Smart Cancer-Targeting and Super-Sensitive Sensing of Eu3+/Tb3+-Induced Hyaluronan Characteristic Nano-Micelles with Effective Drug Loading and Release
Abstract
:1. Introduction
2. Results and Discussion
2.1. Hyaluronan Nano-Micelles Loaded with Lanthanides (Eu3+ and Tb3+)
2.2. Photophysical Properties of Hyaluronan Nano-Micelles Loaded with Lanthanides (Eu3+ and Tb3+)
2.3. Detection of Dacarbazine via Hyaluronan Nano-Micelles Loaded with Lanthanides (Eu3+ and Tb3+)
2.4. Cytotoxicity of Hyaluronan Nano-Micelles Loaded with Lanthanides (Eu3+ and Tb3+)
2.5. In Vivo Anti-Tumor Evaluation of Hyaluronan Nano-Micelles Loaded with Lanthanides (Eu3+ and Tb3+)
3. Experiments
3.1. Materials
3.2. Preparation of Hyaluronan Nano-Micelles Loaded with Lanthanides (Eu3+ and Tb3+)
Samples | CEu | CTb | CDBM | C4-BBA | Cphen | CHA |
---|---|---|---|---|---|---|
(mol/L) | (mol/L) | (mol/L) | (mol/L) | (mol/L) | (g/mL) | |
A | 1.0 × 10−3 | 0 | 3.0 × 10−3 | 0 | 1.0 × 10−3 | 1.0 × 10−3 |
B | 2.0 × 10−3 | 0 | 6.0 × 10−3 | 0 | 3.0 × 10−3 | 1.0 × 10−3 |
C | 1.0 × 10−2 | 0 | 3.0 × 10−2 | 0 | 1.0 × 10−2 | 0.8 × 10−3 |
D | 2.0 × 10−2 | 0 | 6.0 × 10−2 | 0 | 3.0 × 10−2 | 0.8 × 10−3 |
E | 0 | 1.0 × 10−3 | 0 | 3.0 × 10−3 | 1.0 × 10−3 | 1.0 × 10−3 |
F | 0 | 2.0 × 10−3 | 0 | 6.0 × 10−3 | 3.0 × 10−3 | 1.0 × 10−3 |
G | 0 | 1.0 × 10−2 | 0 | 3.0 × 10−2 | 1.0 × 10−2 | 0.8 × 10−3 |
H | 0 | 2.0 × 10−2 | 0 | 6.0 × 10−2 | 3.0 × 10−2 | 0.8 × 10−3 |
3.3. Fluorescence Characteristics of Hyaluronan Nano-Micelles Loaded with Lanthanides (Eu3+ and Tb3+)
3.4. Characterization of Hyaluronan Nano-Micelles Loaded with Lanthanides (Eu3+ and Tb3+)
3.5. Sensing Anticancer Drugs with Hyaluronan Nano-Micelles Loaded with Lanthanides (Eu3+ and Tb3+)
3.5.1. Detection of Dacarbazine (DTIC)
3.5.2. Sensitivity of Sodium Hyaluronate Nano-Micelles Loaded with Lanthanides (Eu3+ and Tb3+) to Anticancer Drugs
3.6. In Vitro Release
3.7. Cell Culture and Animal Care and Use
3.8. Biocompatibility Testing
3.9. Establishment of the Tumor Model
3.10. In Vivo Anti-Tumor Evaluation
3.11. Histopathological Examination
3.12. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fontanillas, P.; Alipanahi, B.; Furlotte, N.A.; Johnson, M.; Wilson, C.H.; Agee, M.; Bell, R.K.; Bryc, K.; Elson, S.L.; Hinds, D.A.; et al. Disease risk scores for skin cancers. Nat. Commun. 2021, 12, 160. [Google Scholar] [CrossRef] [PubMed]
- Ghiasvand, R.; Green, A.C.; Veierod, M.B.; Robsahm, T.E. Incidence and Factors Associated with Second Primary Invasive Melanoma in Norway. JAMA Dermatol. 2024, 160, 402–408. [Google Scholar] [CrossRef]
- Huang, Y.; Fleming, P.; Fung, K.; Chan, A.W. Association between dermatology follow-up and melanoma survival: A population-based cohort study. J. Am. Acad. Dermatol. 2024, 90, 1161–1169. [Google Scholar] [CrossRef] [PubMed]
- Hafeez, A.; Kazmi, I. Dacarbazine nanoparticle topical delivery system for the treatment of melanoma. Sci. Rep. 2017, 7, 16517. [Google Scholar] [CrossRef] [PubMed]
