A One-Step Approach for a Durable and Highly Hydrophobic Coating for Flax Fabrics for Self-Cleaning Application
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of the Concentration of Coating Solution on the Coating Rate
2.2. Characterization of Silicone Coating
2.3. Hydrophobicity and Durability of Coated Fabrics
2.4. Mechanical Properties of Coated Flax Fabrics
3. Materials and Methods
3.1. Materials
3.2. Preparation of Polysiloxane Coating Films
3.3. General Procedure for the Preparation of Hydrophobic Flax Fabrics via the Dip-Coating Method
3.4. Characterizations
3.4.1. Fourier Transform Infrared Spectroscopy (FTIR)
3.4.2. Scanning Electron Microscope Coupled with Energy Dispersive X-ray Spectrometer SEM-EDS
3.4.3. X-ray Fluorescence Elemental Analysis
3.4.4. Contact and Sliding Angles’ Measurement
3.4.5. Thermogravimetric Analysis (TGA)
3.4.6. Durability Test
3.4.7. Tensile Test
3.4.8. Density Measurement
3.4.9. Preliminary Fire Test on Fabrics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, J.; Pu, Y.; He, H.; Cao, R.; Miao, D.; Ning, X. Superhydrophobic Cotton Nonwoven Fabrics through Atmospheric Plasma Treatment for Applications in Self-Cleaning and Oil–Water Separation. Cellulose 2019, 26, 7507–7522. [Google Scholar] [CrossRef]
- Zhu, T.; Li, S.; Huang, J.; Mihailiasa, M.; Lai, Y. Rational Design of Multi-Layered Superhydrophobic Coating on Cotton Fabrics for UV Shielding, Self-Cleaning and Oil-Water Separation. Mater. Des. 2017, 134, 342–351. [Google Scholar] [CrossRef]
- Rananavare, A.P.; Lee, J. Hydrophobic Cotton Fabric Synthesized via Dispersion Polymerization from Poly(glycidyl methacrylate) Nanoparticles for Self-Cleaning Applications. Prog. Org. Coat. 2022, 170, 107006. [Google Scholar] [CrossRef]
- Fu, C.; Ye, W.; Zhai, Z.; Zhang, J.; Li, P.; Xu, B.; Li, X.; Gao, F.; Zhai, J.; Wang, D.Y. Self-Cleaning Cotton Fabrics with Good Flame Retardancy via One-Pot Approach. Polym. Degrad. Stab. 2021, 192, 109700. [Google Scholar] [CrossRef]
- Zeng, C.; Wang, H.; Zhou, H.; Lin, T. Self-Cleaning, Superhydrophobic Cotton Fabrics with Excellent Washing Durability, Solvent Resistance and Chemical Stability Prepared from an SU-8 Derived Surface Coating. RSC Adv. 2015, 5, 61044–61050. [Google Scholar] [CrossRef]
- Bentis, A.; Boukhriss, A.; Zahouily, M.; Manoun, B.; Gmouh, S. Functionalization of Cotton Fabrics by Sol-Gel Method Using Ionic Liquids with High-Hydrophobic, Excellent Water Repellent, Oil/Water Separation, and Self-Cleaning Properties. Cellulose 2023, 30, 6719–6740. [Google Scholar] [CrossRef]
- Yang, M.; Liu, W.; Jiang, C.; Liu, C.; He, S.; Xie, Y.; Wang, Z. Facile Preparation of Robust Superhydrophobic Cotton Textile for Self-Cleaning and Oil-Water Separation. Ind. Eng. Chem. Res. 2019, 58, 187–194. [Google Scholar] [CrossRef]
