The Effect of Nitrogen Functional Groups on Pb0, PbO, and PbCl2 Adsorption over a Carbonaceous Surface
Abstract
:1. Introduction
2. Results
2.1. Pb0, PbO, and PbCl2 Adsorption over a Bare Carbonaceous Surface
2.2. Pb0, PbO, and PbCl2 Adsorption over a Carbonaceous Surface with Nitrogen Functional Groups
2.3. Electrostatic Potential Analysis
2.4. Density-of-States Analysis
3. Models and Computational Methods
3.1. Carbonaceous Surfaces with Different Functional Groups
3.2. Calculation Method
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, R.; Cheng, R.; Jing, M.; Yang, L.; Li, Y.; Chen, Q.; Chen, Y.; Yan, J.; Lin, C.; Wu, Y.; et al. Source-specific health risk analysis on particulate trace elements: Coal combustion and traffic emission as major contributors in wintertime Beijing. Environ. Sci. Technol. 2018, 52, 10967–10974. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Sun, Y.; Yan, B.; Yang, R.; Liu, B.; Cheng, Z.; Ma, W. Distribution of trace elements during coal gasification: The effect of upgrading method. J. Clean. Prod. 2018, 190, 193–199. [Google Scholar] [CrossRef]
- He, D.; Hu, H.; Jiao, F.; Zuo, W.; Liu, C.; Xie, H.; Dong, L.; Wang, X. Thermal separation of heavy metals from municipal solid waste incineration fly ash: A review. Chem. Engi. J. 2023, 143344. [Google Scholar] [CrossRef]
- Zhou, X.; Wu, Y.; Cai, Q.; Mi, T.; Zhang, B.; Zhao, L.; Lu, Q. Interaction mechanism between lead species and activated carbon in MSW incineration flue gas: Role of different functional groups. Chem. Eng. J. 2022, 436, 135252. [Google Scholar] [CrossRef]
- Wang, P.; Hu, Y. Cheng, Municipal solid waste (MSW) incineration fly ash as an important source of heavy metal pollution in China. Environ. Pollut. 2019, 252, 461–475. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Dong, L.; Hu, H.; Yan, D.; Xu, S.; Zou, C.; Huang, Y.; Guo, G.; Yao, H. The migration and transformation mechanisms of heavy metals during molten salt cyclic thermal treatment of MSWI fly ash. Chem. Eng. J. 2023, 471, 144731. [Google Scholar] [CrossRef]
- Zhu, J.; Hao, Q.; Chen, J.; Hu, M.; Tu, T.; Jiang, C. Distribution characteristics and comparison of chemical stabilization ways of heavy metals from MSW incineration fly ashes. Waste Manag. 2020, 113, 488–496. [Google Scholar] [CrossRef]
- Zhao, S.; Duan, Y.; Chen, L.; Li, Y.; Yao, T.; Liu, S.; Liu, M.; Lu, J. Study on emission of hazardous trace elements in a 350 MW coal-fired power plant. Part 2. Arsenic, chromium, barium, manganese, lead. Environ. Pollut. 2017, 226, 404–411. [Google Scholar] [CrossRef]
- Govarthanan, M.; Jeon, C.H.; Kim, W. Synthesis and characterization of lanthanum-based metal organic framework decorated polyaniline for effective adsorption of lead ions from aqueous solutions. Environ. Pollut. 2022, 303, 119049. [Google Scholar] [CrossRef]
- Sun, Z.; Liao, Y.; Zhao, S.; Zhang, X.; Liu, Q.; Shi, X. Research progress in metal–organic frameworks (MOFs) in CO2 capture from post-combustion coal-fired flue gas: Characteristics, preparation, modification and applications. J. Mater. Chem. A 2022, 10, 5174–5211. [Google Scholar] [CrossRef]
