Syn-Propanethial S-Oxide as an Available Natural Building Block for the Preparation of Nitro-Functionalized, Sulfur-Containing Five-Membered Heterocycles: An MEDT Study
Abstract
:1. Introduction
2. Results
3. Computational Details
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Izmestev, A.N.; Streltsov, A.A.; Kravchenko, A.N.; Gazieva, G.A. 5-Arylmethylidene-2-iminothiazolidin-4-ones in the synthesis of novel dispiro-fused oxindolepyrrolidineiminothiazolidinones. Chem. Heterocycl. Comp. 2023, 59, 309–316. [Google Scholar] [CrossRef]
- Izmestev, A.N.; Kravchenko, A.N.; Gazieva, G.A. A 1,3-dipolar cycloaddition of azomethine ylides to imidazo[4,5-e]thiazolo[2,3-c][1,2,4]triazine oxindolylidene derivatives in the synthesis of novel spirooxindole derivatives. Chem. Heterocycl. Comp. 2023, 59, 594–603. [Google Scholar] [CrossRef]
- Guzyr, O.I.; Potikha, L.M.; Shishkin, S.V.; Fetyukhin, V.N.; Shermolovich, Y.G. The nitration and bromination of 2-(pentafluorosulfanyl)-1,3-benzothiazole and 2-(trifluoromethyl)-1,3-benzothiazole. Chem. Heterocycl. Comp. 2023, 59, 304–308. [Google Scholar] [CrossRef]
- Brusnakov, M.Y.; Golovchenko, O.V.; Potikha, K.M.; Brovarets, V.S. Condensed azole-based organophosphorus heterocycles. Chem. Heterocycl. Comp. 2023, 59, 217–236. [Google Scholar] [CrossRef]
- Ma, T.; Cao, G. Recent Developments in the Synthesis of Spirobenzosultams (Microreview). Chem. Heterocycl. Compd. 2023, 59, 246–248. [Google Scholar] [CrossRef]
- Los, O.V.; Sinenko, V.O.; Kobzar, O.L.; Zhirnov, V.V.; Vovk, A.I.; Brovarets, V.S. Synthesis and in Vitro Anticancer Potential of New Thiazole-Containing Derivatives of Rhodanine. Chem. Heterocycl. Compd. 2023, 59, 484–493. [Google Scholar] [CrossRef]
- Latifi, M.; Anary-Abbasinejad, M.; Mohammadi, M. A Simple Route for the Synthesis of Substituted Thiazole Derivatives by Multicomponent Reaction between Arylglyoxals, Acetylacetone or Ethyl Acetoacetate, and Thiosemicarbazones. Chem. Heterocycl. Compd. 2023, 59, 709–712. [Google Scholar] [CrossRef]
- Khodykina, E.S.; Kolodina, A.A. Recent Methods for the Synthesis of Fused Pyrazolo[3,4(4,3)-d]Thiazoles and Pyrazolo[3,4(4,3)-d][1,4]Thiazines (Microreview). Chem. Heterocycl. Compd. 2023, 59, 643–645. [Google Scholar] [CrossRef]
- Pathania, S.; Narang, R.K.; Rawal, R.K. Role of Sulphur-Heterocycles in Medicinal Chemistry: An Update. Eur. J. Med. Chem. 2019, 180, 486–508. [Google Scholar] [CrossRef]
- Sharma, P.K.; Amin, A.; Kumar, M. A Review: Medicinally Important Nitrogen Sulphur Containing Heterocycles. Open Med. Chem. J. 2020, 14, 49–64. [Google Scholar] [CrossRef]
- Omar, A. Review Article; Anticancer Activities of Some Fused Heterocyclic Moieties Containing Nitrogen And/Or Sulfur Heteroatoms. Al-Azhar J. Pharm. Sci. 2020, 62, 39–54. [Google Scholar] [CrossRef]
- Salah, S.; Sami, N.; Ali, S.; Khalid, T.-A.; Alnajjar, R. Natural Products as Potential Inhibitors of FLT3 for Acute Myeloid Leukemia: HTVS, Docking, and Molecular Dynamic Simulation. Sci. Radices 2023, 2, 325–346. [Google Scholar] [CrossRef]
- Kashinath, K.; Snead, D.R.; Burns, J.M.; Stringham, R.W.; Gupton, B.F.; McQuade, D.T. Synthesis of an Oxathiolane Drug Substance Intermediate Guided by Constraint-Driven Innovation. Org. Process Res. Dev. 2020, 24, 2266–2270. [Google Scholar] [CrossRef] [PubMed]
