Incorporation of Aramids into Polybenzimidazoles to Achieve Ultra-High Thermoresistance and Toughening Effects
Abstract
:1. Introduction
2. Results and Discussions
2.1. Polymer Preparations
2.2. Mechanical Properties
2.3. Thermal Decomposition
3. Materials and Methods
3.1. Materials
3.2. Hydrochlorization of Monomers
3.3. Syntheses
3.4. Film Fabrication
3.5. Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Krongauz, Y.S.; Travnikova, A.P.; Askadskii, A.A.; Bycko, K.A.; Slonimskii, G.L.; Korshak, V.V. The Physical Heat Resistance of Polybenzazoles. Polym. Sci. USSR 1975, 17, 30–36. [Google Scholar] [CrossRef]
- Korshak, V.V.; Krongauz, E.S.; Travnikova, A.P.; Rusanov, A.L. Polybenzazoles Containing 2-Benzimidazolyl Side Groups. Macromolecules 1974, 7, 589–598. [Google Scholar] [CrossRef]
- Ishige, R.; Masuda, T.; Kozaki, Y.; Fujiwara, E.; Okada, T.; Ando, S. Precise Analysis of Thermal Volume Expansion of Crystal Lattice for Fully Aromatic Crystalline Polyimides by X-ray Diffraction Method: Relationship between Molecular Structure and Linear/Volumetric Thermal Expansion. Macromolecules 2017, 50, 2112–2123. [Google Scholar] [CrossRef]
- Li, D.; Shi, D.; Xia, Y.; Qiao, L.; Li, X.; Zhang, H. Superior Thermally Stable and Nonflammable Porous Polybenzimidazole Membrane with High Wettability for High-Power Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2017, 9, 8742–8750. [Google Scholar] [CrossRef] [PubMed]
- Escorihuela, J.; Olvera-Mancilla, J.; Alexandrova, L.; del Castillo, L.F.; Compañ, V. Recent Progress in the Development of Composite Membranes Based on Polybenzimidazole for High Temperature Proton Exchange Membrane (PEM) Fuel Cell Applications. Polymers 2020, 12, 1861. [Google Scholar] [CrossRef] [PubMed]
- Bourbigot, S.; Flambard, X.; Poutch, F. Study of the Thermal Degradation of High Performance Fibres—Application to Polybenzazole and p-Aramid Fibres. Polym. Degrad. Stab. 2001, 74, 283–290. [Google Scholar] [CrossRef]
- Zhong, X.; Nag, A.; Zhou, J.; Takada, K.; Amat Yusof, F.A.; Mitsumata, T.; Oqmhula, K.; Hongo, K.; Maezono, R.; Kaneko, T. Stepwise Copolymerization of Polybenzimidazole for a Low Dielectric Constant and Ultrahigh Heat Resistance. RSC Adv. 2022, 12, 11885–11895. [Google Scholar] [CrossRef]
- Nag, A.; Ali, M.A.; Kawaguchi, H.; Saito, S.; Kawasaki, Y.; Miyazaki, S.; Kawamoto, H.; Adi, D.T.N.; Yoshihara, K.; Masuo, S.; et al. Ultrahigh Thermoresistant Lightweight Bioplastics Developed from Fermentation Products of Cellulosic Feedstock. Adv. Sustain. Syst. 2021, 5, 2000193. [Google Scholar] [CrossRef]
- Swan, S.R.; Creighton, C.; Griffin, J.M.; Gashi, B.V.; Varley, R.J. Aromatic Tetra-Glycidyl Ether versus Tetra-Glycidyl Amine Epoxy Networks: Influence of Monomer Structure and Epoxide Conversion. Polymer 2022, 239, 124401. [Google Scholar] [CrossRef]
- Subianto, S. Recent Advances in Polybenzimidazole/Phosphoric Acid Membranes for High-Temperature Fuel Cells. Polym. Int. 2014, 63, 1134–1144. [Google Scholar] [CrossRef]
- Gan, Z.; Kuwabara, K.; Yamamoto, M.; Abe, H.; Doi, Y. Solid-State Structures and Thermal Properties of Aliphatic–Aromatic Poly(Butylene Adipate-Co-Butylene Terephthalate) Copolyesters. Polym. Degrad. Stab. 2004, 83, 289–300. [Google Scholar] [CrossRef]
