on molecular orbital hydrogenation energies. Theor. Chem. Acc. 1973, 28, 213–222. [Google Scholar] [CrossRef]
- Frisch, M.J.; Pople, J.A.; Binkley, J.S. Self-consistent molecular orbital methods 25. J. Chem. Phys. 1984, 80, 3265–3269. [Google Scholar] [CrossRef]
- Dolg, M.; Wedig, U.; Stoll, H.; Preuss, H. Energy-adjusted ab initio pseudopotentials for the first row transition elements. J. Chem. Phys. 1987, 86, 866–872. [Google Scholar] [CrossRef]
- Chai, J.-D.; Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615–6620. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Truhlar, D.G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008, 120, 215–241. [Google Scholar] [CrossRef]
- Fuentealba, P.; Preuss, H.; Stoll, H.; Szentpaly, L.V. A proper account of core-polarization with pseudopotentials: Single valence-electron alkali compounds. Chem. Phys. Lett. 1982, 89, 418–422. [Google Scholar] [CrossRef]
- Wu, P.; Xiao, X.; Zhou, S.; Meng, L.; Zeng, J.; Wan, Q. Glycosylation of 2-(2-propylsulfinyl)benzyl 1,2-orthoester glycosides initiated by sulfoxide activation. Org. Lett. 2024, 26, 6053–6058. [Google Scholar] [CrossRef]
- Gurung, P.B.; Thapa, P.; Hettiarachchi, I.L.; Zhu, J. Cationic Gold(I)-Catalyzed Glycosylation with Glycosyl N-1,1-Dimethylpropargyl Carbamate donors. Org. Biomol. Chem. 2022, 20, 7006–7010. [Google Scholar] [CrossRef]
- Gurung, P.B.; Shine, G.; Zhu, J. Synthesis of Salmonella enteritidis antigenic tetrasaccharide repeating unit by employing cationic Gold(I)-catalyzed glycosylation involving glycosyl N-1,1-dimethylpropargyl carbamate donors. J. Org. Chem. 2024, 89, 12547–12558. [Google Scholar] [CrossRef]
- Shinde, G.P.; Sutar, Y.; Kasdekar, N.; Joshi, P.; Rasool, O.; Ignatowicz, L.; Hamasur, B.; Hotha, S. Synthesis of an immunologically active heptamannoside of Mycobacterium tuberculosis by the [Au]/[Ag]-catalyzed activation of ethynylcyclohexyl glycosyl carbonate donor. Org. Lett. 2024, 26, 2034–2038. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Levi, S.M.; Wagen, C.C.; Wendlandt, A.E.; Jacobsen, E.N. Site-selective, stereocontrolled glycosylation of minimally protected sugars. Nature 2022, 608, 74–79. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Yang, Y.; Zhu, Q.; Lin, G.Q.; Yu, B. Chemical synthesis of polysaccharides. Curr. Opin. Chem. Biol. 2022, 69, 102154. [Google Scholar] [CrossRef] [PubMed]
- Matsuzaki, Y.; Ito, Y.; Nakahara, Y.; Ogawa, T. Synthesis of branched poly-N-acetyl-lactosamine type pentaantennary pentacosasaccharide: Glycan part of a glycosyl ceramide from rabbit erythrocyte membrane. Tetrahedron Lett. 1993, 34, 1061–1064. [Google Scholar] [CrossRef]
- Pozsgay, V. A new strategy in oligosaccharide synthesis using lipophilic protecting groups: Synthesis of a tetracosasaccharide. Tetrahedron Asymmetry 2000, 11, 151–172. [Google Scholar] [CrossRef]
- Fraser-Reid, B.; Lu, J.; Jayaprakash, K.; López, J.C. Synthesis of a 28-mer oligosaccharide core of mycobacterial lipoarabinomannan (LAM) requires only two n-pentenyl orthoester progenitors. Tetrahedron Asymmetry 2006, 17, 2449–2463. [Google Scholar] [CrossRef]
- Joseph, A.A.; Pardo-Vargas, A.; Seeberger, P.H. Total synthesis of polysaccharides by automated glycan assembly. J. Am. Chem. Soc. 2020, 142, 8561–8564. [Google Scholar] [CrossRef]
- Zhu, Q.; Shen, Z.; Chiodo, F.; Nicolardi, S.; Molinaro, A.; Silipo, A.; Yu, B. Chemical synthesis of glycans up to a 128-mer relevant to the O-antigen of Bacteroides vulgatus. Nat. Commun. 2020, 11, 4142. [Google Scholar] [CrossRef]
- Zhang, Y.; He, H.; Chen, Z.; Huang, Y.; Xiang, G.; Li, P.; Yang, X.; Lu, G.; Xiao, G. Merging reagent modulation and remote anchimeric assistance for glycosylation: Highly stereoselective synthesis of α-glycans up to a 30-mer. Angew. Chem. Int. Ed. 2021, 60, 12597–12606. [Google Scholar] [CrossRef]
- Wang, L.; Lowary, T.L. Synthesis of structurally-defined polymeric glycosylated phosphoprenols as potential lipopolysaccharide biosynthetic probes. Chem. Sci. 2021, 12, 12192–12200. [Google Scholar] [CrossRef]
- Zhu, Y.; Delbianco, M.; Seeberger, P.H. Automated assembly of starch and glycogen polysaccharides. J. Am. Chem. Soc. 2021, 143, 9758–9768. [Google Scholar] [CrossRef] [PubMed]