- Wilson, G.E.; Huang, M.G.; Schloman, W.W. Facile Synthesis of 1,3-Oxathiolanes from Ketones and i-Mercaptoethanol. J. Org. Chem. 1968, 33, 2133–2134. [Google Scholar] [CrossRef]
- Jones, F.N.; Andreades, S. Ethylene Thionocarbonate and 1,3-Oxathiolane-2-Thione. J. Org. Chem. 1969, 34, 3011–3014. [Google Scholar] [CrossRef]
- Belleau, B.; Brasili, L.; Chan, L.; DiMarco, M.P.; Zacharie, B.; Nguyen-Ba, N.; Jenkinson, H.J.; Coates, J.A.V.; Cameron, J.M. A Novel Class of 1,3-Oxathiolane Nucleoside Analogues Having Potent Anti-HIV Activity. Bioorg. Med. Chem. Lett. 1993, 3, 1723–1728. [Google Scholar] [CrossRef]
- Aher, U.P.; Srivastava, D.; Singh, G.P.; Jayashree, B.S. Synthetic Strategies toward 1,3-Oxathiolane Nucleoside Analogues. Beilstein J. Org. Chem. 2021, 17, 2680–2715. [Google Scholar] [CrossRef]
- Łapczuk, A. The [3 + 2] Cycloaddition Reaction as an Attractive Way for the Preparation of Nicotine Analogs (Microreview). Chem. Heterocycl. Compd. 2023, 59, 109–111. [Google Scholar] [CrossRef]
- Jasiński, R. Recent Progress in the Synthesis of Nitroisoxazoles and Their Hydrogenated Analogs via [3 + 2] Cycloaddition Reactions (Microreview). Chem. Heterocycl. Compd. 2023, 59, 730–732. [Google Scholar] [CrossRef]
- Dresler, E. The Participation of Oleic Acid and Its Esters in [3 + 2] Cycloaddition Reactions: A Mini-Review. Sci. Radices 2024, 3, 53–61. [Google Scholar] [CrossRef]
- Sadowski, M.; Mudyna, A.; Knap, K.; Demchuk, O.M.; Łapczuk, A. Synthesis of (Z)-N-Aryl-C-(Pyrid-3-Yl)-Nitrones. Sci. Radices 2023, 2, 319–324. [Google Scholar] [CrossRef]
- Ríos-Gutiérrez, M.; Domingo, L.R. Unravelling the Mysteries of the [3 + 2] Cycloaddition Reactions. Eur. J. Org. Chem. 2019, 2019, 267–282. [Google Scholar] [CrossRef]
- Huisgen, R. 1,3-Dipolar Cycloadditions. Past and Future. Angew. Chem. Int. Ed. Engl. 1963, 2, 565–598. [Google Scholar] [CrossRef]
- Jasiński, R. In the Searching for Zwitterionic Intermediates on Reaction Paths of [3 + 2] Cycloaddition Reactions between 2,2,4,4-Tetramethyl-3-Thiocyclobutanone S-Methylide and Polymerizable Olefins. RSC Adv. 2015, 5, 101045–101048. [Google Scholar] [CrossRef]
- Linden, A.; Mlostoń, G.; Grzelak, P.; Heimgartner, H. Chemo- and Regioselective [3 + 2]-Cycloadditions of Thiocarbonyl Ylides: Crystal Structures of Trans -8-Benzoyl-1,1,3,3-Tetramethyl-7-Trifluoromethyl-5-Thiaspiro[3.4]Octan-2-One and Trans-3-Benzoyl-2,2-Diphenyl-4-(Trifluoromethyl)Tetrahydrothiophene. Acta Crystallogr. Sect. E Crystallogr. Commun. 2018, 74, 1705–1709. [Google Scholar] [CrossRef] [PubMed]
- Kowalski, M.K.; Obijalska, E.; Mlostoń, G.; Heimgartner, H. Generation and Reactions of Thiocarbonyl S-(2,2,2-Trifluoroethanides). Synthesis of Trifluoromethylated 1,3-Dithiolanes, Thiiranes and Alkenes. J. Fluor. Chem. 2017, 200, 102–108. [Google Scholar] [CrossRef]
- Mlostoń, G.; Hamera-Fałdyga, R.; Linden, A.; Heimgartner, H. Synthesis of Ferrocenyl-Substituted 1,3-Dithiolanes via [3 + 2]-Cycloadditions of Ferrocenyl Hetaryl Thioketones with Thiocarbonyl S-Methanides. Beilstein J. Org. Chem. 2016, 12, 1421–1427. [Google Scholar] [CrossRef]
- Kosylo, N.; Hotynchan, A.; Skrypska, O.; Horak, Y.; Obushak, M. Synthesis and Prediction of Toxicological and Pharmacological Properties of Schiff Bases Containing Arylfuran and Pyrazole Moiety. Sci. Radices 2024, 3, 63–72. [Google Scholar] [CrossRef]
