Remote Sulfonylation of Anilines with Sodium Sulfifinates Using Biomass-Derived Copper Catalyst
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental Section
3.1. Chemicals and Materials
3.2. General Procedure for Synthesis of Biomass-Derived Copper Catalysts
3.3. General Procedure for C–H Sulfonylation of Anilines Derivatives
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liang, S.; Shaaban, S.; Liu, N.; Hofman, K.; Manolikakes, G. Recent advances in the synthesis of C-S bonds via metal-catalyzed or -mediated functionalization of C-H bonds. Adv. Organonet. Chem. 2018, 69, 135–207. [Google Scholar] [CrossRef]
- Feng, M.; Tang, B.; Liang, H.S.; Jiang, X. Sulfur containing scaffolds in drugs: Synthesis and application in medicinal chemistry. Curr. Top. Med. Chem. 2016, 16, 1200–1216. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Shen, C.; Qin, X.; Wu, J.; Zhang, P.; Liu, X. Oxidative sulfonylation of hydrazones enabled by synergistic Copper/Silver catalysis. J. Org. Chem. 2021, 86, 3706–3720. [Google Scholar] [CrossRef]
- Rezaeifard, A.; Jafarpour, M.; Naeimi, A.; Haddad, R. Aqueous heterogeneous oxygenation of hydrocarbons and sulfides catalyzed by recoverable magnetite nanoparticles coated with copper(Ⅱ) phthalocyanine. Green Chem. 2012, 14, 3386–3394. [Google Scholar] [CrossRef]
- Amarnath Reddy, M.; Surendra Reddy, P.; Sreedhar, B. Iron(III) chloride-catalyzed direct sulfonylation of alcohols with sodium arenesulfinates. Adv. Synth. Catal. 2010, 352, 1861–1869. [Google Scholar] [CrossRef]
- Shen, C.; Zhang, P.; Sun, Q.; Bai, S.; Andy Hor, T.S.; Liu, X. Recent advances in C–S bond formation via C–H bond functionalization and decarboxylation. Chem. Soc. Rev. 2015, 44, 291–314. [Google Scholar] [CrossRef]
- Shaaban, S.; Liang, S.; Liu, N.; Manolikakes, G. Synthesis of sulfones via selective C–H-functionalization. Org. Biomol. Chem. 2017, 15, 1947–1955. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Shen, C.; Zhu, X.; Zhang, P.; Ajitha, M.J.; Huang, K.; An, Z.; Liu, X. Remote C–H activation of quinolines through copper-catalyzed radical cross-coupling. Chem. Asian J. 2016, 11, 882–892. [Google Scholar] [CrossRef]
- Lu, F.; Li, J.; Wang, T.; Li, Z.; Jiang, M.; Hu, X.; Pei, H.; Yuan, F.; Lu, L.; Lei, A. Electrochemical oxidative C-H sulfonylation of anilines. Asian J. Org. Chem. 2019, 8, 1838–1841. [Google Scholar] [CrossRef]
- Johnson, T.C.; Elbert, B.L.; Farley, A.T.M.; Gorman, T.W.; Genicot, C.; Lallemand, B.; Pasau, P.; Flasz, J.; Schofield, C.J.; Smith, M.D.; et al. Direct sulfonylation of anilines mediated by visible light. Chem. Sci. 2017, 55, 12212–12215. [Google Scholar] [CrossRef]
- Sherman, E.S.; Chemler, S.R.; Tan, T.B.; Gerlits, O. Copper(II) acetate promoted oxidative cyclization of arylsulfonyl-o-allylanilines. Org. Lett. 2004, 6, 1573–1575. [Google Scholar] [CrossRef]
- Alizadeh, A.; Khodaei, M.M.; Nazari, E. Rapid and mild sulfonylation of aromatic compounds with sulfonic acids via mixed anhydrides using Tf2O. Tetrahedron Lett. 2019, 48, 6805–6808. [Google Scholar] [CrossRef]