- Tudu, B.K.; Sinhamahapatra, A.; Kumar, A. Surface Modification of Cotton Fabric Using TiO2 Nanoparticles for Self-Cleaning, Oil-Water Separation, Antistain, Anti-Water Absorption, and Antibacterial Properties. ACS Omega 2020, 5, 7850–7860. [Google Scholar] [CrossRef]
- Li, W.; Liu, K.; Zhang, Y.; Guo, S.; Li, Z.; Tan, S.C. A Facile Strategy to Prepare Robust Self-Healable Superhydrophobic Fabrics with Self-Cleaning, Anti-Icing, UV Resistance, and Antibacterial Properties. Chem. Eng. J. 2022, 446, 137195. [Google Scholar] [CrossRef]
- Chauhan, P.; Kumar, A.; Bhushan, B. Self-cleaning, stain-resistant and anti-bacterial superhydrophobic cotton fabric prepared by simple immersion technique. J. Colloid Interface Sci. 2019, 535, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Zeng, H.; Wang, P.; Liang, L.; Hu, H.; Peng, Y.; Li, X.; Liu, C. Facile Preparation of Superhydrophobic Cotton Fabric with a Photothermal Conversion Effect via Polypyrrole Deposition for Oil/Water Separation. J. Environ. Chem. Eng. 2022, 10, 106915. [Google Scholar] [CrossRef]
- Lei, S.; Shi, Z.; Ou, J.; Wang, F.; Xue, M.; Li, W.; Qiao, G.; Guan, X.; Zhang, J. Durable Superhydrophobic Cotton Fabric for Oil/Water Separation. Colloids Surf. A Physicochem. Eng. Asp. 2017, 533, 249–254. [Google Scholar] [CrossRef]
- Lin, T.C.; Lee, D.J. Cotton Fabrics Modified for Use in Oil/Water Separation: A Perspective Review. Cellulose 2021, 28, 4575–4594. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, Z.; Xu, X.; Guo, F.; Zhu, X.; Men, X.; Ge, B. Robust and Durable Superhydrophobic Cotton Fabrics for Oil/Water Separation. ACS Appl. Mater. Interfaces 2013, 5, 7208–7214. [Google Scholar] [CrossRef]
- Berendjchi, A.; Khajavi, R.; Yazdanshenas, M.E. Fabrication of Superhydrophobic and Antibacterial Surface on Cotton Fabric by Doped Silica-Based Sols with Nanoparticles of Copper. Nanoscale Res. Lett. 2011, 6, 594. [Google Scholar] [CrossRef]
- Shateri Khalil-Abad, M.; Yazdanshenas, M.E. Superhydrophobic Antibacterial Cotton Textiles. J. Colloid Interface Sci. 2010, 351, 293–298. [Google Scholar] [CrossRef] [PubMed]
- Ai, J.; Li, D.; Xu, C.; Tang, X.; Huang, J.; Guo, Z. Endowment of High Buoyancy and Antifouling Properties upon a Simple Superamphiphobic Cotton Fabric. Mater. Adv. 2022, 3, 4526–4530. [Google Scholar] [CrossRef]
- Song, D.; Jiang, B.; Zhou, J.; Ouyang, Y.; Zhang, Y.; Gao, C.; Zhu, K.; Liu, Y.; Xu, W. Soluble and Colorless Polyimide Coated Cotton Fabric with Attractive Multifunction: Warmth Retention, Breathable, Antifouling, UV and Acid Resistance. Chem. Eng. J. 2023, 455, 140755. [Google Scholar] [CrossRef]
- Shen, L.; Pan, Y.; Fu, H. Fabrication of UV Curable Coating for Super Hydrophobic Cotton Fabrics. Polym. Eng. Sci. 2019, 59, E452–E459. [Google Scholar] [CrossRef]
- Przybylak, M.; Maciejewski, H.; Dutkiewicz, A.; Dąbek, I.; Nowicki, M. Fabrication of Superhydrophobic Cotton Fabrics by a Simple Chemical Modification. Cellulose 2016, 23, 2185–2197. [Google Scholar] [CrossRef]