- Block, E. Garlic and Other Alliums: The Lore and the Science; RSC Publ.: Cambridge, UK, 2010; ISBN 978-0-85404-190-9. [Google Scholar]
- He, Q.; Kubec, R.; Jadhav, A.P.; Musah, R.A. First Insights into the Mode of Action of a “Lachrymatory Factor Synthase”—Implications for the Mechanism of Lachrymator Formation in Petiveria Alliacea, Allium Cepa and Nectaroscordum Species. Phytochemistry 2011, 72, 1939–1946. [Google Scholar] [CrossRef]
- Castro, V.; Carpena, M.; Fraga-Corral, M.; Lopez-Soria, A.; Garcia-Perez, P.; Barral-Martinez, M.; Perez-Gregorio, R.; Cao, H.; Simal-Gandara, J.; Prieto, M.A. Sulfur-Containing Compounds from Plants. In Natural Secondary Metabolites; Carocho, M., Heleno, S.A., Barros, L., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 363–402. ISBN 978-3-031-18586-1. [Google Scholar]
- Loredana, L.; Giuseppina, A.; Filomena, N.; Florinda, F.; Marisa, D.M.; Donatella, A. Biochemical, Antioxidant Properties and Antimicrobial Activity of Different Onion Varieties in the Mediterranean Area. J. Food Meas. Charact. 2019, 13, 1232–1241. [Google Scholar] [CrossRef]
- Domingo, L.R.; Aurell, M.J.; Pérez, P. A Mechanistic Study of the Participation of Azomethine Ylides and Carbonyl Ylides in [3+2] Cycloaddition Reactions. Tetrahedron 2015, 71, 1050–1057. [Google Scholar] [CrossRef]
- Domingo, L.R.; Ríos-Gutiérrez, M. A Molecular Electron Density Theory Study of the Reactivity of Azomethine Imine in [3 + 2] Cycloaddition Reactions. Molecules 2017, 22, 750. [Google Scholar] [CrossRef] [PubMed]
- Kras, J.; Sadowski, M.; Zawadzińska, K.; Nagatsky, R.; Woliński, P.; Kula, K.; Łapczuk, A. Thermal [3 + 2] Cycloaddition Reactions as Most Universal Way for the Effective Preparation of Five-Membered Nitrogen Containing Heterocycles. Sci. Radices 2023, 2, 247–267. [Google Scholar] [CrossRef]
- Cailleuxa, P.; Pieta, J.C.; Benhaouaaib, H.; Carrie, R. Cycloaddition Des Methylazide Et Phenylazide Au p-nitrostyrene Et Au Nitroprene Homologue. Bull. Soc. Chim. Belg. 1996, 105, 45–51. [Google Scholar] [CrossRef]
- Risaliti, A.; Forchiassin, M.; Valentin, E. Vinylamines—VIII: The reaction of cyclohexanone enamines with 1- and 2-nitropropene. Tetrahedron 1968, 24, 1889–1898. [Google Scholar] [CrossRef]
- Wilkendorf, R.; Trénel, M. Zur Kenntnis Aliphatischer Nitro-alkohole (II). Ber. Dtsch. Chem. Ges. A/B 1924, 57, 306–309. [Google Scholar] [CrossRef]
- Jasiński, R. A Stepwise, Zwitterionic Mechanism for the 1,3-Dipolar Cycloaddition between (Z)-C-4-Methoxyphenyl-N-Phenylnitrone and Gem-Chloronitroethene Catalysed by 1-Butyl-3-Methylimidazolium Ionic Liquid Cations. Tetrahedron Lett. 2015, 56, 532–535. [Google Scholar] [CrossRef]
- Gold, M.H.; Hamel, E.E.; Klager, K. Preparation and Characterization of 2,2-Dinitroethanol1. J. Org. Chem. 1957, 22, 1665–1667. [Google Scholar] [CrossRef]
- Munaf Kharbuli, A.; Lyngdoh, R.H.D. Ozonolysis of Methyl, Amino and Nitro Substituted Ethenes: A Semi-Empirical Molecular Orbital Study. J. Mol. Struct. THEOCHEM 2008, 860, 150–160. [Google Scholar] [CrossRef]
- Zawadzińska, K.; Gostyński, B. Nitrosubstituted Analogs of Isoxazolines and Isoxazolidines: A Surprising Estimation of Their Biological Activity via Molecular Docking. Sci. Radices 2023, 2, 25–46. [Google Scholar] [CrossRef]
