A Novel Near-Infrared Tricyanofuran-Based Fluorophore Probe for Polarity Detection and LD Imaging
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Synthesis
3.2. UV-Vis and Fluorescence Spectroscopy
3.3. Cell Culture and Fluorescence Imaging
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Danylchuk, D.I.; Jouard, P.-H.; Klymchenko, A.S. Targeted solvatochromic fluorescent probes for imaging lipid order in organelles under oxidative and mechanical stress. J. Am. Chem. Soc. 2021, 143, 912–924. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Hong, J.; Feng, S.; Gong, S.; Feng, G. Polarity-sensitive cell membrane probe reveals lower polarity of tumor cell membrane and its application for tumor diagnosis. Anal. Chem. 2022, 94, 11089–11095. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Wu, C.; Wang, X.; Li, P.; Fan, N.; Zhang, W.; Liu, Z.; Zhang, W.; Tang, B. Exploring the changes of peroxisomal polarity in the liver of mice with nonalcoholic fatty liver disease. Anal. Chem. 2021, 93, 9609–9620. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Li, P.; Wang, X.; Wu, C.; Fan, N.; Liu, X.; Wu, L.; Zhang, W.; Zhang, W.; Liu, Z. In situ visualization of peroxisomal viscosity in the liver of mice with non-alcoholic fatty liver disease by near-infrared fluorescence and photoacoustic imaging. Chem. Sci. 2020, 11, 12149–12156. [Google Scholar] [CrossRef]
- Fan, L.; Wang, X.; Zan, Q.; Fan, L.; Li, F.; Yang, Y.; Zhang, C.; Shuang, S.; Dong, C. Lipid droplet-specific fluorescent probe for in vivo visualization of polarity in fatty liver, inflammation, and cancer models. Anal. Chem. 2021, 93, 8019–8026. [Google Scholar] [CrossRef]
- Zhan, Z.; Zhuang, W.; Lei, Q.; Li, S.; Mao, W.; Chen, M.; Li, W. A smart probe for simultaneous imaging of the lipid/water microenvironment in atherosclerosis and fatty liver. Chem. Commun. 2022, 58, 4020–4023. [Google Scholar] [CrossRef]
- Wang, K.N.; Liu, L.Y.; Mao, D.; Xu, S.; Tan, C.P.; Cao, Q.; Mao, Z.W.; Liu, B. A polarity-sensitive ratiometric fluorescence probe for monitoring changes in lipid droplets and nucleus during ferroptosis. Angew. Chem. Int. Ed. 2021, 60, 15095–15100. [Google Scholar] [CrossRef]
- Zhang, J.; An, Q.; Li, W.; Chai, L.; Hu, W.; Wang, Y.; Su, S.; He, Y.; Li, C.; Sun, D. Rationally designed lipid droplets-selective two-photon nitric oxide probe for high-fidelity neuroinflammation evaluation. Sensors Actuators B Chem. 2021, 345, 130329. [Google Scholar] [CrossRef]
- Xiao, H.; Li, P.; Tang, B. Recent progresses in fluorescent probes for detection of polarity. Coord. Chem. Rev. 2020, 427, 213582. [Google Scholar] [CrossRef]
- Greene, L.E.; Lincoln, R.; Cosa, G. Rate of lipid peroxyl radical production during cellular homeostasis unraveled via fluorescence imaging. J. Am. Chem. Soc. 2017, 139, 15801–15811. [Google Scholar] [CrossRef]
- Liu, X.; Lu, X.; Zhu, T.; Wenli, D.; Zhenghui, Y.; Cao, H.; Wang, S.; Tian, Y.; Zhang, Z.; Zhang, R.; et al. Revealing lipid droplets evolution at nanoscale under proteohormone stimulation by a BODIPY-hexylcarbazole derivative. Biosen. Bioelectron. 2020, 175, 112871. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Lu, X.; Yu, Z.; Zhu, X.; Zhang, J.; Wang, L.; Zhou, H. Near-infrared light activated photosensitizer with specific imaging of lipid droplets enables two-photon excited photodynamic therapy. J. Mater. Chem. B 2022, 11, 1213–1221. [Google Scholar] [CrossRef] [PubMed]