- Sarkar, S.; Sahoo, T.; Sen, C.; Ghosh, S.C. Copper(II) mediated ortho C-H alkoxylation of aromatic amines using organic peroxides: Efficient synthesis of hindered ethers. Chem. Commun. 2021, 51, 8949–8952. [Google Scholar] [CrossRef]
- Liang, S.; Bolte, M.; Manolikakes, G. Copper-catalyzed remote para-C-H functionalization of anilines with sodium and lithium sulfinates. Chem.—Eur. J. 2017, 23, 96–100. [Google Scholar] [CrossRef] [PubMed]
- Bai, P.; Sun, S.; Li, Z.; Qiao, H.; Su, X.; Yang, F.; Wu, Y.; Wu, Y. Ru/Cu photoredox or Cu/Ag catalyzed C4–H sulfonylation of 1-naphthylamides at room temperature. J. Org. Chem. 2017, 82, 12119–12127. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Yu, R.; Wang, J.; Liao, X.; Xiong, Y. Copper-catalyzed remote sulfonylation of 1-naphthylamides with sodium-sulfinates. Chin. J. Org. Chem. 2021, 41, 4370–4377. [Google Scholar] [CrossRef]
- Zhu, J.; Hong, Y.; Wang, Y.; Guo, Y.; Zhang, Y.; Ni, Z.; Li, W.; Xu, J. Synthesis of 1-(halo)alkyl-3-heteroaryl bicyclo[1.1.1]pentanes enabled by a photocatalytic minisci-type multicomponent reaction. ACS Catal. 2024, 14, 6247–6258. [Google Scholar] [CrossRef]
- Guo, Y.; Zhu, J.; Wang, Y.; Li, Y.; Hu, H.; Zhang, P.; Xu, J.; Li, W. General and modular route to (halo)alkyl BCP-heteroaryls enabled by α-aminoalkyl radical-mediated halogen-atom transfer. ACS Catal. 2024, 14, 619–627. [Google Scholar] [CrossRef]
- Huang, L.; Xu, J.; He, L.; Liang, C.; Ouyang, Y.; Yu, Y.; Li, W.; Zhang, P. Rapid Alkenylation of quinoxalin-2(1H)-ones enabled by the sequential mannich-type reaction and solar photocatalysis. Chin. Chem. Lett. 2021, 32, 3627–3631. [Google Scholar] [CrossRef]
- Xu, J.; Liang, C.; Shen, J.; Chen, Q.; Li, W.; Zhang, P. Photoinduced, metal- and photosensitizer-free decarboxylative C-H (amino)alkylation of heteroarenes in a sustainable solvent. Green Chem. 2023, 25, 1975–1981. [Google Scholar] [CrossRef]
- Zhu, J.; Guo, Y.; Zhang, Y.; Li, W.; Zhang, P.; Xu, J. Visible-light-induced direct perfluoroalkylation/heteroarylation of [1.1.1]propellane to diverse bicyclo[1.1.1]pentanes (BCPs) under metal and photocatalyst-free conditions. Green Chem. 2023, 25, 986–992. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, Y.; Shen, J.; Xu, H.; Shen, C. Platform for 3-fluoro-3-hydroxyoxindoles: Photocatalytic C-N cross-coupling and deaminative oxidation-fluorohydroxylation. Org. Chem. Front. 2024, 11, 2727–2732. [Google Scholar] [CrossRef]
- Zhang, L.; Zheng, K.; Zhang, P.; Jiang, M.; Shen, J.; Chen, C.; Shen, C. Visible-light-enabled multicomponent synthesis of trifluoromethylated 3-indolequinoxalin- 2(1H)-ones without external photocatalysis. Green Syn. Catal. 2024, 5, 51–56. [Google Scholar] [CrossRef]
- Lu, W.; Mao, J.; Xing, J.; Tang, H.; Liao, J.; Quan, Y.; Lu, Z.; Yang, Z.; Shen, C. Palladium-catalyzed synthesis of indanone via C–H annulation reaction of aldehydes with norbornenes. J. Org. Chem. 2024, 89784–89792. [Google Scholar] [CrossRef]
