Chemical Upcycling of Expired Pharmaceuticals as a Source of Value-Added Chemicals for Organic Synthesis and Medicinal Chemistry
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Methods
3.2. Extraction
3.2.1. Extraction of 2-(1-(Aminomethyl)cyclohexyl)acetic Acid (1)
3.2.2. Extraction of (S)-3-(Aminomethyl)-5-Methylhexanoic Acid (2)
3.3. Synthesis
3.3.1. Synthesis of 2-(1-(Aminomethyl)cyclohexyl)ethanol (3)
3.3.2. Synthesis of 2-Azaspiro [4.5]Decane (4)
3.3.3. Synthesis of 2-Azaspiro [4.5]Decan-3-One (5)
3.3.4. Synthesis of Derivatives of 5a-5i and 5k. General Procedure
Synthesis of 2-Methyl-2-Azaspiro [4.5]Decan-3-One (5a)
Synthesis of 2-Allyl-2-Azaspiro [4.5]Decan-3-One (5b)
Synthesis of 2-(3-Methylbut-2-en-1-Yl)-2-Azaspiro [4.5]Decan-3-One (5c)
Synthesis of Tert-Butyl 2-(3-Oxo-2-Azaspiro [4.5]Decan-2-Yl)Acetate (5d)
Synthesis of 2-Benzyl-2-Azaspiro [4.5]Decan-3-One (5e)
Synthesis of 2-(3-Methoxybenzyl)-2-Azaspiro [4.5]Decan-3-One (5f)
Synthesis of 2-(4-(Trifluoromethyl)benzyl)-2-Azaspiro [4.5]Decan-3-One (5g)
Synthesis of 4-((3-Oxo-2-Azaspiro [4.5]Decan-2-Yl)methyl)benzonitrile (5h)
Synthesis of 3-Oxo-2-Azaspiro [4.5]Decane-2-Carbonitrile (5i)
Synthesis of Methyl 2-(3-Oxo-2-Azaspiro [4.5]Decan-2-Yl)Acetate (5k)
3.3.5. Synthesis of 3-Oxo-2-Azaspiro [4.5]Decane-2-Carboxamide (5j)
3.3.6. Synthesis of 2-(3-Oxo-2-Azaspiro [4.5]Decan-2-Yl)acetamide (5l)
3.3.7. Synthesis of (S)-4-Isobutylpyrrolidin-2-One (6)
3.3.8. Synthesis of (S)-Methyl 2-(4-Isobutyl-2-Oxopyrrolidin-1-Yl)Acetate (6a)
3.3.9. Synthesis of (S)-2-(4-Isobutyl-2-Oxopyrrolidin-1-Yl)acetamide (6b)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Calvo-Flores, F.G.; Isac-García, J.; Dobado, J.A. Chapter 4: Overview of Pharmaceutical Products as Emerging Pollutants. In Emerging Pollutants. Origin, Structure and Properties; Wiley-VCH Verlag GmbH & Co.: Weinheim, Germany, 2018; pp. 57–80. [Google Scholar]
- Wydro, U.; Wołejko, E.; Luarasi, L.; Puto, K.; Taraseviciene, Ž.; Jabłonska-Trypuc, A. A Review on Pharmaceuticals and Personal Care Products Residues in the Aquatic Environment and Possibilities for Their Remediation. Sustainability 2024, 16, 169. [Google Scholar] [CrossRef]
- Purdom, C.E.; Hardiman, P.A.; Bye, V.J.; Eno, N.C.; Tyler, C.R.; Sumpter, J.P. Estrogenic effects of effluents from sewage treatment works. Chem. Ecol. 1994, 8, 275–285. [Google Scholar] [CrossRef]
- Oaks, J.L.; Gilbert, M.; Virani, M.Z.; Watson, R.T.; Meteyer, C.U.; Rideout, B.A.; Shivaprasad, H.L.; Ahmed, S.; Chaudhry, M.J.I.; Arshad, M.; et al. Diclofenac residues as the cause of vulture population decline in Pakistan. Nature 2004, 427, 630–633. [Google Scholar] [CrossRef] [PubMed]
- Smits, A.P.; Skelly, D.K.; Bolden, S.R. Amphibian intersex in suburban landscapes. Ecosphere 2014, 5, 11. [Google Scholar] [CrossRef]
- Duarte, D.J.; Oldenkamp, R.; Ragas, A.M.J. Human health risk assessment of pharmaceuticals in the European Vecht River. Integr. Environ. Assess Manag. 2022, 18, 1639–1654. [Google Scholar] [CrossRef]