- Sadowski, M.; Kula, K. Nitro-Functionalized Analogues of 1,3-Butadiene: An Overview of Characteristic, Synthesis, Chemical Transformations and Biological Activity. Curr. Chem. Lett. 2024, 13, 15–30. [Google Scholar] [CrossRef]
- Sadowski, M.; Synkiewicz-Musialska, B.; Kula, K. (1E,3E)-1,4-Dinitro-1,3-Butadiene—Synthesis, Spectral Characteristics and Computational Study Based on MEDT, ADME and PASS Simulation. Molecules 2024, 29, 542. [Google Scholar] [CrossRef] [PubMed]
- Jasiński, R.; Dresler, E. On the Question of Zwitterionic Intermediates in the [3 + 2] Cycloaddition Reactions: A Critical Review. Organics 2020, 1, 49–69. [Google Scholar] [CrossRef]
- Zawadzińska, K.; Kula, K. Application of β-Phosphorylated Nitroethenes in [3 + 2] Cycloaddition Reactions Involving Benzonitrile N-Oxide in the Light of a DFT Computational Study. Organics 2021, 2, 26–37. [Google Scholar] [CrossRef]
- Kula, K.; Sadowski, M. Regio- and Stereoselectivity of [3 + 2] Cycloaddition Reactions between (Z)-1-(Anthracen-9-Yl)-N-Methyl Nitrone and Analogs of Trans-β-Nitrostyrene on the Basis of MEDT Computational Study. Chem. Heterocycl. Compd. 2023, 59, 138–144. [Google Scholar] [CrossRef]
- Huisgen, R.; Mlostoń, G.; Giera, H.; Langhals, E.; Polborn, K.; Sustmann, R. Aliphatic Thiocarbonyl Ylides and Thiobenzophenone: Experimental Study of Regiochemistry and Methylene Transfer in Cycloadditions. Eur. J. Org. Chem. 2005, 2005, 1519–1531. [Google Scholar] [CrossRef]
- Domingo, L. Molecular Electron Density Theory: A Modern View of Reactivity in Organic Chemistry. Molecules 2016, 21, 1319. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision C.01; Fox, Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Domingo, L.; Ríos-Gutiérrez, M.; Pérez, P. Applications of the Conceptual Density Functional Theory Indices to Organic Chemistry Reactivity. Molecules 2016, 21, 748. [Google Scholar] [CrossRef]
- Noury, S.; Krokidis, X.; Fuster, F.; Silvi, B. Computational Tools for the Electron Localization Function Topological Analysis. Comput. Chem. 1999, 23, 597–604. [Google Scholar] [CrossRef]
- Thiéry, M.-M.; Rérat, C. Calculation of Crystal and Molecular Structures of Carbon Disulfide CS2. J. Chem. Phys. 2005, 122, 044503. [Google Scholar] [CrossRef]
- Rothenberg, S.; Schaefer, H.F. Theoretical Study of SO2 Molecular Properties. J. Chem. Phys. 1970, 53, 3014–3019. [Google Scholar] [CrossRef]
- Silvi, B. The Synaptic Order: A Key Concept to Understand Multicenter Bonding. J. Mol. Struct. 2002, 614, 3–10. [Google Scholar] [CrossRef]
- Jasiński, R.; Jasińska, E.; Dresler, E. A DFT Computational Study of the Molecular Mechanism of [3 + 2] Cycloaddition Reactions between Nitroethene and Benzonitrile N-Oxides. J. Mol. Model. 2017, 23, 13. [Google Scholar] [CrossRef]
- Dresler, E.; Wróblewska, A.; Jasiński, R. Understanding the Regioselectivity and the Molecular Mechanism of [3 + 2] Cycloaddition Reactions between Nitrous Oxide and Conjugated Nitroalkenes: A DFT Computational Study. Molecules 2022, 27, 8441. [Google Scholar] [CrossRef] [PubMed]
- Kula, K.; Zawadzińska, K. Local Nucleophile-Electrophile Interactions in [3+2] Cycloaddition Reactions between Benzonitrile N-Oxide and Selected Conjugated Nitroalkenes in the Light of MEDT Computational Study. Curr. Chem. Lett. 2021, 10, 9–16. [Google Scholar] [CrossRef]