- Pascual, B.S.; Trigo-López, M.; Ramos, C.; Sanz, M.T.; Pablos, J.L.; García, F.C.; Reglero Ruiz, J.A.; García, J.M. Microcellular Foamed Aromatic Polyamides (Aramids). Structure, Thermal and Mechanical Properties. Eur. Polym. J. 2019, 110, 9–13. [Google Scholar] [CrossRef]
- Li, Q.; Jensen, J.O.; Savinell, R.F.; Bjerrum, N.J. High Temperature Proton Exchange Membranes Based on Polybenzimidazoles for Fuel Cells. Prog. Polym. Sci. 2009, 34, 449–477. [Google Scholar] [CrossRef]
- Votarikari, N.K.; Gugulothu, S.K. Influence of Nanofluid in Thermal and Mechanical Properties of NR Alumina Polymer Nanocomposites. Compos. Part C Open Access 2021, 4, 100094. [Google Scholar] [CrossRef]
- Liu, J.; Yang, R. Tuning the Thermal Conductivity of Polymers with Mechanical Strains. Phys. Rev. 2010, 81, 174122. [Google Scholar] [CrossRef]
- Xue, W.; Gao, S.; Duan, D.; Zhang, J.; Liu, Y.; Li, S. Effects of Blade Material Characteristics on the High-Speed Rubbing Behavior between Al-HBN Abradable Seal Coatings and Blades. Wear 2018, 410–411, 25–33. [Google Scholar] [CrossRef]
- Özel, S.; Vural, E.; Binici, M. Optimization of the Effect of Thermal Barrier Coating (TBC) on Diesel Engine Performance by Taguchi Method. Fuel 2020, 263, 116537. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Wang, Y.K.; Wu, D.Y. Synthetic Strategies for Highly Transparent and Colorless Polyimide Film. J. Appl. Polym. Sci. 2022, 139, e52604. [Google Scholar] [CrossRef]
- Owen, M.M.; Achukwu, E.O.; Romli, A.Z.; Akil, H.M. Recent Advances on Improving the Mechanical and Thermal Properties of Kenaf Fibers/Engineering Thermoplastic Composites Using Novel Coating Techniques: A Review. Compos. Interfaces 2023, 30, 849–875. [Google Scholar] [CrossRef]
- Owen, M.M.; Achukwu, E.O.; Bin Shuib, S.; Ahmad, Z.R.; Abdullah, A.H.; Ishiaku, U.S. Effects of High-Temperature Optimization and Resin Coating Treatment on the Mechanical, Thermal, and Morphological Properties of Natural Kenaf Fiber-Filled Engineering Plastic Composites. Polym. Compos. 2023, 44, 2512–2529. [Google Scholar] [CrossRef]
- Dey, B.; Ahmad, M.W.; ALMezeni, A.; Sarkhel, G.; Bag, D.S.; Choudhury, A. Enhancing Electrical, Mechanical, and Thermal Properties of Polybenzimidazole by 3D Carbon Nanotube@graphene Oxide Hybrid. Compos. Commun. 2020, 17, 87–96. [Google Scholar] [CrossRef]
- Dey, B.; Ahmad, M.W.; Almezeni, A.; Sarkhel, G.; Bag, D.S.; Choudhury, A. Enhanced Electrical, Mechanical and Thermal Properties of Chemically Modified Graphene-Reinforced Polybenzimidazole Nanocomposites. Bull. Mater. Sci. 2020, 43, 1–15. [Google Scholar] [CrossRef]
- Ahmad, M.W.; Dey, B.; Sarkhel, G.; Bag, D.S.; Choudhury, A. Exfoliated Graphene Reinforced Polybenzimidazole Nanocomposite with Improved Electrical, Mechanical and Thermal Properties. Mater. Chem. Phys. 2019, 223, 426–433. [Google Scholar] [CrossRef]
- Di Virgilio, M.; Basso Peressut, A.; Pontoglio, A.; Latorrata, S.; Dotelli, G. Study of Innovative GO/PBI Composites as Possible Proton Conducting Membranes for Electrochemical Devices. Membranes 2023, 13, 428. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Yue, Z.; Xu, S. A Novel Polybenzimidazole Composite Modified by Sulfonated Graphene Oxide for High Temperature Proton Exchange Membrane Fuel Cells in Anhydrous Atmosphere. J. Appl. Polym. Sci. 2017, 134, 44986. [Google Scholar] [CrossRef]