- Arnold, K.E.; Brown, A.R.; Ankley, G.T.; Sumpter, J.P. Medicating the environment: Assessing risks of pharmaceuticals to wildlife and ecosystems. Phil. Trans. R. Soc. B 2014, 369, 20130569. [Google Scholar] [CrossRef]
- Commission Implementing Decision (EU) 2018/840 of 5 June 2018 Establishing a Watch List of Substances for Union-Wide Monitoring in the Field of Water Policy Pursuant to Directive 2008/105/EC of the European Parliament and of the Council and Repealing Commission Implementing Decision (EU) 2015/495. Available online: http://data.europa.eu/eli/dec_impl/2018/840/oj (accessed on 1 June 2024).
- Barcena, H.; Maziarz, K. Chemical Upcycling of Expired Drugs: Synthesis of Guaifenesin Acetonide. J. Chem. Educ. 2017, 94, 1538–1542. [Google Scholar] [CrossRef]
- Markus, R. Heinrich, Recycling: Labor statt Müllcontainer. Nachr. Chem. 2023, 71, 36–37. [Google Scholar] [CrossRef]
- Puzanova, I.; Lozynskyi, A.; Lesyk, L.; Hromovyk, B.; Lesyk, R. Recycling of expired paracetamol-containing drugs as source of useful reagents for an organic synthesis. J. Appl. Pharm. Sci. 2019, 9, 052–056. [Google Scholar] [CrossRef]
- Hou, H.; Li, D.; Liu, X.; Yao, Y.; Dai, Z.; Yu, C. Recovery of Expired Lithium Carbonate Tablets for LiFePO4/C Cathode. Waste Biomass Valor. 2020, 11, 3097–3105. [Google Scholar] [CrossRef]
- Kim, Y.; Hwang, S.J.; Kim, D.; Park, J.; Kim, Y.; Kim, J.; Bae, M.; Hong, H.; Park, S.; Park, J.; et al. Direct Utilization of Expired Waste Acetaminophen as Organic Anode in Lithium-Ion Batteries. Adv. Mater. Interfaces 2024, 11, 2300628. [Google Scholar] [CrossRef]
- Hameed, R.S.; Aljuhani, E.; Felaly, R.; Munshi, A. Effect of expired paracetamol–Zn+2 system and its synergistic effect towards iron dissolution inhibition and green inhibition performance. J. Adhes. Sci. Technol. 2020, 35, 838–855. [Google Scholar] [CrossRef]
- Vaszilcsin, N.; Ordodi, V.; Borza, A. Corrosion inhibitors from expired drugs. Int. J. Pharm. 2012, 431, 241–244. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.; Kumar, A.; Chaudhary, A. Reuse API (Active Pharmaceutical Ingredients) from Expired Dosage form. Int. J. Eng. Res. Technol. 2019, 8, 276–298. [Google Scholar] [CrossRef]
- Alsaiari, R.A.; Kamel, M.M.; Mohamed, M.M. Corrosion Inhibition of Expired Cefazolin Drug on Copper Metal in Dilute Hydrochloric Acid Solution: Practical and Theoretical Approaches. Molecules 2024, 29, 1157. [Google Scholar] [CrossRef]
- Basha, C.; Babu, K.R.; Madhu, M.; Kumar, Y.P.; Gopinath, C. Recycling of Drugs from Expired Drug products: Comprehensive Review. JGTPS 2015, 6, 2596–2599. [Google Scholar]
- Jaber, Y.S. Valorization of Pharmaceutical Waste by Recovery of Active Pharmaceutical Ingredients from Expired or Unused Finished Pharmaceutical Products (Fpps) with Thermodynamic Modeling. 32 Pages Posted: 26 February 2024. Available online: https://ssrn.com/abstract=4739545 (accessed on 2 September 2023).