- Domingo, L.R.; Ríos-Gutiérrez, M.; Pérez, P. How Does the Global Electron Density Transfer Diminish Activation Energies in Polar Cycloaddition Reactions? A Molecular Electron Density Theory Study. Tetrahedron 2017, 73, 1718–1724. [Google Scholar] [CrossRef]
- Dresler, E.; Wróblewska, A.; Jasiński, R. Understanding the Molecular Mechanism of Thermal and LA-Catalysed Diels–Alder Reactions between Cyclopentadiene and Isopropyl 3-Nitroprop-2-Enate. Molecules 2023, 28, 5289. [Google Scholar] [CrossRef]
- Wen, C.; Dechsupa, N.; Yu, Z.; Zhang, X.; Liang, S.; Lei, X.; Xu, T.; Gao, X.; Hu, Q.; Innuan, P.; et al. Pentagalloyl Glucose: A Review of Anticancer Properties, Molecular Targets, Mechanisms of Action, Pharmacokinetics, and Safety Profile. Molecules 2023, 28, 4856. [Google Scholar] [CrossRef]
- Aitouna, A.O.; Barhoumi, A.; Zeroual, A. A Mechanism Study and an Investigation of the Reason for the Stereoselectivity in the [4+2] Cycloaddition Reaction between Cyclopentadiene and Gem-Substituted Ethylene Electrophiles. Sci. Radices 2023, 2, 217–228. [Google Scholar] [CrossRef]
- Dresler, E.; Wróblewska, A.; Jasiński, R. Energetic Aspects and Molecular Mechanism of 3-Nitro-Substituted 2-Isoxazolines Formation via Nitrile N-Oxide [3+2] Cycloaddition: An MEDT Computational Study. Molecules 2024, 29, 3042. [Google Scholar] [CrossRef]
- Dresler, E.; Woliński, P.; Wróblewska, A.; Jasiński, R. On the Question of Zwitterionic Intermediates in the [3 + 2] Cycloaddition Reactions between Aryl Azides and Ethyl Propiolate. Molecules 2023, 28, 8152. [Google Scholar] [CrossRef] [PubMed]
- Kula, K.; Łapczuk, A.; Sadowski, M.; Kras, J.; Zawadzińska, K.; Demchuk, O.M.; Gaurav, G.K.; Wróblewska, A.; Jasiński, R. On the Question of the Formation of Nitro-Functionalized 2,4-Pyrazole Analogs on the Basis of Nitrylimine Molecular Systems and 3,3,3-Trichloro-1-Nitroprop-1-Ene. Molecules 2022, 27, 8409. [Google Scholar] [CrossRef]
- Zawadzińska, K.; Gadocha, Z.; Pabian, K.; Wróblewska, A.; Wielgus, E.; Jasiński, R. The First Examples of [3+2] Cycloadditions with the Participation of (E)-3,3,3-Tribromo-1-Nitroprop-1-Ene. Materials 2022, 15, 7584. [Google Scholar] [CrossRef]
- Mondal, A.; Mohammad-Salim, H.A.; Acharjee, N. Unveiling Substituent Effects in [3 + 2] Cycloaddition Reactions of Benzonitrile N-Oxide and Benzylideneanilines from the Molecular Electron Density Theory Perspective. Sci. Radices 2023, 2, 75–92. [Google Scholar] [CrossRef]
- Doming, L.R.; Ríos-Gutiérrez, M. A Useful Classification of Organic Reactions Based on the Flux of the Electron Density. Sci. Radices 2023, 2, 1–24. [Google Scholar] [CrossRef]
- Łapczuk-Krygier, A.; Kacka-Zych, A.; Kula, K. Recent progress in the field of cycloaddition reactions involving conjugated nitroalkenes. Curr. Chem. Lett. 2019, 8, 13–38. [Google Scholar] [CrossRef]
- Siadati, S.A. Beyond the Alternatives That Switch the Mechanism of the 1,3-Dipolar CyCloadditions from Concerted to Stepwise or Vice Versa: A Literature Review. Prog. React. Kinet. Mech. 2016, 41, 331–344. [Google Scholar] [CrossRef]
- Siadati, S.A.; Kula, K.; Babanezhad, E. The Possibility of a Two-Step Oxidation of the Surface of C20 Fullerene by a Single Molecule of Nitric (V) Acid. Chem. Rev. Lett. 2019, 2, 2–6. [Google Scholar]