- Sheng, W.; Guo, X.; Tang, B.; Bu, W.; Zhang, F.; Hao, E.; Jiao, L. Hybridization of triphenylamine to BODIPY dyes at the 3,5,8-positions: A facile strategy to construct near infra-red aggregation-induced emission luminogens with intramolecular charge transfer for cellular imaging. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 285, 121902. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Tang, B.; Wu, Q.; Bu, W.; Zhang, F.; Yu, C.; Jiao, L.; Hao, E. Engineering BODIPY-based near-infrared nanoparticles with large Stokes shifts and aggregation-induced emission characteristics for organelle specific bioimaging. J. Mater. Chem. B 2022, 10, 5612–5623. [Google Scholar] [CrossRef] [PubMed]
- Sodre, E.R.; Guido, B.C.; de Souza, P.E.N.; Machado, D.F.S.; Carvalho-Silva, V.H.; Chaker, J.A.; Gatto, C.C.; Correa, J.R.; Fernandes, T.d.A.; Neto, B.A.D. Deciphering the Dynamics of Organic Nanoaggregates with AIEE Effect and Excited States: Lipophilic Benzothiadiazole Derivatives as Selective Cell Imaging Probes. J. Org. Chem. 2020, 85, 12614–12634. [Google Scholar] [CrossRef]
- Doloczki, S.; Holmberg, K.O.; Galván, I.F.; Swartling, F.J.; Dyrager, C. Photophysical characterization and fluorescence cell imaging applications of 4-N-substituted benzothiadiazoles. RSC Adv. 2022, 12, 14544–14550. [Google Scholar] [CrossRef]
- Colas, K.; Holmberg, K.O.; Chiang, L.; Doloczki, S.; Swartling, F.J.; Dyrager, C. Indolylbenzothiadiazoles as highly tunable fluorophores for imaging lipid droplet accumulation in astrocytes and glioblastoma cells. RSC Adv. 2021, 11, 23960–23967. [Google Scholar] [CrossRef]
- Tang, L.; Hu, D.; Feng, J.; Li, L.; Bu, Y.; Zhou, H.; Gan, X. Liquid core fluorescent organic nanoprobes: Long-term stability and highly selective lipid droplets bio-imaging. Talanta 2023, 267, 125169. [Google Scholar] [CrossRef]
- Thiam, A.R.; Ikonen, E. Lipid droplet nucleation. Trends Cell Biol. 2020, 31, 108–118. [Google Scholar] [CrossRef]
- Ren, T.-B.; Xu, W.; Zhang, W.; Zhang, X.-X.; Wang, Z.-Y.; Xiang, Z.; Yuan, L.; Zhang, X.-B. A general method to increase stokes shift by introducing alternating vibronic structures. J. Am. Chem. Soc. 2018, 140, 7716–7722. [Google Scholar] [CrossRef]
- Weissleder, R.; Ntziachristos, V. Shedding light onto live molecular targets. Nat. Med. 2003, 9, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Chai, L.; Chen, X.; Li, Z.; Feng, L.; Hu, W.; Li, H.; Yang, G. Imaging changes in the polarity of lipid droplets during NAFLD-Induced ferroptosis via a red-emitting fluorescent probe with a large Stokes shift. Biosens. Bioelectron. 2023, 231, 115289. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Han, W.; Zhou, X.; Zhang, X.; Zhang, H.; Li, T.; Wang, J.; Yuan, Y.; He, Y.; Zhou, J. A lipid droplet-specific NIR fluorescent probe with a large stokes shift for in vivo visualization of polarity in contrast-induced acute kidney Injury. Anal. Chem. 2023, 95, 11785–11792. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Li, Q.; Gong, S.; Feng, G. Cell membrane targetable NIR fluorescent polarity probe for selective visualization of cancer cells and early tumor. Anal. Chim. Act. 2023, 1278, 341748. [Google Scholar] [CrossRef] [PubMed]
- Cui, S.; Wang, B.; Yan, X.; Li, Y.; Zhou, X.; Wang, Y.; Chen, L. A novel emitter: Sensing mechanical stimuli and monitoring total polar materials in frying oil. Dye. Pigment. 2020, 174, 108020. [Google Scholar] [CrossRef]