- Spanish Agency for Medicines and Health Products. Drug Information Centre. Available online: https://cima.aemps.es/cima/publico/home.html (accessed on 1 April 2024).
- Ibers, J.A. Gabapentin and gabapentin monohydrate. Acta Cryst. 2001, C57, 641–643. [Google Scholar] [CrossRef]
- Reece, H.A.; Levendis, D.C. Polymorphs of gabapentin. Acta Cryst. 2008, C64, o105–o108. [Google Scholar] [CrossRef]
- Venu, N.; Vishweshwar, P.; Ram, T.; Surya, D.; Apurba, B. (S)-3-(Ammoniomethyl)-5-methylhexanoate (pregabalin). Acta Cryst. 2007, C63, o306–o308. [Google Scholar] [CrossRef]
- Braga, D.; Grepioni, F.; Maini, L.; Rubini, K.; Polito, M.; Brescello, R.; Cotarca, L.; Duarte, M.T.; André, V.; Piedade, M.F.M. Polymorphic gabapentin: Thermal behaviour, reactivity and interconversion of forms in solution and solid-state. New J. Chem. 2008, 32, 1788–1795. [Google Scholar] [CrossRef]
- Gorriti, A.E.; Istúriz, N.A.; González, P.G.; González, J.F.; Álvarez, L.S.; Parra, J.G. Off-label use of gabapentinoid drugs: Is it necessary a deprescription strategy? Gac. Sanit. 2023, 37, 102283. [Google Scholar] [CrossRef]
- FDA Warns about Serious Breathing Problems with Seizure and Nerve Pain Medicines Gabapentin (Neurontin, Gralise, Horizant) and Pregabalin (Lyrica, Lyrica CR). Available online: https://www.fda.gov/drugs/fda-drug-safety-podcasts/fda-warns-about-serious-breathing-problems-seizure-and-nerve-pain-medicines-gabapentin-neurontin (accessed on 2 September 2023).
- Chambers, S.J.; Coulthard, G.; Unsworth, W.P.; O’Brien, P.; Taylor, R.J.K. From Heteroaromatic Acids and Imines to Azaspirocycles: Stereoselective Synthesis and 3D Shape Analysis. Chem. Eur. J. 2016, 22, 6496–6500. [Google Scholar] [CrossRef] [PubMed]
- Lovering, F.; Bikker, J.; Humblet, C. Escape from Flatland: Increasing Saturation as an Approach to Improving Clinical Success. J. Med. Chem. 2009, 52, 6752–6756. [Google Scholar] [CrossRef] [PubMed]
- Bogolubsky, A.V.; Moroz, Y.S.; Mykhailiuk, P.K.; Pipko, S.E.; Konovets, A.I.; Sadkova, I.V.; Tolmachev, T. Sulfonyl Fluorides as Alternative to Sulfonyl Chlorides in Parallel Synthesis of Aliphatic Sulfonamides. ACS Comb. Sci. 2014, 16, 192–197. [Google Scholar] [CrossRef]
- Forte, B.; Norcross, N.; Jansen, C.; Baragana, B.; Gilbert, I.; Cleghorn, L.; Davis, S.; Walpole, C. Preparation of Chromenone Carboxamides as Anti-Infective Agents. PCT International Application WO 2017221002 A1 20171228, 5 June 2022. [Google Scholar]
- Wang, J.; Cady, S.D.; Balannik, V.; Pinto, L.H.; DeGrado, W.F.; Hong, M. Discovery of Spiro-Piperidine Inhibitors and Their Modulation of the Dynamics of the M2 Proton Channel from Influenza A Virus. J. Am. Chem. Soc. 2009, 131, 8066–8076. [Google Scholar] [CrossRef]
- Badger, A.M.; Handler, J.A.; Genell, C.A.; Gore, D.H.E.; Polsky, R.; Webb, L.; Bugelski, P.J. Atiprimod (SK&F 106615), a novel macrophage targeting agent, enhances alveolar macrophage candidacidal activity and is not immunosuppresive in candida-infected mice. Int. J. Immunopharmacol. 1999, 21, 161–176. [Google Scholar]