- Joe, M.; Bai, Y.; Nacario, R.C.; Lowary, T.L. Synthesis of the docosanasaccharide arabinan domain of mycobacterial arabinogalactan and a proposed octadecasaccharide biosynthetic precursor. J. Am. Chem. Soc. 2007, 129, 9885–9901. [Google Scholar] [CrossRef] [PubMed]
- Ishiwata, A.; Ito, Y. Synthesis of docosasaccharide arabinan motif of mycobacterial cell wall. J. Am. Chem. Soc. 2011, 133, 2275–2291. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Xiong, D.; Chen, S.; Wang, Y.; Ye, X. Total synthesis of mycobacterial arabinogalactan containing 92 mono- saccharide units. Nat. Commun. 2017, 8, 14851. [Google Scholar] [CrossRef]
- Yao, W.; Xiong, D.-C.; Yang, Y.; Geng, C.; Cong, Z.; Li, F.; Li, B.-H.; Qin, X.; Wang, L.-N.; Xue, W.-Y.; et al. Automated solution-phase multiplicative synthesis of complex glycans up to a 1,080-mer. Nat. Synth. 2022, 1, 854–863. [Google Scholar] [CrossRef]
- Qin, X.; Xu, C.; Liu, M.; Zeng, F.; Yao, W.; Deng, Y.; Xu, T.; Sun, S.; Sun, D.; Mo, J.; et al. Synthesis of branched arabinogalactans up to a 140-mer from Panax notoginseng and their anti-pancreatic-cancer activity. Nat. Synth. 2024, 3, 245–255. [Google Scholar] [CrossRef]
- Islam, M.; Shinde, G.P.; Hotha, S. Expedient synthesis of the heneicosasaccharyl mannose capped arabinomannan of the Mycobacterium tuberculosis cellular envelope by glycosyl carbonate donors. Chem. Sci. 2017, 8, 2033–2038. [Google Scholar] [CrossRef]
- Marando, V.M.; Kim, D.E.; Calabretta, P.J.; Kraft, M.B.; Bryson, B.D.; Kiessling, L.L. Biosynthetic glycan labeling. J. Am. Chem. Soc. 2021, 143, 16337–16342. [Google Scholar] [CrossRef]
- Marando, V.M.; Kim, D.E.; Kiessling, L.L. Biosynthetic incorporation for visualizing bacterial glycans. Methods Enzymol. 2022, 665, 135–151. [Google Scholar] [CrossRef]
- Lee, S.Y.; Marando, V.M.; Smelyansky, S.R.; Kim, D.E.; Calabretta, P.J.; Warner, T.C.; Bryson, B.D.; Kiessling, L.L. Selective glycan labeling of mannose-containing glycolipids in mycobacteria. J. Am. Chem. Soc. 2024, 146, 377–385. [Google Scholar] [CrossRef]
- Zhou, K.L.; Li, X.; Zhang, X.L.; Pan, Q. Mycobacterial Mannose-capped lipoarabinomannan: A modulator bridging innate and adaptive immunity. Emerg. Microbes Infect. 2019, 8, 1168–1177. [Google Scholar] [CrossRef] [PubMed]
- Torrelles, J.B.; Chatterjee, D. Collected thoughts on mycobacterial lipoarabinomannan, a cell envelope lipoglycan. Pathogens 2023, 12, 1281. [Google Scholar] [CrossRef] [PubMed]
- Ding, C.; Hu, M.; Guo, W.; Hu, W.; Li, X.; Wang, S.; Shangguan, Y.; Zhang, Y.; Yang, S.; Xu, K. Prevalence trends of latent tuberculosis infection at the global, regional, and country levels from 1990–2019. Int. J. Infect. Dis. 2022, 122, 46–62. [Google Scholar] [CrossRef] [PubMed]
- Chakaya, J.; Petersen, E.; Nantanda, R.; Mungai, B.N.; Migliori, G.B.; Amanullah, F.; Lungu, P.; Ntoumi, F.; Kumarasamy, N.; Maeurer, M. The WHO global tuberculosis 2021 report-not so good news and turning the tide back to end TB. Int. J. Infect. Dis. 2022, 124, S26–S29. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ishiwata, A.; Zhong, X.; Tanaka, K.; Ito, Y.; Ding, F. ZnI2-Mediated cis-Glycosylations of Various Constrained Glycosyl Donors: Recent Advances in cis-Selective Glycosylations. Molecules 2024, 29, 4710. https://doi.org/10.3390/molecules29194710
Ishiwata A, Zhong X, Tanaka K, Ito Y, Ding F. ZnI2-Mediated cis-Glycosylations of Various Constrained Glycosyl Donors: Recent Advances in cis-Selective Glycosylations. Molecules. 2024; 29(19):4710. https://doi.org/10.3390/molecules29194710
Chicago/Turabian StyleIshiwata, Akihiro, Xuemei Zhong, Katsunori Tanaka, Yukishige Ito, and Feiqing Ding. 2024. "ZnI2-Mediated cis-Glycosylations of Various Constrained Glycosyl Donors: Recent Advances in cis-Selective Glycosylations" Molecules 29, no. 19: 4710. https://doi.org/10.3390/molecules29194710
APA StyleIshiwata, A., Zhong, X., Tanaka, K., Ito, Y., & Ding, F. (2024). ZnI2-Mediated cis-Glycosylations of Various Constrained Glycosyl Donors: Recent Advances in cis-Selective Glycosylations. Molecules, 29(19), 4710. https://doi.org/10.3390/molecules29194710