- Zheng, K.; Liang, K.; Zhu, J.; Chen, H.; Zhang, P.; Shen, C.; Cao, J. Self-catalytic photochemical three-component reaction for the synthesis of multifunctional 3,3-disubstituted oxindoles. Mol. Catal. 2024, 565, 114379. [Google Scholar] [CrossRef]
- Zhu, D.; Zheng, K.; Qiao, J.; Xu, H.; Chen, C.; Zhang, P.; Shen, C. One-step synthesis of PdCu@Ti3C2 with high catalytic activity in the Suzuki-Miyaura coupling reaction. Nanoscale Adv. 2022, 4, 3362–3369. [Google Scholar] [CrossRef]
- Zhou, E.; Jin, J.; Zheng, K.; Zhang, L.; Xu, H.; Shen, C. Novel recyclable Pd/H-MOR catalyst for Suzuki-Miyaura coupling and application in the synthesis of crizotinib. Catalysts 2021, 11, 1213. [Google Scholar] [CrossRef]
- Wang, Z.; Dai, L.; Yao, J.; Guo, T.; Hrynsphan, D.; Tatsiana, S.; Chen, J. Enhanced adsorption and reduction performance of nitrate by Fe-Pd-Fe3O4 embedded multi-walled carbon nanotubes. Chemosphere 2021, 281, 130718. [Google Scholar] [CrossRef]
- Wang, Z.; Fu, W.; Hu, L.; Zhao, M.; Guo, T.; Hrynsphan, D.; Tatsiana, S.; Chen, J. Improvement of electron transfer efficiency during denitrification process by Fe-Pd/multi-walled carbon nanotubes: Possessed redox characteristics and secreted endogenous electron mediator. Sci. Total Environ. 2021, 781, 146686. [Google Scholar] [CrossRef]
- Lv, S.; Zheng, F.; Wang, Z.; Dai, L.; Liu, H.; Hrynsphan, D.; Tatsiana, S.; Chen, J. Effects of bamboo-charcoal modified by bimetallic Fe/Pd nanoparticles on n-hexane biodegradation by bacteria Pseudomonas mendocina NX-1. Chemosphere 2023, 318, 137897. [Google Scholar] [CrossRef]
- Shen, C.; Qiao, J.; Zhao, L.; Zheng, K.; Jin, J.; Zhang, P. An efficient silica supported chitosan@vanadium catalyst for asymmetric sulfoxidation and its application in the synthesis of esomeprazole. Catal. Commun. 2017, 92, 114–118. [Google Scholar] [CrossRef]
- Shen, C.; Xu, J.; Ying, B.; Zhang, P. Heterogeneous chitosan@copper(II)-catalyzed remote trifluoromethylation of aminoquinolines with the Langlois reagent by radical cross-coupling. ChemCatChem 2016, 8, 3560–3564. [Google Scholar] [CrossRef]
- Shen, C.; Shen, H.; Yang, M.; Xia, C.; Zhang, P. Novel D-glucosamine-derived pyridyl-triazole@palladium catalyst for solvent-free Mizoroki-Heck reactions and its application in the synthesis of axitinib. Green Chem. 2015, 17, 225–230. [Google Scholar] [CrossRef]
- Shen, C.; Xu, J.; Yu, W.; Zhang, P. A highly active and easily recoverable chitosan@copper catalyst for the C-S coupling and its application in the synthesis of Zolimidine. Green Chem. 2014, 16, 3007–3012. [Google Scholar] [CrossRef]
- Li, S.; Wang, J.; Jin, J.; Tong, J.; Shen, C. Recyclable cellulose-derived Fe3O4@Pd NPs for Highly Selective C-S formation by heterogeneously C-H sulfenylation of indoles. Catal. Lett. 2020, 150, 2409–2414. [Google Scholar] [CrossRef]