- Reilly, S.W.; Puentes, L.N.; Wilson, K.; Hsieh, C.-J.; Weng, C.-C.; Makvandi, M.; Mach, R.H. Examination of Diazaspiro Cores as Piperazine Bioisosteres in the Olaparib Framework Shows Reduced DNA Damage and Cytotoxicity. J. Med. Chem. 2018, 61, 5367–5379. [Google Scholar] [CrossRef]
- Yang, S.M.; Martinez, N.J.; Yasgar, A.; Danchik, C.; Johansson, C.; Wang, Y.; Baljinnyam, B.; Wang, A.Q.; Xu, X.; Shah, P.; et al. Discovery of Orally Bioavailable, Quinoline-Based Aldehyde Dehydrogenase 1A1 (ALDH1A1) Inhibitors with Potent Cellular Activity. J. Med. Chem. 2018, 61, 4883–4903. [Google Scholar] [CrossRef]
- Martyn, D.C.; Ramirez, A.P.; Beattie, M.J.; Cortese, J.F.; Patel, V.; Rush, M.A.; Woerpel, K.A.; Clardy, J. Synthesis of spiro-1,2-dioxolanes and their activity against Plasmodium falciparum. Bioorg. Med. Chem. Lett. 2008, 18, 6521–6524. [Google Scholar] [CrossRef]
- Ignacimuthu, S.J.; Baskar, K.; Duraipandiyan, V. A Process for Preparing Compound Atalantiamide with Antifeedant, Larvicidal and Pupicidal Activities. India IN2009CH02610 A, 28 October 2009. [Google Scholar]
- Lagreze, W.A.; Muller-Velten, R.; Feuerstein, T.J. The neuroprotective properties of gabapentin-lactam. Graefes Arch. Clin. Exp. Ophthalmol. 2001, 239, 845–849. [Google Scholar] [CrossRef]
- Zucker, B.; Ludin, D.E.; Gerds, T.A.; Lücking, C.H.; Landwehrmeyer, G.B.; Feuerstein, T.J. Gabapentin-lactam, but not gabapentin, reduces protein aggregates and improves motor performance in a transgenic mouse model of Huntington’s disease. Naunyn Schmiedeb. Arch. Pharmacol. 2004, 370, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Pielen, A.; Kirsch, M.; Hofmann, H.D.; Feuerstein, T.J.; Lagrèze, W.A. Retinal ganglion cell survival is enhanced by gabapentin-lactam in vitro: Evidence for involvement of mitochondrial KATP channels. Graefes Arch. Clin. Exp. Ophthalmol. 2004, 242, 240–244. [Google Scholar] [CrossRef] [PubMed]
- Henle, F.; Leemhuis, J.; Fischer, C.; Bock, H.H.; Lindemeyer, K.; Feuerstein, T.J.; Meyer, D.K. Gabapentin-lactam induces dendritic filopodia and motility in cultured hippocampal neurons. J. Pharmacol. Exp. Ther. 2006, 319, 181–191. [Google Scholar] [CrossRef] [PubMed]
- Oshima, T.; Duttenhoefer, F.; Xavier, S.; Nelson, K.; Sauerbier, S. Can mesenchymal stem cells and novel gabapentin-lactam enhance maxillary bone formation? J. Oral Maxillofac. Surg. 2014, 72, 485–495. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A. Spiro-Lactam NMDA Receptor Modulators and Uses Thereof. Patent WO2019152688, 31 January 2019. [Google Scholar]
- Agencia Española de Medicamentos y Productos Sanitarios. Centro de Información Online de Medicamentos de la AEMPS. Available online: https://cima.aemps.es/cima/pdfs/es/ft/55917/55917_ft.pdf (accessed on 1 June 2023).