- Ngamsantivongsa, P.; Lin, H.L.; Yu, T.L. Properties and Fuel Cell Applications of Polybenzimidazole and Ethyl Phosphoric Acid Grafted Polybenzimidazole Blend Membranes. J. Memb. Sci. 2015, 491, 10–21. [Google Scholar] [CrossRef]
- Chuang, S.-W.; Hsu, S.L.-C.; Hsu, C.-L. Synthesis and Properties of Fluorine-Containing Polybenzimidazole/Montmorillonite Nanocomposite Membranes for Direct Methanol Fuel Cell Applications. J. Power Sources 2007, 168, 172–177. [Google Scholar] [CrossRef]
- Song, J.; Zhao, G.; Ding, Q.; Yang, Y. Molecular Dynamics Study on the Thermal, Mechanical and Tribological Properties of PBI/PI Composites. Mater. Today Commun. 2022, 30, 103077. [Google Scholar] [CrossRef]
- Joseph, D.; Krishnan, N.N.; Henkensmeier, D.; Jang, J.H.; Choi, S.H.; Kim, H.J.; Han, J.; Nam, S.W. Thermal Crosslinking of PBI/Sulfonated Polysulfone Based Blend Membranes. J. Mater. Chem. A Mater. 2017, 5, 409–417. [Google Scholar] [CrossRef]
- Zhong, X.; Zhou, J.; Ali, M.A.; Nag, A.; Takada, K.; Watanabe, K.; Kawai, M.; Mitsumata, T.; Kaneko, T. Antiresonance Stabilization of Wholly Aromatic Bioplastics Using a Heteroelement Booster for Superthermostable Flexible Insulators. Macromolecules 2023, 57, 356–363. [Google Scholar] [CrossRef]
P a (%-%) | U b (MJ/m3) | E b (GPa) | σ b (Mpa) | γ b (%) | η c (dL/g) | Td10 d (°C) |
---|---|---|---|---|---|---|
PBI-MA 100-0 | 4.93 | 3.15 | 89.1 ± 2.35 | 7.1 ± 0.10 | 3.1 | 689 |
95-5 | 5.51 | 2.95 | 82.3 ± 4.05 | 8.2 ± 0.15 | 3.1 | 691 |
90-10 | 7.12 | 3.03 | 77.9 ± 2.31 | 10.8 ± 0.16 | 3.0 | 695 |
85-15 | 7.14 | 2.87 | 71.2 ± 2.06 | 11.8 ± 0.10 | 2.6 | 701 |
80-20 | 7.32 | 2.58 | 67.0 ± 3.34 | 12.7 ± 0.13 | 1.9 | 710 |
70-30 | 7.60 | 2.16 | 69.3 ± 3.60 | 14.0 ± 0.21 | 1.5 | 680 |
60-40 | 7.43 | 2.20 | 52.5 ± 2.91 | 15.1 ± 0.10 | 1.2 | 674 |
50-50 | 1.84 | 1.35 | 27.6 ± 3.08 | 5.5 ± 0.17 | 0.8 | 662 |
PBI-PA 100-0 | 4.93 | 3.15 | 89.1 ± 2.35 | 7.1 ± 0.10 | 3.1 | 689 |
95-5 | 8.30 | 2.13 | 82.6 ± 3.96 | 12.6 ± 0.22 | 3.0 | 719 |
90-10 | 9.70 | 1.96 | 77.6 ± 3.60 | 15.2 ± 0.15 | 2.8 | 735 |
85-15 | 10.27 | 1.52 | 70.1 ± 2.47 | 17.7 ± 0.15 | 3.3 | 743 |
80-20 | 10.87 | 1.35 | 65.0 ± 4.10 | 19.8 ± 0.18 | 2.5 | 697 |
70-30 | 10.52 | 1.28 | 62.7 ± 2.90 | 20.4 ± 0.10 | 2.1 | 688 |
60-40 | 9.25 | 1.10 | 52.8 ± 3.43 | 21.9 ± 0.15 | 1.5 | 683 |
50-50 | 2.55 | 0.90 | 34.8 ± 3.12 | 11.5 ± 0.21 | 1.1 | 640 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, X.; Nag, A.; Takada, K.; Nakajima, A.; Kaneko, T. Incorporation of Aramids into Polybenzimidazoles to Achieve Ultra-High Thermoresistance and Toughening Effects. Molecules 2024, 29, 1058. https://doi.org/10.3390/molecules29051058
Zhong X, Nag A, Takada K, Nakajima A, Kaneko T. Incorporation of Aramids into Polybenzimidazoles to Achieve Ultra-High Thermoresistance and Toughening Effects. Molecules. 2024; 29(5):1058. https://doi.org/10.3390/molecules29051058
Chicago/Turabian StyleZhong, Xianzhu, Aniruddha Nag, Kenji Takada, Akinori Nakajima, and Tatsuo Kaneko. 2024. "Incorporation of Aramids into Polybenzimidazoles to Achieve Ultra-High Thermoresistance and Toughening Effects" Molecules 29, no. 5: 1058. https://doi.org/10.3390/molecules29051058
APA StyleZhong, X., Nag, A., Takada, K., Nakajima, A., & Kaneko, T. (2024). Incorporation of Aramids into Polybenzimidazoles to Achieve Ultra-High Thermoresistance and Toughening Effects. Molecules, 29(5), 1058. https://doi.org/10.3390/molecules29051058