- Tang, H.; Fang, H.; Duan, Y.; Sholl, D.S. Predictions of Hg0 and HgCl2 Adsorption Properties in UiO-66 from Flue Gas Using Molecular Simulations. J. Phys. Chem. C 2019, 123, 5972–5979. [Google Scholar] [CrossRef]
- Huang, Y.; Yang, Y.; Hu, H.; Xu, M.; Liu, H.; Li, X.; Wang, X.; Yao, H. A deep insight into arsenic adsorption over γ-Al2O3 in the presence of SO2/NO. Proc. Combust. Inst. 2018, 37, 1–7. [Google Scholar] [CrossRef]
- Dong, D.; Liu, L.; Hua, X.; Lu, Y. Comparison of lead, cadmium, copper and cobalt adsorption onto metal oxides and organic materials in natural surface coatings. Microchem. J. 2007, 85, 270–275. [Google Scholar] [CrossRef]
- Zhang, S.; Dang, J.; Díaz-Somoano, M.; Zhang, Q. Theoretical insight into the influence of SO2 on the adsorption and oxidation of mercury over the MnO2 surface. Appl. Surf. Sci. 2023, 626, 157216. [Google Scholar] [CrossRef]
- Zhao, S.; Liao, Y.; Xie, X.; Wang, Y.; Sun, Z. As2O3 removal from coal-fired flue gas by the carbon-based adsorbent: Effects of adsorption temperature and flue gas components. Chem. Eng. J. 2022, 450, 138023. [Google Scholar] [CrossRef]
- Gao, Z.; Yang, W. Effects of CO/CO2/NO on elemental lead adsorption on carbonaceous surfaces. J. Mol. Model 2016, 22, 166. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Guo, L.; Hu, G.; Hu, H.X.; Xu, L.; Chen, J.; Dai, W.; Fan, M. Highly cost-effective nitrogen-doped porous coconut shell-based CO2 sorbent synthesized by combining ammoxidation with KOH activation. Environ. Sci. Technol. 2015, 49, 7063–7070. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Yang, Y.; Liu, J. As2O3 capture from incineration flue gas by Fe2O3-modified porous carbon: Experimental and DFT insights. Fuel 2022, 321, 124079. [Google Scholar] [CrossRef]
- Zhan, M.; Liu, Y.; Ye, W.; Chen, T.; Jiao, W. Modification of activated carbon using urea to enhance the adsorption of dioxins. Environ. Res. 2021, 204, 112035. [Google Scholar] [CrossRef]
- Choi, S.; Lee, S. Mercury adsorption characteristics of Cl-impregnated activated carbons in simulated flue gases. Fuel 2021, 299, 120822. [Google Scholar] [CrossRef]
- Zou, C.; Li, S.; Huan, X.; Hu, H.; Dong, L.; Zhang, H.; Dai, Q.; Yao, H. The adsorption mechanism of arsenic in flue gas over the P-doped carbonaceous adsorbent: Experimental and theoretical study. Sci. Total Environ. 2023, 895, 165066. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Lin, Z.; Chen, H.; Yan, S.; Zhu, H.; Zhang, H.; Sun, H.; Zhang, S.; Zhang, S.; Wu, Y. Roles of graphitization degree and surface functional groups of N-doped activated biochar for phenol adsorption. J. Anal. Appl. Pyrol. 2022, 167, 105700. [Google Scholar] [CrossRef]
- Chen, Y.; Yasin, A.; Zhang, Y.; Zan, X.; Liu, Y.; Zhang, L. Preparation and Modification of Biomass-Based Functional Rubbers for Removing Mercury(II) from Aqueous Solution. Materials 2020, 13, 632. [Google Scholar] [CrossRef]
- Jia, Y.F.; Xiao, B.; Thomas, K.M. Adsorption of metal ions on nitrogen surface functional groups in activated carbons. Langmuir 2002, 18, 470–478. [Google Scholar] [CrossRef]
- Waly, S.M.; El-Wakil, A.M.; Abou El-Maaty, W.M.; Awad, F.S. Efficient removal of Pb (II) and Hg (II) ions from aqueous solution by amine and thiol modified activated carbon. J. Saudi Chem. Soc. 2021, 25, 101296. [Google Scholar] [CrossRef]