- Qiao, J.; Wang, T.; Zheng, K.; Zhou, E.; Shen, C.; Jia, A.; Zhang, Q. Magnetically reusable Fe3O4@NC@Pt catalyst for selective reduction of nitroarenes. Catalysts 2021, 11, 1219. [Google Scholar] [CrossRef]
- Zheng, K.; Zhou, E.; Zhang, L.; Zhang, L.; Yu, W.; Xu, H.; Shen, C. Catalyst controlled remote C–H activation of 8-aminoquinolines with NFSI for C–N versus C–F coupling. Catal. Commun. 2021, 158, 106336–106344. [Google Scholar] [CrossRef]
- Lin, Z.; Jin, J.; Qiao, J.; Tong, J.; Shen, C. Facile fabrication of glycosylpyridyl-triazole@Nickel nanoparticles as recyclable nanocatalyst for acylation of amines in Water. Catalysts 2020, 10, 230. [Google Scholar] [CrossRef]
- Zhao, L.; Zheng, K.; Tong, J.; Jin, J.; Shen, C. Novel biomass derived Fe3O4@Pd NPs as efficient and sustainable nanocatalyst for nitroarene reduction in aqueous media. Catal. Lett. 2019, 149, 2607–2613. [Google Scholar] [CrossRef]
- Li, J.; Wang, Y.; Yu, Y.; Wu, R.; Weng, J.; Llu, G. Copper-catalyzed remote C–H functionalizations of naphthylamides through a coordinating activation strategy and single-electron-transfer (SET) mechanism. ACS Catal. 2017, 7, 2661–2667. [Google Scholar] [CrossRef]
- Hangzhou Vocational & Technical College. Sulfonyl Pyridine Amide Derivatives and Its Preparation Method. CN112142656 A, 29 December 2020.
Entry | Variation from Standard Conditions | Yield (%) b |
---|---|---|
1 | none | 82 |
2 | Cu(OAc)2@CS as catalyst | 35 |
3 | CuO as catalyst | 28 |
4 | CuxOy@CS-300 as catalyst | 69 |
5 | CuxOy@CS-500 as catalyst | 65 |
6 | Without CuxOy@CS-400 | 0 |
7 | AgNO3 as cocatalyst | 69 |
8 | AgOAc as cocatalyst | 73 |
9 | AgSbF6 as cocatalyst | 0 |
10 | Na2S2O8 as oxidant | 76 |
11 | (NH4)2S2O8 as oxidant | 74 |
12 | TBHP as oxidant | 22 |
13 | H2O2 as oxidant | 11 |
14 | Without Ag2CO3 | 0 |
15 | Without K2S2O8 | 0 |
16 | Acetone as solvent | 28 |
17 | H2O as solvent | 54 |
18 | EtOH as solvent | 23 |
19 | DMSO as solvent | 25 |
20 | 60 °C as reaction temperature | 72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, X.; Wang, J.; Chen, C.; Zheng, K.; Zhang, P.; Shen, C. Remote Sulfonylation of Anilines with Sodium Sulfifinates Using Biomass-Derived Copper Catalyst. Molecules 2024, 29, 4815. https://doi.org/10.3390/molecules29204815
Yan X, Wang J, Chen C, Zheng K, Zhang P, Shen C. Remote Sulfonylation of Anilines with Sodium Sulfifinates Using Biomass-Derived Copper Catalyst. Molecules. 2024; 29(20):4815. https://doi.org/10.3390/molecules29204815
Chicago/Turabian StyleYan, Xiaoping, Jinguo Wang, Chao Chen, Kai Zheng, Pengfei Zhang, and Chao Shen. 2024. "Remote Sulfonylation of Anilines with Sodium Sulfifinates Using Biomass-Derived Copper Catalyst" Molecules 29, no. 20: 4815. https://doi.org/10.3390/molecules29204815
APA StyleYan, X., Wang, J., Chen, C., Zheng, K., Zhang, P., & Shen, C. (2024). Remote Sulfonylation of Anilines with Sodium Sulfifinates Using Biomass-Derived Copper Catalyst. Molecules, 29(20), 4815. https://doi.org/10.3390/molecules29204815