- Gao, S.; Dong, X.; Huang, J.; Dong, J.; Cheng, Y.; Chen, Z.; Lai, Y. Co-Solvent Induced Self-Roughness Superhydrophobic Coatings with Self-Healing Property for Versatile Oil-Water Separation. Appl. Surf. Sci. 2018, 459, 512–519. [Google Scholar] [CrossRef]
- Li, Z.; Wu, J.; Wang, Y.; Li, Y.; Huang, G.; Fei, B.; Xu, Z.; Zhang, Y.; Li, Y. A Facile Approach to Obtain Super-Hydrophobicity for Cotton Fiber Fabrics. RSC Adv. 2023, 13, 9237–9241. [Google Scholar] [CrossRef]
- Jannatun, N.; Taraqqi-A-Kamal, A.; Rehman, R.; Kuker, J.; Lahiri, S.K. A Facile Cross-Linking Approach to Fabricate Durable and Self-Healing Superhydrophobic Coatings of SiO2-PVA@PDMS on Cotton Textile. Eur. Polym. J. 2020, 134, 109836. [Google Scholar] [CrossRef]
- Li, J.; Zhao, Y.; Ge, M.; Fu, S.; Lin, T. Superhydrophobic and Luminescent Cotton Fabrics Prepared by Dip-Coating of APTMS Modified SrAl2O4:Eu2+,Dy3+ Particles in the Presence of SU8 and Fluorinated Alkyl Silane. J. Rare Earths 2016, 34, 653–660. [Google Scholar] [CrossRef]
- Foorginezhad, S.; Zerafat, M.M. Fabrication of Superhydrophobic Coatings with Self-Cleaning Properties on Cotton Fabric Based on Octa Vinyl Polyhedral Oligomeric Silsesquioxane/Polydimethylsiloxane (OV-POSS/PDMS) Nanocomposite. J. Colloid Interface Sci. 2019, 540, 78–87. [Google Scholar] [CrossRef] [PubMed]
- Aslanidou, D.; Karapanagiotis, I. Superhydrophobic, Superoleophobic and Antimicrobial Coatings for the Protection of Silk Textiles. Coatings 2018, 8, 101. [Google Scholar] [CrossRef]
- Liu, L.; Pan, Y.; Zhao, Y.; Cai, W.; Gui, Z.; Hu, Y.; Wang, X. Self-Assembly of Phosphonate-Metal Complex for Superhydrophobic and Durable Flame-Retardant Polyester–Cotton Fabrics. Cellulose 2020, 27, 6011–6025. [Google Scholar] [CrossRef]
- Pan, C.; Shen, L.; Shang, S.; Xing, Y. Preparation of Superhydrophobic and UV Blocking Cotton Fabric via Sol-Gel Method and Self-Assembly. Appl. Surf. Sci. 2012, 259, 110–117. [Google Scholar] [CrossRef]
- Zhou, C.; Chen, Z.; Yang, H.; Hou, K.; Zeng, X.; Zheng, Y.; Cheng, J. Nature-Inspired Strategy toward Superhydrophobic Fabrics for Versatile Oil/Water Separation. ACS Appl. Mater. Interfaces 2017, 9, 9184–9194. [Google Scholar] [CrossRef]
- Xu, Q.; Shen, L.; Duan, P.; Zhang, L.; Fu, F.; Liu, X. Superhydrophobic Cotton Fabric with Excellent Healability Fabricated by the “Grafting to” Method Using a Diblock Copolymer Mist. Chem. Eng. J. 2020, 379, 122401. [Google Scholar] [CrossRef]
- Wang, X.; Yu, P.; Zhang, K.; Wu, M.; Wu, Q.; Liu, J.; Yang, J.; Zhang, J. Superhydrophobic/Superoleophilic Cotton for Efficient Oil-Water Separation Based on the Combined Octadecanoyl Chain Bonding and Polymer Grafting via Surface-Initiated ATRP. ACS Appl. Polym. Mater. 2019, 1, 2875–2882. [Google Scholar] [CrossRef]