- World Health Organization. Ageing and Health. Available online: https://www.who.int/es/news-room/fact-sheets/detail/ageing-and-health (accessed on 2 May 2023).
- Butler, D.E.; Greenman, B.J. Gabapentin Monohydrate and a Process for Producing the Same. U.S. Patent 4960931, 10 June 1989. [Google Scholar]
- Lukàc, M.; Mrva, M.; Fischer-Fodor, E.; Lacko, I.; Bukovský, M.; Miklašova, N.; Ondriska, F.; Devinsky, F. Synthesis and biological activity of dialkylphosphocholines. Bioorg. Med. Chem. Lett. 2009, 19, 6346–6349. [Google Scholar] [CrossRef]
- McKennon, M.J.; Meyers, A.I.; Darauz, K.; Schwarm, M. A convenient reduction of amino acids and their derivatives. J. Org. Chem. 1993, 58, 3568–3571. [Google Scholar] [CrossRef]
- Sircar, S.S.G. The Preparation of the Substituted Butyrolactams. J. Indian Chem. Soc. 1928, 5, 549–554. [Google Scholar]
- Geibel, W.; Hartenstein, J.; Herrmann, W.; Witzke, J. Process for the Preparation of 1-Aminomethyl-Cyclohexaneacetic Acid. U.S. Patent 5091567, 25 February 1992. [Google Scholar]
- Steiner, K.; Herrmann, W.; Crone, G.; Combs, C.S. Process for the Preparation of Cyclic Amino Acids and Intermediates Useful in the Process. U.S. Patent 5068413, 26 November 1991. [Google Scholar]
- Yerande, S.G.; Thakur, R.M.; Sharma, S.S.; Gangopadhyay, A.K.; Rupp, H.; Kubavat, H.T.; Nagarajan, K.; Selvan, A.; Nunna, R.; Jalajakshi, V.I. A Process for the Preparation of Gabapentin. PCT International Application WO2013190357 A1, 18 June 2013. [Google Scholar]
- Padgaonkar, S.G.; Thennati, R. Process Suitable for Industrial Scale Production of Gabapentin. Indian Patent IN 186285, 27 July 2001. [Google Scholar]
- Nagarajan, K.; Sivaramakrishnan, H.; Arulselvan, M. Process for the Preparation of Gabalactam. U.S. Patent 7632953 B2, 15 December 2009. [Google Scholar]
- Bryans, J.S.; Chessum, N.E.A.; Huther, N.; Parsons, A.F.; Ghelfi, F. Metal-catalysed radical cyclisations leading to N-heterocycles: New approaches to gabapentin and pulchellalactam. Tetrahedron 2003, 59, 6221–6231. [Google Scholar] [CrossRef]
- Cagnoli, R.; Ghelfi, F.; Pagnoni, U.M.; Parsons, A.F.; Schenetti, L. Hydro-de-halogenation and consecutive deprotection of chlorinated N-amido-pyrrolidin-2-ones with Raney-Ni: An effective approach to gabapentin. Tetrahedron 2003, 59, 9951–9960. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, Z.; Jiang, Y.; Hu, W. A Concise Synthesis of Gabapentin via Intramolecular C-CH Insertion Reaction. Synlett. 2003, 13, 1965–1966. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, Z.; Jiang, Y.; Hu, W. The synthesis of baclofen and GABOB via Rh(II) catalyzed intramolecular C–H insertion of α-diazoacetamides. Tetrahedron 2005, 61, 1579–1586. [Google Scholar] [CrossRef]
- Katuri, J.V.P.; Ekkundi, V.S.; Kuppuswamy, N. A Simple and Expedient Procedure for the Preparation of Gabapentin Lactam (2-aza-spiro[4,5]decan-3-one). Org. Process Res. Dev. 2016, 20, 1828–1832. [Google Scholar] [CrossRef]