- Pandey, S.K.; Yadava, U.; Sharma, M.L.; Upadhyay, A.; Gupt, M.P.; Dwivedi, A.R.; Khatoon, A. Synthesis, Molecular Structure Investigation, Biological Evaluation and Docking Studies of Novel Spirothiazolidinones. Results Chem. 2023, 5, 100726. [Google Scholar] [CrossRef]
- Nuti, E.; Cantelmo, A.R.; Gallo, C.; Bruno, A.; Bassani, B.; Camodeca, C.; Tuccinardi, T.; Vera, L.; Orlandini, E.; Nencetti, S.; et al. N-O -Isopropyl Sulfonamido-Based Hydroxamates as Matrix Metalloproteinase Inhibitors: Hit Selection and in Vivo Antiangiogenic Activity. J. Med. Chem. 2015, 58, 7224–7240. [Google Scholar] [CrossRef]
- Hawash, M.; Jaradat, N.; Abualhasan, M.; Qaoud, M.T.; Joudeh, Y.; Jaber, Z.; Sawalmeh, M.; Zarour, A.; Mousa, A.; Arar, M. Molecular Docking Studies and Biological Evaluation of Isoxazole-Carboxamide Derivatives as COX Inhibitors and Antimicrobial Agents. 3 Biotech 2022, 12, 342. [Google Scholar] [CrossRef] [PubMed]
- Soleymani, M. A density functional theory study on the [3 + 2]cycloaddition of N-(p-methylphenacyl)benzothiazolium ylideand 1-nitro-2-(p-methoxyphenyl) ethene: The formation of twodiastereomeric adducts via two different mechanisms. Theor. Chem. Acc. 2019, 138, 87. [Google Scholar] [CrossRef]
- Sobhi, C.; Nacereddine, A.K.; Djerourou, A.; Ríos-Gutiérrez, M.; Domingo, L.R. A DFT study of the mechanism and selectivities of the [3 + 2] cycloaddition reaction between 3-(benzylideneamino)oxindole and trans-β-nitrostyrene. J. Phys. Org. Chem. 2017, 30, e3637. [Google Scholar] [CrossRef]
- Aitouna, O.; Barhoumi, A.; El Abdallaoui, E.A.; Mazoir, N.; Belghiti, M.E.; Syed, A.; Bahkali, A.H.; Verma, M.; Zeroual, A. Explaining the selectivities and the mechanism of [3+2] cycloloaddition reaction between isoalantolactone and diazocyclopropane. J. Mol. Model. 2023, 29, 280. [Google Scholar] [CrossRef]
- Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. Energies, Structures, and Electronic Properties of Molecules in Solution with the C-PCM Solvation Model. J. Comput. Chem. 2003, 24, 669–681. [Google Scholar] [CrossRef]
- Domingo, L.R. A New C–C Bond Formation Model Based on the Quantum Chemical Topology of Electron Density. RSC Adv. 2014, 4, 32415–32428. [Google Scholar] [CrossRef]
- Domingo, L.R.; Aurell, M.J.; Pérez, P.; Contreras, R. Quantitative Characterization of the Global Electrophilicity Power of Common Diene/Dienophile Pairs in Diels–Alder Reactions. Tetrahedron 2002, 58, 4417–4423. [Google Scholar] [CrossRef]
- Parr, R.G.; Szentpály, L.V.; Liu, S. Electrophilicity Index. J. Am. Chem. Soc. 1999, 121, 1922–1924. [Google Scholar] [CrossRef]
- Domingo, L.R. 1999–2024, a Quarter Century of the Parr’s Electrophilicity ω Index. Sci. Radices 2024, 3, 157–186. [Google Scholar] [CrossRef]
- Domingo, L.R.; Chamorro, E.; Pérez, P. Understanding the Reactivity of Captodative Ethylenes in Polar Cycloaddition Reactions. A Theoretical Study. J. Org. Chem. 2008, 73, 4615–4624. [Google Scholar] [CrossRef]
- Domingo, L.R.; Pérez, P.; Sáez, J.A. Understanding the Local Reactivity in Polar Organic Reactions through Electrophilic and Nucleophilic Parr Functions. RSC Adv. 2013, 3, 1486–1494. [Google Scholar] [CrossRef]