- Xue, C.H.; Fan, Q.Q.; Guo, X.J.; An, Q.F.; Jia, S.T. Fabrication of Superhydrophobic Cotton Fabrics by Grafting of POSS-Based Polymers on Fibers. Appl. Surf. Sci. 2019, 465, 241–248. [Google Scholar] [CrossRef]
- Tang, X.; Yan, X. Dip-Coating for Fibrous Materials: Mechanism, Methods and Applications. J. Sol-Gel Sci. Technol. 2017, 81, 378–404. [Google Scholar] [CrossRef]
- Liu, X.; Gu, Y.; Mi, T.; Wang, X.; Zhang, X. Dip-Coating Approach to Fabricate Durable PDMS/STA/SiO2 Superhydrophobic Polyester Fabrics. Coatings 2021, 11, 326. [Google Scholar] [CrossRef]
- Liu, H.; Gao, S.W.; Cai, J.S.; He, C.L.; Mao, J.J.; Zhu, T.X.; Chen, Z.; Huang, J.Y.; Meng, K.; Zhang, K.Q.; et al. Recent Progress in Fabrication and Applications of Superhydrophobic Coating on Cellulose-Based Substrates. Materials 2016, 9, 124. [Google Scholar] [CrossRef] [PubMed]
- Eduok, U.; Faye, O.; Szpunar, J. Recent Developments and Applications of Protective Silicone Coatings: A Review of PDMS Functional Materials. Prog. Org. Coat. 2017, 111, 124–163. [Google Scholar] [CrossRef]
- Jiang, C.; Liu, W.; Yang, M.; Liu, C.; He, S.; Xie, Y.; Wang, Z. Facile Fabrication of Robust Fluorine-Free Self-Cleaning Cotton Textiles with Superhydrophobicity, Photocatalytic Activity, and UV Durability. Colloids Surf. A Physicochem. Eng. Asp. 2018, 559, 235–242. [Google Scholar] [CrossRef]
- Tang, D.; Liu, E. Facile Fabrication of Robust and Fluorine-Free Superhydrophobic PDMS/STA-Coated Cotton Fabric for Highly Efficient Oil-Water Separation. Coatings 2023, 13, 954. [Google Scholar] [CrossRef]
- Kumar, S.G.V.; Prabhakar, P.; Sen, R.K.; Uppal, N.; Khan, M.A.; Srivastava, A.K. Development of Superhydrophobic Cotton Fabric Using Zinc Oxide Nanoflower/Polydimethylsiloxane (PDMS) Nanocomposite Coatings. Text. Leather Rev. 2021, 4, 253–266. [Google Scholar] [CrossRef]
- Xue, C.H.; Bai, X.; Jia, S.T. Robust, Self-Healing Superhydrophobic Fabrics Prepared by One-Step Coating of PDMS and Octadecylamine. Sci. Rep. 2016, 6, 27262. [Google Scholar] [CrossRef]
- Talebizadehsardari, P.; Seyfi, J.; Hejazi, I.; Eyvazian, A.; Khodaie, M.; Seifi, S.; Davachi, S.M.; Bahmanpour, H. Enhanced Chemical and Mechanical Durability of Superhydrophobic and Superoleophilic Nanocomposite Coatings on Cotton Fabric for Reusable Oil/Water Separation Applications. Colloids Surf. A Physicochem. Eng. Asp. 2020, 603, 125204. [Google Scholar] [CrossRef]
- Hu, H.; Gao, L.; Chen, C.; Chen, Q. Low-Cost, Acid/Alkaline-Resistant, and Fluorine-Free Superhydrophobic Fabric Coating from Onionlike Carbon Microspheres Converted from Waste Polyethylene Terephthalate. Environ. Sci. Technol. 2014, 48, 2928–2933. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Geng, T.; Guo, Y.; Zhang, Z.; Zhang, P. Facile Fabrication of Stable Superhydrophobic SiO2/Polystyrene Coating and Separation of Liquids with Different Surface Tension. Chem. Eng. J. 2013, 231, 414–419. [Google Scholar] [CrossRef]