- Hadidi, S.; Shiri, F.; Norouzibazaz, M. Theoretical Mechanistic Insight into the Gabapentin Lactamization by an Intramolecular Attack: Degradation Model and Stabilization Factors. J. Pharm. Biomed. Anal. 2020, 178, 112900. [Google Scholar] [CrossRef] [PubMed]
- Dempah, K.E.; Barich, D.H.; Kaushal, A.M.; Zong, Z.; Desai, S.D.; Suryanarayanan, R.; Kirsch, L.; Munson, E.J. Investigating Gabapentin Polymorphism Using Solid-State Nmr Spectroscopy. AAPS PharmSciTech. 2013, 14, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Hsu, C.; Ke, W.-T. Solid-State Transformation of Different Gabapentin Polymorphs upon Milling and Co-Milling. Int. J. Pharm. 2010, 396, 83–90. [Google Scholar] [CrossRef]
- Zong, Z.; Desai, S.D.; Kaushal, A.M.; Barich, D.H.; Huang, H.; Munson, E.J.; Suryanarayanan, R.; Kirsch, L.E. The Stabilizing Effect of Moisture on the Solid-State Degradation of Gabapentin. AAPS PharmSciTech. 2011, 12, 924–931. [Google Scholar] [CrossRef]
- Zong, Z.; Qiu, J.; Tinmanee, R.; Kirsch, L.E. Kinetic Model for Solid-State Degradation of Gabapentin. J. Pharm. Sci. 2012, 101, 2123–2133. [Google Scholar] [CrossRef]
- Kearney, A.S.; Mehta, S.C.; Radebaugh, G.W. The effect of cyclodextrins on the rate of intramolecular lactamization of gabapentin in aqueous solution. Int. J. Pharm. 1992, 78, 25–34. [Google Scholar] [CrossRef]
- Camilleri, P.; Ellul, R.; Kirby, A.J.; Mujahid, T.G. The Spontaneous Formation of Amides. The Mechanism of Lactam Formation from 3-(2-Aminophenyl)propionic Acid. J. Chem. Soc. Perkin Trans. 2 1979, 12, 1617–1620. [Google Scholar] [CrossRef]
- Abdallah, J.M.; Moodie, R.B. Kinetics and Equilibria of Ring Closure through an Amide Linkage. Part 2. 1 -Aryl-2-pyrrolidones. J. Chem. Soc. Perkin Trans. 2 1983, 8, 1243–1249. [Google Scholar] [CrossRef]
- Reyes-Batlles, M.; Blanco, M.F.; López-Arencibia, A.; Lorenzo-Morales, J.; McNaughton-Smith, G.; Piñero, J.E.; Abad-Grillo, T. Identification of N-acyl quinolin-2(1H)-ones as new selective agents against clinical isolates of Acanthamoeba keratitis. Bioorg. Chem. 2020, 99, 103791. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abad-Grillo, T.; McNaughton-Smith, G. Chemical Upcycling of Expired Pharmaceuticals as a Source of Value-Added Chemicals for Organic Synthesis and Medicinal Chemistry. Molecules 2024, 29, 4811. https://doi.org/10.3390/molecules29204811
Abad-Grillo T, McNaughton-Smith G. Chemical Upcycling of Expired Pharmaceuticals as a Source of Value-Added Chemicals for Organic Synthesis and Medicinal Chemistry. Molecules. 2024; 29(20):4811. https://doi.org/10.3390/molecules29204811
Chicago/Turabian StyleAbad-Grillo, Teresa, and Grant McNaughton-Smith. 2024. "Chemical Upcycling of Expired Pharmaceuticals as a Source of Value-Added Chemicals for Organic Synthesis and Medicinal Chemistry" Molecules 29, no. 20: 4811. https://doi.org/10.3390/molecules29204811
APA StyleAbad-Grillo, T., & McNaughton-Smith, G. (2024). Chemical Upcycling of Expired Pharmaceuticals as a Source of Value-Added Chemicals for Organic Synthesis and Medicinal Chemistry. Molecules, 29(20), 4811. https://doi.org/10.3390/molecules29204811