- Long, G.V.; Swetter, S.M.; Menzies, A.M.; Gershenwald, J.E.; Scolyer, R.A. Cutaneous melanoma. Lancet 2023, 402, 485–502. [Google Scholar] [CrossRef]
- Sun, S.; He, Y.; Xu, J.; Leng, S.; Liu, Y.; Wan, H.; Yan, L.; Xu, Y. Enhancing cell pyroptosis with biomimetic nanoparticles for melanoma chemo-immunotherapy. J. Control. Release 2024, 367, 470–485. [Google Scholar] [CrossRef]
- Cai, Y.; Qi, J.; Lu, Y.; He, H.; Wu, W. The in vivo fate of polymeric micelles. Adv. Drug Deliv. Rev. 2022, 188, 114463. [Google Scholar] [CrossRef]
- Feng, J.; Zhang, H. Hybrid materials based on lanthanide organic complexes: A review. Chem. Soc. Rev. 2013, 42, 387–410. [Google Scholar] [CrossRef]
- Wu, Z.; Chen, H.; Zhang, H.; Ye, L.; Ke, J.; Liu, Y.; Sun, P.; Hong, M. Construction of tumor-cell nucleus targeting lanthanide nano-prodrugs with lutetium-177 labelling for high-efficient tumor fluorescence-localization and radionuclide therapy. Nano Today 2024, 55, 102214. [Google Scholar] [CrossRef]
- Lengacher, R.; Martin, K.E.; Śmiłowicz, D.; Esseln, H.; Lotlikar, P.; Grichine, A.; Maury, O.; Boros, E. Targeted, Molecular Europium(III) Probes Enable Luminescence-Guided Surgery and 1 Photon Post-Surgical Luminescence Microscopy of Solid Tumors. J. Am. Chem. Soc. 2023, 145, 24358–24366. [Google Scholar] [CrossRef]
- Meng, S.; Liu, J.; Yang, Y.; Mao, S.; Li, Z. Lanthanide MOFs based portable fluorescence sensing platform: Quantitative and visual detection of ciprofloxacin and Al3+. Sci. Total Environ. 2024, 922, 171115. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Wang, J.; Wang, J.; Liu, J.; Wang, X.; Wang, Y.; Aleem, A.R.; Kipper, M.J.; Belfiore, L.A.; Tang, J. Eu3+-induced polysaccharide nano-dumbbell aggregates (PNDA) as drug carriers to smartly report drug concentration through variable fluorescence. Sens. Actuators B Chem. 2021, 336, 129724. [Google Scholar] [CrossRef]
- Souza, E.R.; Monteiro, J.H.S.K.; Mazali, I.O.; Sigoli, F.A. Photophysical studies of highly luminescent europium(III) and terbium(III) complexes functionalized with amino and mercapto groups. J. Lumin. 2016, 170, 520–527. [Google Scholar] [CrossRef]
- Dalal, A.; Nehra, K.; Hooda, A.; Singh, S.; Singh, D.; Kumar, S. Synthesis, Optoelectronic and Photoluminescent Characterizations of Green Luminous Heteroleptic Ternary Terbium Complexes. J. Fluoresc. 2022, 32, 1019–1029. [Google Scholar] [CrossRef] [PubMed]
- Nehra, K.; Dalal, A.; Hooda, A.; Singh, S.; Singh, D.; Kumar, S. Spectroscopic and optical investigation of 1,10-phenanthroline based Tb(III) β-diketonate complexes. Inorg. Chim. Acta 2022, 536, 120860. [Google Scholar] [CrossRef]
- Huang, T.; He, S.; Ni, A.; Lian, T.; Lee Tang, M. Triplet energy transfer from quantum dots increases Ln(iii) photoluminescence, enabling excitation at visible wavelengths. Chem. Sci. 2024, 15, 4556–4563. [Google Scholar] [CrossRef]
- Yang, Y.; Xiao, B.; Hu, X.; Xian, Y.; Wang, P.; Gong, C.; Luo, X.; Li, M.; Liu, J.; Ding, Y.; et al. A long-life green fluorescent waterborne polyurethane-based Tb(III) ternary complex with UV shielding. Prog. Org. Coat. 2022, 168, 106892. [Google Scholar] [CrossRef]