- Lin, J.; Zheng, C.; Ye, W.J.; Wang, H.Q.; Feng, D.Y.; Li, Q.Y.; Huan, B.W. A Facile Dip-Coating Approach to Prepare SiO2/Fluoropolymer Coating for Superhydrophobic and Superoleophobic Fabrics with Self-Cleaning Property. J. Appl. Polym. Sci. 2015, 132, 41458. [Google Scholar] [CrossRef]
- Koedrith, P.; Rahman, M.M.; Jang, Y.J.; Shin, D.Y.; Seo, Y.R. Nanoparticles: Weighing the Pros and Cons from an Eco-Genotoxicological Perspective. J. Cancer Prev. 2021, 26, 83–97. [Google Scholar] [CrossRef]
- Batley, G.E.; Kirby, J.; McLaughlin, M. Nanomaterials in Aquatic and Terrestrial Environments. Acc. Chem. Res. 2011. [Google Scholar]
- Pérez-Hernández, H.; Pérez-Moreno, A.; Sarabia-Castillo, C.R.; García-Mayagoitia, S.; Medina-Pérez, G.; López-Valdez, F.; Campos-Montiel, R.G.; Jayanta-Kumar, P.; Fernández-Luqueño, F. Ecological Drawbacks of Nanomaterials Produced on an Industrial Scale: Collateral Effect on Human and Environmental Health; Springer International Publishing: Berlin/Heidelberg, Germany, 2021; Volume 232, ISBN 0123456789. [Google Scholar]
- Qiang, S.; Chen, K.; Yin, Y.; Wang, C. Robust UV-Cured Superhydrophobic Cotton Fabric Surfaces with Self-Healing Ability. Mater. Des. 2017, 116, 395–402. [Google Scholar] [CrossRef]
- Sun, D.; Wang, W.; Yu, D. Highly Hydrophobic Cotton Fabrics Prepared with Fluorine-Free Functionalized Silsesquioxanes. Cellulose 2017, 24, 4519–4531. [Google Scholar] [CrossRef]
- Keil, D.E.; Mehlmann, T.; Butterworth, L.; Peden-adams, M.M. Gestational Exposure to Perfluorooctane Sulfonate Suppresses Immune Function in B6C3F1 Mice. Toxicol. Sci. 2008, 103, 77–85. [Google Scholar] [CrossRef]
- Yan, L.; Chouw, N.; Jayaraman, K. Flax Fibre and Its Composites—A Review. Compos. Part B Eng. 2014, 56, 296–317. [Google Scholar] [CrossRef]
- Taibi, J.; Rouif, S.; Ameduri, B.; Sonnier, R.; Otazaghine, B. Radiation Induced Graft Polymerization of Fluorinated Monomers onto Flax Fabrics for the Control of Hydrophobic and Oleophobic Properties. Polymer 2023, 281, 126132. [Google Scholar] [CrossRef]
- Pakdel, E.; Zhao, H.; Wang, J.; Tang, B.; Varley, R.J.; Wang, X. Superhydrophobic and Photocatalytic Self-Cleaning Cotton Fabric Using Flower-like N-Doped TiO2/PDMS Coating. Cellulose 2021, 28, 8807–8820. [Google Scholar] [CrossRef]
- Sheng, C.; Yang, L.; Zhang, H.; Zhang, P.; Shen, G. One-Step Hydrothermal Method to Prepare Superhydrophobic Cotton Fabric with Antibacterial Properties. J. Eng. Fiber. Fabr. 2021, 16, 15589250211066095. [Google Scholar] [CrossRef]
- Wortberg, I.; Rahal, D.-I. Zeitschrift Kunststofftechnik. J. Plast. Technol. 2007, 3, 1. [Google Scholar]
- Qin, H.; Li, X.; Zhang, X.; Guo, Z. Preparation and Performance Testing of Superhydrophobic Flame Retardant Cotton Fabric. New J. Chem. 2019, 43, 5839–5848. [Google Scholar] [CrossRef]