- Bugnon, M.; Röhrig, U.F.; Goullieux, M.; Perez, M.A.S.; Daina, A.; Michielin, O.; Zoete, V. SwissDock 2024: Major Enhancements for Small-Molecule Docking with Attracting Cavities and AutoDock Vina. Nucleic Acids Res. 2024, 52, W324–W332. [Google Scholar] [CrossRef] [PubMed]
- Eberhardt, J.; Santos-Martins, D.; Tillack, A.F.; Forli, S. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. J. Chem. Inf. Model. 2021, 61, 3891–3898. [Google Scholar] [CrossRef] [PubMed]
- Singh, U.C.; Kollman, P.A. An Approach to Computing Electrostatic Charges for Molecules. J. Comput. Chem. 1984, 5, 129–145. [Google Scholar] [CrossRef]
- Crystallography: Protein Data Bank. Nat. New Biol. 1971, 233, 223. [CrossRef]
Reaction | Transition | ∆H | ∆S | ∆G |
---|---|---|---|---|
1 + 2a | 1 + 2a→MCA | −4.1 | −32.7 | 5.6 |
1 + 2a→TSA | 18.9 | −49.2 | 33.6 | |
1 + 2a→3a | −32.4 | −50.3 | −17.4 | |
1 + 2a→MCB | −4.3 | −38.3 | 7.1 | |
1 + 2a→TSB | 16.0 | −47.7 | 30.2 | |
1 + 2a→4a | −35.6 | −48.7 | −21.1 | |
1 + 2a→MCC | −3.1 | −32.5 | 6.6 | |
1 + 2a→TSC | 19.4 | −47.6 | 33.6 | |
1 + 2a→5a | −39.4 | −50.1 | −24.4 | |
1 + 2a→MCD | −3.6 | −32.6 | 6.2 | |
1 + 2a→TSD | 17.1 | −48.4 | 31.6 | |
1 + 2a→6a | −38.6 | −48.6 | −24.1 | |
1 + 2b | 1 + 2b→MCA | −4.3 | −33.2 | 5.6 |
1 + 2b→TSA | 20.9 | −49.1 | 35.5 | |
1 + 2b→3b | −31.8 | −53.5 | −15.8 | |
1 + 2b→MCB | −4.1 | −35.7 | 6.6 | |
1 + 2b→TSB | 17.4 | −50.3 | 32.4 | |
1 + 2b→4b | −33.6 | −54.1 | −17.5 | |
1 + 2b→MCC | −4.1 | −28.4 | 4.3 | |
1 + 2b→TC | 18.7 | −49.3 | 33.4 | |
1 + 2b→5b | −40.5 | −51.2 | −25.2 | |
1 + 2b→MCD | −4.2 | −35.2 | 6.3 | |
1 + 2b→TSD | 15.3 | −48.8 | 29.8 | |
1 + 2b→6b | −39.6 | −51.0 | −24.4 | |
1 + 2c | 1 + 2c→MCA | −4.7 | −33.2 | 5.2 |
1 + 2c→TSA | 16.4 | −51.1 | 31.6 | |
1 + 2c→3c | −32.9 | −53.1 | −17.1 | |
1 + 2c→MCB | −4.6 | −32.3 | 5.0 | |
1 + 2c→TSB | 15.1 | −51.6 | 30.5 | |
1 + 2c→4c | −34.7 | −53.0 | −18.9 | |
1 + 2c→MCC | −3.8 | −33.7 | 6.3 | |
1 + 2c→TC | 17.8 | −48.6 | 32.3 | |
1 + 2c→5c | −41.1 | −50.6 | −26.1 | |
1 + 2c→MCD | −3.8 | −33.9 | 6.4 | |
1 + 2c→TSD | 14.7 | −48.9 | 29.3 | |
1 + 2c→6c | −40.5 | −49.9 | −25.7 | |
1 + 2d | 1 + 2d→MCA | −5.8 | −37.7 | 5.4 |
1 + 2d→TS1A | 0.9 | −49.6 | 15.7 | |
1 + 2d→IA | −0.1 | −49.7 | 14.7 | |
1 + 2d→TS2A | 5.6 | −55.4 | 22.1 | |
1 + 2d→3d | −36.6 | −55.2 | −20.1 | |
1 + 2d→MC | −4.3 | −39.2 | 7.4 | |
1 + 2d→TSC | 12.1 | −51.5 | 27.5 | |
1 + 2d→5d | −44.4 | −53.2 | −28.6 |
Reaction | Path | Structure | Interatomic Distance [Å] | GEDT [e] | ||||
---|---|---|---|---|---|---|---|---|
O1-S2 | S2-C3 | C3-C4(5) | C4-C5 | C5(4)-O1 | ||||
1 + 2a | A | MCA | 1.498 | 1.616 | 4.532 | 1.322 | 2.867 | 0.00 |
TSA | 1.578 | 1.654 | 2.704 | 1.419 | 1.688 | 0.45 | ||
3a | 1.690 | 1.827 | 1.555 | 1.545 | 1.419 | |||
B | MCB | 1.499 | 1.616 | 3.645 | 1.322 | 2.952 | 0.00 | |
TSB | 1.567 | 1.649 | 2.552 | 1.405 | 1.766 | 0.33 | ||
4a | 1.699 | 1.844 | 1.539 | 1.538 | 1.407 | |||
C | MCC | 1.497 | 1.616 | 4.334 | 1.320 | 2.884 | 0.00 | |
TSC | 1.527 | 1.685 | 2.070 | 1.377 | 2.303 | 0.20 | ||
5a | 1.728 | 1.837 | 1.536 | 1.521 | 1.364 | |||
D | MCD | 1.498 | 1.615 | 4.550 | 1.319 | 2.959 | 0.00 | |
TSD | 1.511 | 1.683 | 2.014 | 1.381 | 2.494 | 0.24 | ||
6a | 1.715 | 1.822 | 1.540 | 1.544 | 1.372 | |||
1 + 2b | A | MCA | 1.498 | 1.616 | 3.588 | 1.326 | 3.144 | 0.00 |