- Kuijpers, K.P.L.; Bottecchia, C.; Cambié, D.; Drummen, K.; König, N.J.; Noël, T. A Fully Automated Continuous-Flow Platform for Fluorescence Quenching Studies and Stern–Volmer Analysis. Angew. Chem. Int. Ed. 2018, 57, 11278–11282. [Google Scholar] [CrossRef]
- Sun, Q.; Li, Y.; Shen, W.; Shang, W.; Xu, Y.; Yang, J.; Chen, J.; Gao, W.; Wu, Q.; Xu, F.; et al. Breaking-Down Tumoral Physical Barrier by Remotely Unwrapping Metal-Polyphenol-Packaged Hyaluronidase for Optimizing Photothermal/Photodynamic Therapy-Induced Immune Response. Adv. Mater. 2024, 36, e2310673. [Google Scholar] [CrossRef]
- Zhao, T.; He, Y.; Chen, H.; Bai, Y.; Hu, W.; Zhang, L. Novel apigenin-loaded sodium hyaluronate nano-assemblies for targeting tumor cells. Carbohydr. Polym. 2017, 177, 415–423. [Google Scholar] [CrossRef]
- Xu, H.; Niu, M.; Yuan, X.; Wu, K.; Liu, A. CD44 as a tumor biomarker and therapeutic target. Exp. Hematol. Oncol. 2020, 9, 36. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Wang, Q.; Wang, N.; Zhu, G.; Ma, J.; Lin, N. Cellulose nanocrystals-based fluorescent biocarrier binding GAPDH protein with high affinity in cancer-target doxorubicin delivery. Carbohydr. Polym. 2024, 324, 121458. [Google Scholar] [CrossRef] [PubMed]
- Ning, D.; Wang, Z.G.; Wang, L.; Tian, Y.F.; Jing, F.; Jiang, L.H.; Zhang, M.Q.; Liu, Y.Y.; Pang, D.W.; Cho, W.; et al. Lipid-Centric Design of Plasma Membrane-Mimicking Nanocarriers for Targeted Chemotherapeutic Delivery. Adv. Mater. 2023, 36, 2306808. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bi, Y.; Li, L.; Liu, J.; Wang, Y.; Wang, B.; Wang, Y.; Snow, C.D.; Li, J.; Kipper, M.J.; Belfiore, L.A.; et al. Smart Cancer-Targeting and Super-Sensitive Sensing of Eu3+/Tb3+-Induced Hyaluronan Characteristic Nano-Micelles with Effective Drug Loading and Release. Molecules 2024, 29, 5070. https://doi.org/10.3390/molecules29215070
Bi Y, Li L, Liu J, Wang Y, Wang B, Wang Y, Snow CD, Li J, Kipper MJ, Belfiore LA, et al. Smart Cancer-Targeting and Super-Sensitive Sensing of Eu3+/Tb3+-Induced Hyaluronan Characteristic Nano-Micelles with Effective Drug Loading and Release. Molecules. 2024; 29(21):5070. https://doi.org/10.3390/molecules29215070
Chicago/Turabian StyleBi, Yupeng, Longlong Li, Jin Liu, Yao Wang, Boying Wang, Yanxin Wang, Christopher D. Snow, Jun Li, Matt J. Kipper, Laurence A. Belfiore, and et al. 2024. "Smart Cancer-Targeting and Super-Sensitive Sensing of Eu3+/Tb3+-Induced Hyaluronan Characteristic Nano-Micelles with Effective Drug Loading and Release" Molecules 29, no. 21: 5070. https://doi.org/10.3390/molecules29215070
APA StyleBi, Y., Li, L., Liu, J., Wang, Y., Wang, B., Wang, Y., Snow, C. D., Li, J., Kipper, M. J., Belfiore, L. A., & Tang, J. (2024). Smart Cancer-Targeting and Super-Sensitive Sensing of Eu3+/Tb3+-Induced Hyaluronan Characteristic Nano-Micelles with Effective Drug Loading and Release. Molecules, 29(21), 5070. https://doi.org/10.3390/molecules29215070