- Ferrara, G.; Coppola, B.; Di Maio, L.; Incarnato, L.; Martinelli, E. Tensile Strength of Flax Fabrics to Be Used as Reinforcement in Cement-Based Composites: Experimental Tests under Different Environmental Exposures. Compos. Part B Eng. 2019, 168, 511–523. [Google Scholar] [CrossRef]
- Sonnier, R.; Otazaghine, B.; Viretto, A.; Apolinario, G.; Ienny, P. Improving the Flame Retardancy of Flax Fabrics by Radiation Grafting of Phosphorus Compounds. Eur. Polym. J. 2015, 68, 313–325. [Google Scholar] [CrossRef]
Sample No. | Flax Fabrics (g) | PDMS-co-PHMS (g) | D4V (g) | Acetone (mL) | Karstedt Catalyst (μL) | Concentration (g/L) | Si-Vinyl/Si-H Ratio |
---|---|---|---|---|---|---|---|
01 | 3 | 0.34 | 0.12 | 32 | 15 | 14 | 1/1 |
02 | 3 | 0.67 | 0.24 | 32 | 30 | 28 | 1/1 |
03 | 3 | 1.00 | 0.36 | 32 | 45 | 43 | 1/1 |
04 | 3 | 1.50 | 0.54 | 32 | 67 | 64 | 1/1 |
05 | 3 | 2.24 | 0.81 | 32 | 100 | 95 | 1/1 |
06 | 3 | 2.58 | 0.46 | 32 | 50 | 95 | 1/2 |
07 | 3 | 2.72 | 0.33 | 32 | 33 | 95 | 1/3 |
08 | 3 | 2.80 | 0.25 | 32 | 25 | 95 | 1/4 |
Sample No. | Si-Vinyl/Si-H Ratio | Coating Rate wt% |
---|---|---|
6 | 1/2 | 11.4 ± 1 |
7 | 1/3 | 10.7 ± 2 |
8 | 1/4 | 10.8 ± 1 |
Sample No. | Si-Vinyl/Si-H Ratio | θ (°) | SA (°) |
---|---|---|---|
6 | 1/2 | 147 ± 4 | 23 ± 3 |
7 | 1/3 | 145 ± 3 | 23 ± 2 |
8 | 1/4 | 144 ± 5 | 22 ± 4 |
Sample No. | Si-Vinyl/Si-H Ratio | CR (wt%) | Fmax (Mpa) | dL (Fmax) % | Frupt (MPa) | dL (Rupture) % | D (mm) | Module E (MPa) |
---|---|---|---|---|---|---|---|---|
Pristine | - | - | 489 ± 61 | 2.7 ± 0.3 | 413 ± 190 | 2.8 ± 0.3 | 0.27 | 19,000 ± 1140 |
5 | 1/1 | 11.6 ± 3 | 632 ± 112 | 4 ± 0.4 | 609 ± 120 | 4 ± 0.5 | 0.27 | 16,612 ± 1900 |
6 | 1/2 | 11.4 ± 1 | 628 ± 92 | 4.1 ± 0.6 | 593 ± 74 | 4.2 ± 0.6 | 0.27 | 15,801 ± 2245 |
7 | 1/3 | 10.7 ± 2 | 484 ± 27 | 3.9 ± 1.5 | 450 ± 79 | 4.1 ± 1.6 | 0.27 | 16,682 ± 700 |
8 | 1/4 | 10.8 ± 1 | 532 ± 89 | 3 ± 0.3 | 451 ± 147 | 3.2 ± 0.2 | 0.27 | 19,398 ± 2140 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ishak, A.; Sonnier, R.; Otazaghine, B.; Longuet, C. A One-Step Approach for a Durable and Highly Hydrophobic Coating for Flax Fabrics for Self-Cleaning Application. Molecules 2024, 29, 829. https://doi.org/10.3390/molecules29040829
Ishak A, Sonnier R, Otazaghine B, Longuet C. A One-Step Approach for a Durable and Highly Hydrophobic Coating for Flax Fabrics for Self-Cleaning Application. Molecules. 2024; 29(4):829. https://doi.org/10.3390/molecules29040829
Chicago/Turabian StyleIshak, Antoine, Rodolphe Sonnier, Belkacem Otazaghine, and Claire Longuet. 2024. "A One-Step Approach for a Durable and Highly Hydrophobic Coating for Flax Fabrics for Self-Cleaning Application" Molecules 29, no. 4: 829. https://doi.org/10.3390/molecules29040829
APA StyleIshak, A., Sonnier, R., Otazaghine, B., & Longuet, C. (2024). A One-Step Approach for a Durable and Highly Hydrophobic Coating for Flax Fabrics for Self-Cleaning Application. Molecules, 29(4), 829. https://doi.org/10.3390/molecules29040829