TSA | 1.576 | 1.654 | 2.711 | 1.421 | 1.707 | 0.45 | ||
3b | 1.694 | 1.848 | 1.552 | 1.544 | 1.402 | |||
B | MCB | 1.499 | 1.615 | 3.747 | 1.325 | 3.108 | 0.00 | |
TSB | 1.578 | 1.637 | 2.767 | 1.431 | 1.655 | 0.38 | ||
4b | 1.706 | 1.845 | 1.548 | 1.545 | 1.407 | |||
C | MCC | 1.497 | 1.616 | 4.250 | 1.325 | 2.993 | 0.00 | |
TSC | 1.526 | 1.683 | 2.091 | 1.381 | 2.351 | 0.17 | ||
5b | 1.720 | 1.840 | 1.535 | 1.525 | 1.372 | |||
D | MCD | 1.497 | 1.616 | 4.001 | 1.324 | 3.012 | 0.00 | |
TSD | 1.512 | 1.683 | 2.036 | 1.383 | 2.545 | 0.20 | ||
6b | 1.708 | 1.823 | 1.541 | 1.546 | 1.380 | |||
1 + 2c | A | MCA | 1.500 | 1.616 | 3.811 | 1.323 | 2.863 | 0.00 |
TSA | 1.594 | 1.650 | 2.760 | 1.441 | 1.587 | 0.53 | ||
3c | 1.699 | 1.850 | 1.547 | 1.546 | 1.398 | |||
B | MCB | 1.499 | 1.616 | 3.885 | 1.322 | 2.865 | 0.00 | |
TSB | 1.601 | 1.642 | 2.719 | 1.457 | 1.645 | 0.53 | ||
4c | 1.706 | 1.847 | 1.541 | 1.542 | 1.401 | |||
C | MCC | 1.497 | 1.617 | 4.185 | 1.321 | 2.945 | 0.00 | |
TSC | 1.518 | 1.685 | 2.041 | 1.381 | 2.413 | 0.20 | ||
5c | 1.735 | 1.831 | 1.532 | 1.521 | 1.348 | |||
D | MCD | 1.496 | 1.616 | 4.061 | 1.321 | 2.949 | 0.00 | |
TSD | 1.507 | 1.681 | 2.038 | 1.380 | 2.575 | 0.24 | ||
6c | 1.726 | 1.823 | 1.532 | 1.537 | 1.354 | |||
1 + 2d | A | MCA | 1.503 | 1.617 | 3.950 | 1.321 | 2.631 | 0.00 |
TS1A | 1.550 | 1.620 | 3.490 | 1.391 | 1.813 | 0.54 | ||
IA | 1.594 | 1.617 | 3.439 | 1.455 | 1.524 | 0.73 | ||
TS2A | 1.614 | 1.662 | 2.523 | 1.474 | 1.510 | 0.61 | ||
3d | 1.692 | 1.830 | 1.544 | 1.554 | 1.409 | |||
C | MC | 1.499 | 1.616 | 3.887 | 1.318 | 2.775 | 0.00 | |
TS | 1.493 | 1.677 | 2.033 | 1.383 | 2.641 | 0.36 | ||
5d | 1.731 | 1.823 | 1.536 | 1.527 | 1.348 |
CYP51 1EA1 | MMP-9 4XCT | COX-1 3KK6 | COX-2 5KIR | |
---|---|---|---|---|
ΔG (kcal/mol) | ||||
3a | −3.79 | −5.48 | −4.70 | −4.43 |
4a | −3.35 | −4.95 | −4.30 | −4.05 |
5a | −3.60 | −5.13 | −4.55 | −4.56 |
6a | −3.49 | −4.84 | −4.33 | −4.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sadowski, M.; Dresler, E.; Zawadzińska, K.; Wróblewska, A.; Jasiński, R. Syn-Propanethial S-Oxide as an Available Natural Building Block for the Preparation of Nitro-Functionalized, Sulfur-Containing Five-Membered Heterocycles: An MEDT Study. Molecules 2024, 29, 4892. https://doi.org/10.3390/molecules29204892
Sadowski M, Dresler E, Zawadzińska K, Wróblewska A, Jasiński R. Syn-Propanethial S-Oxide as an Available Natural Building Block for the Preparation of Nitro-Functionalized, Sulfur-Containing Five-Membered Heterocycles: An MEDT Study. Molecules. 2024; 29(20):4892. https://doi.org/10.3390/molecules29204892
Chicago/Turabian StyleSadowski, Mikołaj, Ewa Dresler, Karolina Zawadzińska, Aneta Wróblewska, and Radomir Jasiński. 2024. "Syn-Propanethial S-Oxide as an Available Natural Building Block for the Preparation of Nitro-Functionalized, Sulfur-Containing Five-Membered Heterocycles: An MEDT Study" Molecules 29, no. 20: 4892. https://doi.org/10.3390/molecules29204892
APA StyleSadowski, M., Dresler, E., Zawadzińska, K., Wróblewska, A., & Jasiński, R. (2024). Syn-Propanethial S-Oxide as an Available Natural Building Block for the Preparation of Nitro-Functionalized, Sulfur-Containing Five-Membered Heterocycles: An MEDT Study. Molecules, 29(20), 4892. https://doi.org/10.3390/molecules29204892