molecules-logo

Journal Browser

Journal Browser

Heterocyclic Compounds: Synthesis, Application and Theoretical Study

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Organic Chemistry".

Deadline for manuscript submissions: 30 September 2025 | Viewed by 1945

Special Issue Editor


E-Mail Website
Guest Editor
Department of Organic Chemistry and Technology, Cracow University of Technology, Warszawska 24, 31-155 Krakow, Poland
Interests: cycloaddition reactions; nitrocompounds; heterocycles; reaction mechanisms; regio- and stereoselectivity; organic reactivity; DFT calculations; Molecular Electron Desnity Theory (MEDT)
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The effective design and sustainable synthesis of novel heterocyclic compounds are the main focus points in modern chemistry. The constant interest of scientists in this class of organic compounds is caused by their unique properties. Heterocycles are important not only for the pharmacy industry but also for the agrochemical and dyeing industries. Therefore, this Special Issue will cover the most recent trends in the chemistry of heterocyclic compounds. In particular, we invite researchers to publish their recent short laboratory notes and full papers on the synthesis of these compounds (including structural studies), their properties, biological activities, and potential applications. We also welcome theoretical considerations based on the analysis of electron densities applied to synthetic aspects, reaction mechanisms, and structural analyses. The submissions of review articles written by experts in this field will also be appreciated.

Dr. Karolina Kula
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • synthesis and transformation of heterocycles
  • structural chemistry
  • reaction mechanisms
  • stereochemistry
  • regiochemistry
  • quantum chemical computations
  • biological activity of heterocyclic compounds
  • green chemistry

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

24 pages, 6486 KiB  
Article
Unexpected Course of Reaction Between (1E,3E)-1,4-Dinitro-1,3-butadiene and N-Methyl Azomethine Ylide—A Comprehensive Experimental and Quantum-Chemical Study
by Mikołaj Sadowski and Karolina Kula
Molecules 2024, 29(21), 5066; https://doi.org/10.3390/molecules29215066 - 26 Oct 2024
Viewed by 708
Abstract
In recent times, interest in the chemistry of conjugated nitrodienes is still significantly increasing. In particular, the application of these compounds as building blocks to obtain heterocycles is a popular object of research. Therefore, in continuation of our research devoted to the topic [...] Read more.
In recent times, interest in the chemistry of conjugated nitrodienes is still significantly increasing. In particular, the application of these compounds as building blocks to obtain heterocycles is a popular object of research. Therefore, in continuation of our research devoted to the topic of conjugated nitrodienes, experimental and quantum-chemical studies of a cycloaddition reaction between (1E,3E)-1,4-dinitro-1,3-butadiene and N-methyl azomethine ylide have been investigated. The computational results present that the tested reaction is realized through a pdr-type polar mechanism. In turn, the experimental study shows that in a course of this cycloaddition, only one reaction product in the form of 1-methyl-3-(trans-2-nitrovinyl)-Δ3-pyrroline is created. The constitution of this compound has been confirmed via spectroscopic methods. Finally, ADME analysis indicated that the synthesized Δ3-pyrroline exhibits biological potential, and it is a good drug candidate according to Lipinski, Veber and Egan rules. Nevertheless, PASS simulation showed that the compound exhibits weak antimicrobial, inhibitory and antagonist properties. Preliminary in silico research shows that although the obtained Δ3-pyrroline is not a good candidate for a drug, the presence of a nitrovinyl moiety in its structure indicates that the compound is an initial basis for further modifications. Full article
(This article belongs to the Special Issue Heterocyclic Compounds: Synthesis, Application and Theoretical Study)
Show Figures

Figure 1

20 pages, 5554 KiB  
Article
Syn-Propanethial S-Oxide as an Available Natural Building Block for the Preparation of Nitro-Functionalized, Sulfur-Containing Five-Membered Heterocycles: An MEDT Study
by Mikołaj Sadowski, Ewa Dresler, Karolina Zawadzińska, Aneta Wróblewska and Radomir Jasiński
Molecules 2024, 29(20), 4892; https://doi.org/10.3390/molecules29204892 - 15 Oct 2024
Cited by 1 | Viewed by 1012
Abstract
The regio- and stereoselectivity and the molecular mechanisms of the [3 + 2] cycloaddition reactions between Syn-propanethial S-oxide and selected conjugated nitroalkenes were explored theoretically in the framework of the Molecular Electron Density Theory. It was found that cycloadditions with the participation [...] Read more.
The regio- and stereoselectivity and the molecular mechanisms of the [3 + 2] cycloaddition reactions between Syn-propanethial S-oxide and selected conjugated nitroalkenes were explored theoretically in the framework of the Molecular Electron Density Theory. It was found that cycloadditions with the participation of nitroethene as well as its methyl- and chloro-substituted analogs can be realized via a single-step mechanism. On the other hand, [3 + 2] cycloaddition reactions between Syn-propanethial S-oxide and 1,1-dinitroethene can proceed according to a stepwise mechanism with a zwitterionic intermediate. Finally, we evaluated the affinity of model reaction products for several target proteins: cytochrome P450 14α-sterol demethylase CYP51 (RSCB Database PDB ID: 1EA1), metalloproteinase gelatinase B (MMP-9; PDB ID: 4XCT), and the inhibitors of cyclooxygenase COX-1 (PDB:3KK6) and COX-2 (PDB:5KIR). Full article
(This article belongs to the Special Issue Heterocyclic Compounds: Synthesis, Application and Theoretical Study)
Show Figures

Figure 1

Back to TopTop