- Song, C.W.; Tamima, U.; Reo, Y.J.; Dai, M.; Sarkar, S.; Ahn, K.H. A rationally designed polarity–viscosity sensitive probe for imaging lipid droplets. Dye. Pigment. 2019, 171, 107718. [Google Scholar] [CrossRef]
- Kang, Y.; Sun, Y.; Qu, L.; Li, Z. Engineering of polarity-responsive fluorescent probe for real-time measurement and visualization of total polar materials in edible oils. Sensor. Actuator B Chem. 2023, 392, 134100. [Google Scholar] [CrossRef]
- Fan, L.; Wang, X.; Ge, J.; Li, F.; Wang, X.; Wang, J.; Shuang, S.; Dong, C. A lysosome-targeting and polarity-specific fluorescent probe for cancer diagnosis. Chem. Commun. 2019, 55, 4703–4706. [Google Scholar] [CrossRef]
- Li, X.; Li, X.; Ma, H. A near-infrared fluorescent probe reveals decreased mitochondrial polarity during mitophagy. Chem. Sci. 2020, 11, 1617–1622. [Google Scholar] [CrossRef]
- Farsadpour, S.; Ghoochany, L.T.; Kaiser, C.; Von Freymann, G. New class of hyperpolarizable push–pull organic chromophores by applying a novel and convenient synthetic strategy. Dye. Pigment. 2016, 127, 73–77. [Google Scholar] [CrossRef]
- Fu, W.; Yan, C.; Guo, Z.; Zhang, J.; Zhang, H.; Tian, H.; Zhu, W.-H. Rational design of near-infrared aggregation-induced-emission-active probes: In situ mapping of amyloid-β plaques with ultrasensitivity and high-fidelity. J. Am. Chem. Soc. 2019, 141, 3171–3177. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Fan, J.; Li, H.; Du, J.; Long, S.; Peng, X. A ratiometric fluorescence probe for lysosomal polarity. Biomaterials 2018, 164, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Mota, A.A.R.; Carvalho, P.H.P.R.; Guido, B.C.; de Oliveira, H.C.B.; Soares, T.A.; Corrêa, J.R.; Neto, B.A.D. Bioimaging, cellular uptake and dynamics in living cells of a lipophilic fluorescent benzothiadiazole at low temperature (4 °C). Chem. Sci. 2014, 5, 3995–4003. [Google Scholar] [CrossRef]
- Cai, S.; Liu, Q.; Liu, C.; He, S.; Zhao, L.; Zeng, X.; Gong, J. Rational design of a large Stokes shift xanthene-benzothiozolium dyad for probing cysteine in mitochondria. J. Mater. Chem. B 2022, 10, 1265–1271. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Q.; Cai, S.; Liu, C.; He, S.; Zhao, L.; Zeng, X.; Gong, J. A near-infrared and lager stocks shift xanthene-indolium sensor for probing hydrazine in mitochondria. Dye. Pigment. 2022, 203, 110382. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hang, Z.; Jiang, S.; Wu, Z.; Gong, J.; Zhang, L. A Novel Near-Infrared Tricyanofuran-Based Fluorophore Probe for Polarity Detection and LD Imaging. Molecules 2024, 29, 5069. https://doi.org/10.3390/molecules29215069
Hang Z, Jiang S, Wu Z, Gong J, Zhang L. A Novel Near-Infrared Tricyanofuran-Based Fluorophore Probe for Polarity Detection and LD Imaging. Molecules. 2024; 29(21):5069. https://doi.org/10.3390/molecules29215069
Chicago/Turabian StyleHang, Zhaojia, Shengmeng Jiang, Zhitong Wu, Jin Gong, and Lizhi Zhang. 2024. "A Novel Near-Infrared Tricyanofuran-Based Fluorophore Probe for Polarity Detection and LD Imaging" Molecules 29, no. 21: 5069. https://doi.org/10.3390/molecules29215069
APA StyleHang, Z., Jiang, S., Wu, Z., Gong, J., & Zhang, L. (2024). A Novel Near-Infrared Tricyanofuran-Based Fluorophore Probe for Polarity Detection and LD Imaging. Molecules, 29(21), 5069. https://doi.org/10.3390/molecules29215069