- Machida, M.; Fotoohi, B.; Amamo, Y.; Mercier, L. Cadmium (II) and lead (II) adsorption onto hetero-atom functional mesoporous silica and activated carbon. Appl. Surface Sci. 2012, 258, 7389–7394. [Google Scholar] [CrossRef]
- Alghamdi, A.A.; Al-Odayni, A.B.; Saeed, W.S.; Al-Kahtani, A.; Alharthi, F.A.; Aouak, T. Efficient adsorption of lead (II) from aqueous phase solutions using polypyrrole-based activated carbon. Materials 2019, 12, 2020. [Google Scholar] [CrossRef]
- Swiatkowski, A.; Pakula, M.; Biniak, S.; Walczyk, M. Influence of the surface chemistry of modified activated carbon on its electrochemical behaviour in the presence of lead (II) ions. Carbon 2004, 42, 3057–3069. [Google Scholar] [CrossRef]
- Zhang, S.; Hu, X.; Lu, Q.; Zhang, J. Density functional theory study of arsenic and selenium adsorption on the CaO (001) surface. Energy Fuels 2011, 25, 2932–2938. [Google Scholar] [CrossRef]
- Zhao, S.; Sun, K.; Xie, P.; Zhang, S.; Zhang, J.; Zhu, Y.; Sun, Z. Mercury removal from coal combustion flue gas by mechanochemically sulfur modified straw coke and its mercury stability. Fuel 2024, 355, 129498. [Google Scholar] [CrossRef]
- Dong, L.; Wang, H.; Huang, Y.; Chen, H.; Cheng, H.; Liu, L.; Xu, L.; Zha, J.; Yu, M.; Wang, S.; et al. Elemental mercury removal from coal-fired flue gas using recyclable magnetic Mn-Fe based attapulgite sorbent. Chem. Eng. J. 2021, 407, 127182. [Google Scholar] [CrossRef]
- Dong, L.; Liu, Y.; Wen, H.; Zou, C.; Dai, Q.; Zhang, H.; Xu, L.; Hu, H.; Yao, H. The deoxygenation mechanism of biomass thermal conversion with molten salts: Experimental and theoretical analysis. Renew. Energy 2023, 219, 119412. [Google Scholar] [CrossRef]
- Qian, L.; Ding, L.; Liu, W.; Ren, S.; Long, H. Simultaneous removal of NO and dioxins over V2O5-WO3/TiO2 catalyst for iron ore sintering flue gas: The poisoning effect of Pb. Fuel 2022, 324, 124483. [Google Scholar] [CrossRef]
- Liu, X.; Gao, Z.; Wang, C.; Zhao, M.; Ding, X.; Yang, W.; Ding, Z. Hg0 oxidation and SO3, Pb0, PbO, PbCl2 and As2O3 adsorption by graphene-based bimetallic catalyst ((Fe,Co)@N-GN): A DFT study. Appl. Surf. Sci. 2019, 496, 143686. [Google Scholar] [CrossRef]
- Yang, F.; Yang, R. Ab initio molecular orbital study of adsorption of atomic hydrogen on graphite: Insight into hydrogen storage in carbon nanotubes. Carbon 2002, 40, 437–444. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
- Gao, W.; Lin, Z.; Chen, H.; Yan, S.; Huang, Y.; Hu, X.; Zhang, S. A review on N-doped biochar for enhanced water treatment and emerging applications. Fuel Process Technol 2022, 237, 107468. [Google Scholar] [CrossRef]
- Yang, K.; Cheng, Z.; Luo, W.; Guo, B.; Zhang, B.; Zhang, Y. Adsorption performance and mechanisms of MgO-modified palygorskite/biochar composite for aqueous Cd (II): Experiments and theoretical calculation. Appl. Surf. Sci. 2023, 638, 157965. [Google Scholar] [CrossRef]
- Chen, Q.; Tang, Z.; Li, H.; Wu, M.; Zhao, Q.; Pan, B. An electron-scale comparative study on the adsorption of six divalent heavy metal cations on MnFe2O4@CAC hybrid: Experimental and DFT investigations. Chem. Eng. J. 2020, 381, 122656. [Google Scholar] [CrossRef]
- Zou, C.; Wang, C.; Zhang, Y.; Liu, H. Effect of CO2 in flue gas on arsenic adsorption over a carbonaceous surface. Energy Fuel 2019, 33, 4412–4419. [Google Scholar] [CrossRef]
- Shen, F.; Liu, J.; Dong, Y.; Wu, D. Mercury removal by biomass-derived porous carbon: Experimental and theoretical insights into the effect of H2S. Chem. Eng. J. 2018, 348, 409–415. [Google Scholar] [CrossRef]
- Gao, Z.; Li, M.; Sun, Y.; Yang, W. Effects of oxygen functional complexes on arsenic adsorption over carbonaceous surface. J. Hazard. Mater. 2018, 360, 436–444. [Google Scholar] [CrossRef]
- Bakhshi, F.; Farhadian, N. Co-doped graphene sheets as a novel adsorbent for hydrogen storage: DFT and DFT-D3 correction dispersion study. Int. J. Hydrogen Energy 2018, 43, 8355–8364. [Google Scholar] [CrossRef]
- Jiao, A.; Zhang, H.; Liu, J.; Shen, J.; Jiang, X. The role of CO played in the nitric oxide heterogeneous reduction: A quantum chemistry study. Energy 2017, 141, 1538–1546. [Google Scholar] [CrossRef]
Structure | Eads (kJ/mol) | Bond | Bond Length (nm) | MBO |
---|---|---|---|---|
2-1 CS-Pb | −310.35 | C(6)—Pb(31) | 0.223 | 0.95 |
C(7)—Pb(31) | 0.226 | 0.91 | ||
2-2 CS-PbO | −274.07 | C(6)—Pb(31) | 0.225 | 0.91 |
C(7)—O(32) | 0.134 | 1.21 | ||
2-3 CS-PbCl2 | −260.96 | C(12)—Pb(31) | 0.234 | 0.71 |
C(28)—Cl(32) | 0.177 | 0.95 |
Structure | Eads (kJ/mol) | Bond | Bond Length (nm) | MBO |
---|---|---|---|---|
3-1 CS-Amino-Pb | −526.18 | C(5)—Pb(34) | 0.229 | 0.87 |
C(12)—Pb(34) | 0.229 | 0.82 | ||
3-2 CS-Pyridinic-Pb | −483.30 | C(6)—Pb(31) | 0.232 | 0.77 |
C(12)—Pb(31) | 0.232 | 0.86 | ||
3-3 CS-Pyrrolic-Pb | −505.07 | C(6)—Pb(30) | 0.241 | 0.76 |
C(28)—Pb(30) | 0.232 | 0.90 | ||
3-4 CS-Amino-PbO | −414.12 | C(6)—Pb(31) | 0.224 | 0.93 |
C(7)—O(32) | 0.135 | 1.20 | ||
3-5 CS-Pyridinic-PbO | −426.41 | C(6)—Pb(30) | 0.224 | 0.91 |
C(7)—O(31) | 0.134 | 1.23 | ||
3-6 CS-Pyrrolic-PbO | −518.06 | C(6)—Pb(28) | 0.234 | 0.84 |
C(7)—O(29) | 0.125 | 1.84 | ||
3-7 CS-Amino-PbCl2 | −322.99 | C(12)—Pb(31) | 0.236 | 0.69 |
C(28)—Cl(32) | 0.176 | 0.97 | ||
3-8 CS-Pyridinic-PbCl2 | −288.31 | C(11)—Pb(30) | 0.234 | 0.70 |
C(27)—Cl(31) | 0.177 | 0.96 | ||
3-9 CS-Pyrrolic-PbCl2 | −346.21 | C(9)—Pb(28) | 0.245 | 0.64 |
C(25)—Cl(29) | 0.176 | 0.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Wen, H.; Guo, L.; Liang, A.; Liu, T.; Zhao, D.; Dong, L. The Effect of Nitrogen Functional Groups on Pb0, PbO, and PbCl2 Adsorption over a Carbonaceous Surface. Molecules 2024, 29, 511. https://doi.org/10.3390/molecules29020511
Wang L, Wen H, Guo L, Liang A, Liu T, Zhao D, Dong L. The Effect of Nitrogen Functional Groups on Pb0, PbO, and PbCl2 Adsorption over a Carbonaceous Surface. Molecules. 2024; 29(2):511. https://doi.org/10.3390/molecules29020511
Chicago/Turabian StyleWang, Liang, Huaizhou Wen, Lei Guo, Ancheng Liang, Tingan Liu, Dongxu Zhao, and Lu Dong. 2024. "The Effect of Nitrogen Functional Groups on Pb0, PbO, and PbCl2 Adsorption over a Carbonaceous Surface" Molecules 29, no. 2: 511. https://doi.org/10.3390/molecules29020511
APA StyleWang, L., Wen, H., Guo, L., Liang, A., Liu, T., Zhao, D., & Dong, L. (2024). The Effect of Nitrogen Functional Groups on Pb0, PbO, and PbCl2 Adsorption over a Carbonaceous Surface. Molecules, 29(2), 511. https://doi.org/10.3390/molecules29020511